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https://arxiv.org/abs/2504.12295

Elliptic curves and their L-functions

Let E/Q be an elliptic curve, say E: y?> = x> 4+ Ax + B with A, B € Z.
For primes p { A(E) := —16(4A3 + 27B2) this equation defines an elliptic curve E/F,.
For all such primes p we have the trace of Frobenius a,(E) = p+ 1 — #E(F,) € Z.

One can also define a,(E) for p|A(E), and then construct the L-function

L(E,s):=](1 —app* + x(p)p" %)t =D ann %,

P n>1

0 pIN(E)
1 otherwise

where x(p) = { and the conductor N(E) divides A(E).

But in fact the a, for pt A(E) determine L(E,s) (via strong multiplicity one), as well
as the conductor and root number ¢(E) = 1 which appear in the functional equation

A(E,s) = e(E)N(E)'A(E,2 — s),

where A(s) == 'c(s)L(E,s). The L-function L(E,s) determines the isogeny class of E.



Arithmetic statistics of Frobenius traces of elliptic curves E/Q

Three conjectures from the 1960s and 1970s (the first is now a theorem):
1. Sato—Tate: The sequence x, := a,(E)/./p is equidistributed with respect to the
pushforward of the Haar measure of ST(E) (= SU(2) if E does not have CM).

2. Birch and Swinnerton-Dyer:

im 1 Z ap(E)logp 1

~—r
x—00 log x p 2

p<x
3. Lang—Trotter: For every nonzero t € Z there is a real number Cg ; for which

#{p<x:ap(E)=1t}~ Cg ﬁ

7t *
log x

These conjectures depend only on L(E,s) and generalize to other L-functions.



Example: Elkies—Klagsbrun curve of rank > 29.

al hislq?ram af¥2 + ?l = x3 - 2700618324163092221843465214529745378476805462 1836357954737 385x 5
+55258058551342376475/3669950111819182152106703253507 96083724047 79149413277716173425636721497 for primes p < 210

159 data points in 13 buckets, z1 = 0.025, out of range data has area 0.252

Moments: 1 1.114 1.775 2.579 4.523 7.055 12.986 20.973 39.725 65.587 126.589



Example: Elkies—Klagsbrun curve of rank > 29.

al hislq?ram af¥2 + ?l = x3 - 2700618324163092221843465214529745378476805462 1836357954737 385x 5
+55258058551342376475/3669950111819182152106703253507 96083724047 79149413277716173425636721497 for primes p < 240

41203088782 data points in 202985 buckets

Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0.001 14.000 0.002 42.001



How rank affects trace distributions

An early form of the BSD conjecture implies that

1 E)l 1
Ilm Zap( )ng:

——r. 1
x—o0 |og x o< p 2 ( )

Sums of this form (Mestre-Nagao sums) are often used as a tool when searching for
elliptic curves of large rank (which necessarily have large conductor N).! 2

Theorem (Kim-Murty 2023)

If the limit on the LHS of (1) exists then it equals the RHS with r the analytic rank,
and the L-function of E satisfies the Riemann hypothesis.

See Sarnak’s 2007 letter to Mazur.
2See Kazalicki-Vlah for some recent machine-learning work on this topic.


https://arxiv.org/abs/2105.10805
https://publications.ias.edu/sites/default/files/MazurLtrMay08.PDF
https://rdcu.be/df9td
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Why are there still unsolved problems in number theory?

From Mazur's 2008 article Finding meaning in error terms:

Eratosthenes, to take an example—and other ancient Greek mathemati-
cians—might have imagined that all they needed were a few powerful insights
and then everything about numbers would be as plain, say, as facts about
triangles in the setting of Euclid’s Elements of Geometry.

Sometimes, but not that often, in number theory we get a complete answer
to a question we have posed, an answer that finishes the problem off. Often
something else happens: we manage to find a fine, simple, good approxima-
tion to the data or phenomena that interests us—perhaps after some major
effort—and then we discover that yet deeper questions lie hidden in the error
term, i.e., in the measure of how badly our approximation misses its mark.


https://www.ams.org/journals/bull/2008-45-02/S0273-0979-08-01207-X

Murmurations of elliptic curves

In their 2022 preprint Murmurations of elliptic curves (recently published), He, Lee,
Oliver, and Pozdnyakov observed a curious fluctuation in average Frobenius traces of
elliptic curves in a fixed conductor interval when separated by rank.



https://arxiv.org/abs/2204.10140
https://www.tandfonline.com/doi/epdf/10.1080/10586458.2024.2382361

Murmurations of elliptic curves

Elliptic curve L-functions of conductor N € (M,2M] for M = 211 212 217 250000.
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, := (E)ap(E) over even/odd or all E/Q with N(E) € (M,2M].3

a_p averages of 3762/3985 root number +1/-1 elliptic curves E/Q of conductor 2711 < N <= 2~12 for p < 2712

WI(E)*a_p averages of 3762/3985 root number w(E) = +1/-1 elliptic curves E/Q of conductor 2~11 < N <= 2~12 forp < 2~12

3Letter to Sarnak, response from Sarnak.


https://publications.ias.edu/sites/default/files/Sutherland%20Rubinstein%20Sarnak%20Letter.pdf
https://publications.ias.edu/sites/default/files/Nina%20and%20Drew%20letter_0.pdf

Murmurations of elliptic curves

Elliptic curve L-functions of conductor N € (M,2M)] for M = 211 212 217 250000.
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, := ¢(E)ap(E) over even/odd or all E/Q with N(E) € (M,2M].3

a_p averages of 530887/537808 root number +1/-1 elliptic curves E/Q of conductor 250000 < N <= 500000 for p < 500000

a
3
2
1

3| etter to Sarnak, response from Sarnak.


https://publications.ias.edu/sites/default/files/Sutherland%20Rubinstein%20Sarnak%20Letter.pdf
https://publications.ias.edu/sites/default/files/Nina%20and%20Drew%20letter_0.pdf

Bias cancellation

There is a negative bias in a, that depends on p but is independent of the root
number ¢(E) and disappears in m,.

WI(E)*a_p averages of 3762/3985 root number w(E) = +1/-1 elliptic curves E/Q of conductor 2~11 < N <= 2~12 for p < 2~12
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W(E)*a_p averages of 3762/3985 root number w(E) = +1/-1 elliptic curves E/Q of conductor 2~11 < N <= 212 for p < 2~12
4
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Bias cancellation

There is a negative bias in 3, that depends on p but is independent of the root
number ¢(E) and disappears in mp.

W(E)*a_p averages of 504805/511258 root number w(E) = +1/-1 elliptic curves E/Q of conductor 2~18 < N <= 500000 for p < 2~19




Murmurations of elliptic curves over a, (not just ap)

Elliptic curve L-functions of conductor N € (M,2M)] for M = 212 ... 217 250000.
The x-axis range is [0,2M]. Dots at (n, m,) show the average of m, := ¢(E)an(E)

over all E/Q with N(E) € (M, 2M].

The color of the dot indicates the number of prime factors of n (with multiplicity).

omega(n) <= 12




Murmurations of elliptic curves over a, (not just ap)

Elliptic curve L-functions of conductor N € (M,2M] for M = 22 ... 217 250000.
The x-axis range is [0,2M]. Dots at (n, m,) show the average of m, := e(E)an(E)
over all E/Q with N(E) € (M,2M].

The color of the dot indicates the number of prime factors of n (with multiplicity).

2718 <= N < 2”19, Omega(n) <= 18




Murmurations are an aggregate phenomenon

Moving average line plots of mj, for 8 individual and all E/Q with N(E) € (M,2M],
using subintervals of size v/M for p < 2M, with M = 217,

147455.b2, , 180222.be2, 196606.b1, 212990.11, 229374.al, 245758.a1, 262143.d1


https://www.lmfdb.org/EllipticCurve/Q/\color {mplsalmon}147455.b2
https://www.lmfdb.org/EllipticCurve/Q/\color {mplskyblue}163839.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldeepskyblue}180222.be2
https://www.lmfdb.org/EllipticCurve/Q/\color {mpltomato}196606.b1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldodgerblue}212990.l1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplslateblue}229374.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplroyalblue}245758.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplcrimson}262143.d1

Ordering by (naive) height

Elliptic curves with ht(E) := max(4|A[3,27B2) in (M,2M] for M =216, 226
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

W(E)*a_p averages of 1838/1844 root number w(E) = +1/-1 elliptic curves E/Q of naive height 216 < ht(E) <= 217 for p < 217




Ordering by (naive) height

Elliptic curves with ht(E) := max(4|A[3,27B82) in (M,2M] for M = 216 ... 226,
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or my, over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 631953/630995 root number +1/-1 elliptic curves E/Q of naive height 226 < ht(E) <= 227 for p < 2~27

W(E)*a_p averages of 631953/630995 root number w(E) = +1/-1 elliptic curves E/Q of naive height 226 < ht(E) <= 22




Ordering by absolute minimal discriminant

Elliptic curves with minimal discriminant A(E) in (M,2M] for M = 2%6 .. 223,
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

W(E)*a_p averages of 4606/4592 root number w(E) = +1/-1 elliptic curves E/Q of minimal discriminant 2~16 < Delta(E) <= 2~17 for p < 2°17




Ordering by absolute minimal discriminant

Elliptic curves with minimal discriminant A(E) in (M,2M] for M =216 223,
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or mp) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 264427/265739 root number +1/-1 elliptic curves E/Q of minimal discriminant 223 < Delta(E) ~24forp < 2°24




Ordering by absolute minimal discriminant

Elliptic curves with minimal discriminant A(E) in (M,2M] for M = 2%6 .. 223,
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

W(E)*a_p averages of 4606/4592 root number w(E) = +1/-1 elliptic curves E/Q of minimal discriminant 2~16 < Delta(E) <= 2~17 for p < 2°17




Ordering by absolute minimal discriminant

Elliptic curves with minimal discriminant A(E) in (M,2M] for M =216 223,
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or mp) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 264427/265739 root number +1/-1 elliptic curves E/Q of minimal discriminant 223 < Delta(E) ~24forp < 2°24




Ordering by height (redux)

Elliptic curves with ht(E) := max(4|A[3,27B2) in (M,2M] for M =216, 225
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or m,) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

W(E)*a_p averages of 1838/1844 root number w(E) = +1/-1 elliptic curves E/Q of naive height 216 < ht(E) <= 217 for p < 217




Ordering by height (redux)

Elliptic curves with ht(E) := max(4|A[3,27B82%) in (M,2M)] for M =216 ... 2%
The x-axis range is [0,2M]. A blue/red or purple dot at (p, 3, or mp) shows the
average of a, or m, over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 351546/351348 root number +1/-1 elliptic curves E/Q of naive height 225 < ht(E) <= 226 for p < 2~26

W(E)*a_p averages of 351546/351348 root nu




Local averaging

Rather than averaging a,'s for L-functions with conductor in an interval, we may
instead compute local averages of aj, for each L-function in our family with p/N
varying over some interval, and then average these local averages.

For example, we may divide the interval [0, 1] into n intervals (x, x + 1], with
x=0,2%2 n—1 For each L-function in our family we compute ap for all primes

s nd Y n

p < N, and then for x =0, %, ce ";1 we compute the average oy (E) of ap(E) for
p 1
N S (x,x + ;},

yielding a vector of n real numbers. We then average these vectors over all L-functions
in our family of a given root number or rank, up to an increasing bound X — oco.

With this setup, we do not need to order by conductor, but the order matters.



Local averaging: elliptic curves ordered by conductor

Elliptic curve L-functions of conductor N < M for M = 212 213 217 218 The
x-axis range is [0,1]. A blue/red (or purple) dot at (x, @x) shows the average a, of
ax(E) (or e(E)ax(E)) over even/odd rank (or all) E/Q with N(E) < M.




Local averaging: elliptic curves ordered by height

Elliptic curves with ht(E) := max(4|A|3,27B%) < M for M = 218 . . 227
The x-axis range is [0,1]. A blue/red (or purple) dot at (x, @) shows the average ay
of ax(E) (or e(E)ax(E)) over even/odd rank (or all) E/Q with ht(E) < M.




Local averaging: elliptic curves ordered by conductor vs height
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Arithmetic L-functions

We call an L-function analytic if it has the properties every good L-function should:
analytic continuation, functional equation, Euler product, temperedness, central
character; see FPRS18; it is analytically normalized if its central value is at s = 1/2.

An analytically normalized L-function Lay(s) = Y a,n~* is arithmetic if a,n“/? € Ok
for some number field K and w € Z>g. The least such w is the motivic weight.
Its arithmetic normalization L(s) := Lan(s 4+ w/2) has coefficients in Ok and satisfies

A(s) = N*SwA(1 +w — s).
L-functions of abelian varieties have motivic weight w = 1.
L-functions of weight-k holomorphic cusp forms have motivic weight w = k — 1.

We consider Galois-closed families of self-dual arithmetically normalized L-functions.
In any such family the values of a, and m, are integers and w = %1.

When averaging a,'s in motivic weight w > 1 we normalize them via a, — ap/p(w_l)/z.
This ensures that we always have |a,| = O(,/p), as with elliptic curves.


https://www.ams.org/journals/bull/2019-56-02/S0273-0979-2018-01646-7/

Newforms for ['o(/N) of weight kK = 2,4, 6 with rational coefficients.

s IEYa_p averages of 16911772 ook number w(E) = +-1/71 weight 2 newforms for Gamma_O(N) of level 210 < N <= 2~11 and dimension g <= 1 for p < 2*11
st o -. “ = ., ” | - ‘. - : i - L o 10
7: ’ . -o-z o ] E o4, : : 06 : s . : ] . o 1o
-2 ) Lo ) .
—: HEY 512 averages of 857108 ook numer (E) = +1/-1 WEIGE 6 newfomns for Gamima_0()ofevel 277 < N <= 276 and dimension g <= 1 fo p < 200
-2
3




Newforms for ['o(/N) of weight kK = 2,4, 6 with rational coefficients.

W(E)*a_p averages of 16816/18082 root number w(E) = +1/-1 weight 2 newforms for Gamma_O(N) of level 2~13 < N <= 214 and dimension g <=1 for p < 2°14

dimension g <= 1for p < 2712

W(E)*a_plp averages of 1154/1386 root number w(E) = +1/-1 weight 4 newforms for Gamma_0(N) of level 2~11 < N <= 2~12 and




Newforms for [o( /) of weight k = 2,4,6, 8.

20

W(E)*a_p averages of 3111/1479 root number w(E) = +1/-1 weight 2 newforms for Gamma_O(N) of level 28 < N <= 2~9 for p < 210

os . . - 10 15 20
-10
-15
-20
W(E)*a_plp averages of 7803/6014 root number w(E) = +1/-1 weight 4 newforms for Gamma_O(N) of level 2°8 < N <= 2~9 for p < 2~10
20
20
= g = - vy
W(E)*a_plp~3 averages of 17028/15239 root number w(E) = +1/-1 weight 8 newforms for Gamma_O(N) of level 2~8 < N <= 2~9 for p < 2~10
20
: 15 20




Newforms for [o( /) of weight k = 2,4,6, 8.

20
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W(E)*a_p averages of 9880381/8965438 root number w(E) = +1/-1 weight 2 newforms for Gamma_O(N) of level 2~14 < N <= 2~15 for p < 2°16
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10
05

W(E)*a_plp averages of 28732736/27807834 root number w(E) = +1/-1 weight 4 newforms for Gamma_O(N) of level 214 < N <= 2~15 for p < 216

-05
-10

20

05 ~_ 15

W(E)*a_p/p~2 averages of 47580166/46655263 root number w(E) = +1/-1 weight 6 newforms for Gamma_0(N) of level 2~14 < N <= 2~15 for p < 2°16

W(E)*a_p/p™3 averages of 66427462/65502558 oot number w(E) = +1/-1 weight 8 newforms for Gamma_0(N) of level 2~14 < N <= 2~15 for p < 2°16




Zubrilina's theorem

Definition. Let U, € Z[x] denote the Chebyshev polynomial defined by
Un(cos ) sin® = sin((n + 1)¥). The murmuration density function is

Mi(y) = Di(Ay — (~1)¥BY c(r)\/4y? — 12 Ui 5;) = 7y°0k=2)
1<r2y

A=, (1 Gefn): 8= I, S5 =11, (14 ) D= w7
Theorem [Zubrilina 2023]. Let 3" a,(f)q" denote a weight-k newform for 'g(/N) with
root number w(f). Let X, Y, P — oo with P prime, Y ~ X179, P <« X101 § 6, >0
and 261 < § < 1, and put y := /P/X. Then for every € > 0 we have

S Nep xty] 2o w(F)ap(F)PA=k/2)

SN xv] 2or 1

where ¢’ := max(6/2 — 1, (0 +1)/9 — 81); for 61 < 2/9 we can choose d so ¢’ > 0.

= Mi(y) + O-(X7 ¢ + P71




Zubrilina's theorem for k = 2,14,32 (click here for other k)

— = R ~—
< ~F ~J



https://math.mit.edu/~drew/murm/zub.html

Zubrilina's theorem for k = 2,14,32 (click here for other k)

\/ ~N

VV



https://math.mit.edu/~drew/murm/zub.html

Murmurations of elliptic curves with square root normalization

Elliptic curve L-functions of conductor N € (M,2M)] for M = 211 212 217 250000.
The x-axis range is [0,2M]. A blue/red or purple dot at (,/p, 3, or M) shows the
average of a, or my, :=¢(E)ap(E) over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 3762/3985 root number +1/-1 elliptic curves E/Q of conductor 2~11 < N <= 212 for p < 2°12
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W(E)*a_p averages of 3762/3985 root number w(E) = +1/-1 elliptic curves E/Q of conductor 2~11 < N <= 2~12 for p < 2°12
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Murmurations of elliptic curves with square root normalization

Elliptic curve L-functions of conductor N € (M,2M)] for M = 211 212 217 250000.
The x-axis range is [0,2M]. A blue/red or purple dot at (,/p, 3, or M) shows the
average of a, or my, := ¢(E)ap(E) over even/odd or all E/Q with N(E) € (M,2M].

a_p averages of 530887/537808 root number +1/-1 elliptic curves E/Q of conductor 250000 < N <= 500000 for p < 500000

W(E)*a_p averages of 530887/537808 root number w(E) = +1/-1 elliptic curves E/Q of conductor 250000 < N <= 500000 for p < 500000




A murmuration theorem for elliptic curves
Let £(X) = {y? = x3 + Ax+ B: A, B € Z,p*|A = p® { B, max(4|A]}, 27B?) < X}
be the set of isomorphism classes of elliptic curves over Q of naive height at most X.
Theorem (S—Sawin 2025)

For any smooth W: R~¢ — R with compact support, the limit

1 1 n
Jn w00 3 e 3 (i) (6920

n>1

exists and is equal to

) 1
/0 27T\/EW(U) Z EJI (47T\/Em) H ep,2z/p(m)du7

m=1 p|lm

with ly,, = t2§g;32),€3,y =l = pgm_ f tp(v + 2), where ty(k) = tr(Tp) on Sk(1).




A murmuration theorem for elliptic curves

B=10"12, X=2"12, #E=522




A murmuration theorem for elliptic curves




The Voronoi summation formula

Lemma (Kowalski-Michel-VanderKam 2002,
Blomer-Fouvry-Kowalski-Michel-Mili¢evi¢-Sawin 2023, Sawin-S 2025)

Let E/Q be an elliptic curve. Fix a,q € Z~o with gcd(aN(E), q) =1, and let aN(E)
be the inverse of aN(E) mod q. For any smooth W: R~o — R with compact support

we have
; E W 27rian/q
> ()t (e

Zan(E 2mial( E)”/C’/ 27/ uW (u) K 477@ du.
Vn 0 q

e(E)
N(E)

1
q



Proof strategy

The Voronoi summation formula can be shown to imply

Loo n _OOan(E)ooﬂ_u . N
N(E)nz_:lW(N(E)>5(E)an(E)—’72_:1 NG /0 2 uW ()b (4 /un)du.  (2)

Noting that an(E) = [Ip|n 2% (Ea,B) and each a v, (Eag) is a p-adically
continuous function of A, B, one can show

Jim Eqeesn lan(E)] = [ [20(E) = [T lpim: )
pin

Hp ZE\(P*Zpx pPZyp) pln

Taking limits on both sides of (2), proving absolute convergence, moving the limit on
the RHS inside the sum, and applying (3) yields the theorem.



Refinements

Conjecture (Sawin-S 2025)

For all real numbers 0 < C; < (5 we have

_ Iog(N(E)M)
Jim Eeespn) VE 2 3 e(E)ap(E)
pe(CiN(E).C:N(E)]
p prime

G
p(ged(m, q)) Vum >
- /C 2mu Y] Z”Jl o pr,zvp<m)plrl;[Mq€p,zvp(m) du.

squcgifﬁree meN qme (gcd(m,q) pla

a T RN =112 ,,-8 A -1, ,-2
where fp0 = {20, bpp = A7 = lpy = = AP (p + 1+ (v + 2)) for

primes p > 3, and more complicated (but completely explicit) formulas for p = 2, 3.




Refinements (testing the conjecture)

Figure 1: X=2"16, #{E: H(E)<=X}=5042




Refinements (testing the conjecture)

Figure 1: X=2"28, #{E: H(E)<=X}=5122428




Refinements

Theorem (Sawin-S 2025)
Let W be a smooth, compactly-supported function on (0,00). The limit

<p(1=1/p)7t n
i Becsoop [ 2 > W (g) )

ptn for p<P
exists and is equal to

/OOOW(U)\/E<27rZ 5 u(gcd(m,q))) N <47Tﬁm>

q
geN meN qme (7gcd(m7q) q
squarefree

Hép,va(m) H fp,zvp(m)> du.

pla plm,ptq



Refinements (illustrating the theorem)

Theorem 1: P=2°0, X=2"28, #{E: H(E)<=X}=5122428




Refinements (illustrating the theorem)

Theorem 1: P=2~8, X=228, #{E: H(E)<=X}=5122428




Ordering by (prime) conductor

Let P(X) be the set of isomorphism classes of E/Q of prime conductor N(E) < X.

Conjecture (Sawin-S 2025)
For all real 0 < C; < G we have

> 5(E)ap(E)]
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with £}, , = —p~1(1+ to(v + 2)), where t,(k) = tr(T,) on Si(1).



Ordering by (prime) conductor (testing the conjecture)

Figure 4: X=2~18, #{E: N(E)<=X, N(E) prime}=3428




Ordering by (prime) conductor (testing the conjecture)

Figure 4: X=2"30, #{E: N(E)<=X, N(E) prime}=1979932




Thank you!
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Animations available at https://math.mit.edu/~drew/murmurations.html.


https://math.mit.edu/~drew/murmurations.html

