Murmurations: A computational perspective

Andrew V. Sutherland

Massachusetts Institute of Technology

## December 1, 2023



Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation

## Elliptic curves and their L-functions

Let $E / \mathbb{Q}$ be an elliptic curve, say $E: y^{2}=x^{3}+A x+B$ with $A, B \in \mathbb{Z}$.
For primes $p \nmid \Delta(E):=-16\left(4 A^{3}+27 B^{2}\right)$ this equation defines an elliptic curve $E / \mathbb{F}_{p}$. For all such primes $p$ we have the trace of Frobenius $a_{p}(E):=p+1-\# E\left(\mathbb{F}_{p}\right) \in \mathbb{Z}$.
One can also define $a_{p}(E)$ for $p \mid \Delta(E)$, and then construct the $L$-function

$$
L(E, s):=\prod_{p}\left(1-a_{p} p^{-s}+\chi(p) p^{1-2 s}\right)^{-1}=\sum_{n \geq 1} a_{n} n^{-s}
$$

where $\chi(p)=0$ for $p \mid N(E)$ and $\chi(p)=1$ otherwise and $N(E) \mid \Delta(E)$ is the conductor. But in fact the $a_{p}$ for $p \nmid \Delta(E)$ determine $L(E, s)$ (via strong multiplicity one), and also the conductor and root number $w(E)= \pm 1$, which appear in the functional equation

$$
\Lambda(E, s)=w(E) N(E)^{1-s} \Lambda(E, 2-s)
$$

where $\Lambda(s):=\Gamma_{\mathbb{C}}(s) L(E, s)$. The $L$-function $L(E, s)$ determines the isogeny class of $E$.

## Arithmetic statistics of Frobenius traces of elliptic curves $E / \mathbb{Q}$

Three conjectures from the 1960s and 1970s (the first is now a theorem):

1. Sato-Tate: The sequence $x_{p}:=a_{p}(E) / \sqrt{p}$ is equidistributed with respect to the pushforward of the Haar measure of of $\operatorname{ST}(E)(=S U(2)$ if $E$ does not have CM).

## 2. Birch and Swinnerton-Dyer:

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p \leq x} \frac{a_{p}(E) \log p}{p}=\frac{1}{2}-r,
$$

3. Lang-Trotter: For every nonzero $t \in \mathbb{Z}$ there is a real number $C_{E, t}$ for which

$$
\#\left\{p \leq x: a_{p}(E)=t\right\} \sim C_{E, t} \frac{\sqrt{x}}{\log x}
$$

These conjectures depend only on $L(E, s)$ and generalize to other $L$-functions.

## Example: Elkies' curve of rank $\geq 28$ ( $=28$ under GRH).

a1 histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$ +34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$

172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250


## Example: Elkies' curve of rank $\geq 28$ ( $=28$ under GRH).

a1 histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$ +34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 40$

41203088796 data points in 202985 buckets


## How rank effects trace distributions

An early form of the BSD conjecture implies that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p \leq x} \frac{a_{p}(E) \log p}{p}=\frac{1}{2}-r, \tag{1}
\end{equation*}
$$

and sums of this form (Mestre-Nagao sums) are often used as a tool when searching for elliptic curves of large rank (which necessarily have large conductor $N$ ). ${ }^{1}{ }^{2}$

Theorem (Kim-Murty 2023)
If the limit on the LHS of (1) exists then it equals the RHS with $r$ the analytic rank, and the L-function of $E$ satisfies the Riemann hypothesis.

[^0]

## Murmurations of elliptic curves

In their 2022 preprint Murmurations of elliptic curves, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov observed a curious fluctuation in average Frobenius traces of elliptic curves in a given conductor interval depending on the rank.


## Murmurations of elliptic curves

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at $\left(p, \bar{a}_{p}\right.$ or $\left.\bar{m}_{p}\right)$ shows the average of $a_{p}$ or $m_{p}:=w(E) a_{p}(E)$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.
a_p averages of $3762 / 3985$ root number $+1 /-1$ elliptic curves $E / Q$ of conductor $2^{\wedge} 11<N<=2^{\wedge} 12$ for $p<2^{\wedge} 12$


## Murmurations of elliptic curves

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at $\left(p, \bar{a}_{p}\right.$ or $\left.\bar{m}_{p}\right)$ shows the average of $a_{p}$ or $m_{p}:=w(E) a_{p}(E)$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

$w(E)^{*} a_{-}$p averages of $530887 / 537808$ root number $w(E)=+1 /-1$ elliptic curves $E / Q$ of conductor $250000<N<=500000$ for $p<500000$


## Murmurations of elliptic curves over $a_{n}$ (not just $a_{p}$ )

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. Dots at $\left(n, \bar{m}_{n}\right)$ show the average of $m_{n}:=w(E) a_{n}(E)$ over all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

The color of the dot indicates the number of prime factors of $n$ (with multiplicity).

## Murmurations of elliptic curves over $a_{n}$ (not just $a_{p}$ )

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. Dots at $\left(n, \bar{m}_{n}\right)$ show the average of $m_{n}:=w(E) a_{n}(E)$ over all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

The color of the dot indicates the number of prime factors of $n$ (with multiplicity).


## Murmurations are an aggregate phenomenon

Moving average line plots of $\bar{m}_{p}$ for 8 individual and all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$, using subintervals of size $\sqrt{M}$ for $p \leq 2 M$, with $M=2^{17}$.


## Murmurations depend critically on the conductor

Elliptic curves with $h t(E):=\max \left(4|A|^{3}, 27 B^{2}\right)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$ The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at ( $p, \bar{a}_{p}$ or $\bar{m}_{p}$ ) shows the average of $a_{p}$ or $m_{p}$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.


## Murmurations depend critically on the conductor

Elliptic curves with $h t(E):=\max \left(4|A|^{3}, 27 B^{2}\right)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at ( $p, \bar{a}_{p}$ or $\bar{m}_{p}$ ) shows the average of $a_{p}$ or $m_{p}$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

## Murmurations scale

Elliptic curves in the SWDB of conductor $N \in(M, 2 M]$ for $M=2^{12}, \ldots, 2^{25}$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at ( $p, \bar{a}_{p}$ or $\bar{m}_{p}$ ) shows the average of $a_{p}$ or $m_{p}$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.


## Murmurations scale

Elliptic curves in the SWDB of conductor $N \in(M, 2 M]$ for $M=2^{12}, \ldots, 2^{25}$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at $\left(p, \bar{a}_{p}\right.$ or $\left.\bar{m}_{p}\right)$ shows the average of $a_{p}$ or $m_{p}$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

$w(E)^{*}$ a_p averages of $17630665 / 17639675$ root number $w(E)=+1 /-1$ elliptic curves $E / Q$ in the Stein-Watkins database of conductor $2^{\wedge} 25<N<=2^{\wedge} 26$ for $p<2^{\wedge} 26$


## Arithmetic L-functions

We call an L-function is analytic if it has the properties every good $L$-function should: analytic continuation, functional equation, Euler product, temperedness, central character; see FPRS18; it is analytically normalized if its central value is at $s=1 / 2$.
An analytically normalized $L$-function $L_{\mathrm{an}}(s)=\sum a_{n} n^{-s}$ is arithmetic if $a_{n} n^{\omega / 2} \in \mathcal{O}_{K}$ for some number field $K$ and $\omega \in \mathbb{Z}_{\geq 0}$. The least such $\omega$ is the motivic weight. Its arithmetic normalization $L(s):=L_{\mathrm{an}}(s+\omega / 2)$ has coefficients in $\mathcal{O}_{K}$ and satisfies

$$
\Lambda(s)=N^{1-s} w \bar{\Lambda}(1+\omega-s)
$$

$L$-functions of abelian varieties have motivic weight $\omega=1$.
$L$-functions of weight- $k$ holomorphic cuspforms have motivic weight $\omega=k-1$.
We consider Galois-closed families of self-dual arithmetically normalized L-functions. In any such family the values of $a_{p}$ and $m_{p}$ are integers and $w= \pm 1$.
When averaging $a_{p}$ 's in motivic weight $\omega>1$ we normalize them via $a_{p} \mapsto a_{p} / p^{(\omega-1) / 2}$. This ensures that we always have $\left|a_{p}\right|=O(\sqrt{p})$, as with elliptic curves.

# Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$ with rational coefficients. 







[^1]
## Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$ with rational coefficients.


$\mathrm{w}(\mathrm{E}) * \mathrm{*}^{\mathrm{p}} \mathrm{p} / \mathrm{p} \wedge 2$ averages of 259/304 root number $\mathrm{w}(\mathrm{E})=+1 /-1$ weight 6 newforms for Gamma_ $\mathrm{O}(\mathrm{N})$ of level $2 \wedge 10<\mathrm{N}<-2^{\wedge} 11$ and dimension $\mathrm{g}<-1$ for $\mathrm{p}<2^{\wedge} 11$


## Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6,8$.



## Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6,8$.



## Zubrilina's theorem

Definition. Let $U_{n} \in \mathbb{Z}[x]$ denote the Chebyshev polynomial defined by $U_{n}(\cos \vartheta) \sin \vartheta=\sin ((n+1) \vartheta)$. The murmuration density function is

$$
\begin{gathered}
M_{k}(y):=D_{k}\left(A y-(-1)^{k / 2} B \sum_{1 \leq r \leq 2 y} c(r) \sqrt{4 y^{2}-r^{2}} U_{k-2}\left(\frac{r}{2 y}\right)-\pi y^{2} \delta_{k=2}\right), \\
\left.A:=\prod_{p}\left(1+\frac{p}{(p+1)^{2}(p-1)}\right), B:=\prod_{p} \frac{p^{4}-2 p^{2}-p+1}{\left(p^{2}-1\right)^{2}}, c(r):=\prod_{p \mid r}\left(1+\frac{p^{2}}{p^{4}-2 p^{2}-p+1}\right), D_{k}:=\frac{12}{(k-1) \pi} \prod_{p}^{1-\frac{1}{p^{2}+p}}\right)
\end{gathered} .
$$

Theorem [Zubrilina 2023]. Let $\sum a_{n}(f) q^{n}$ denote a weight- $k$ newform for $\Gamma_{0}(N)$ with root number $w(f)$. Let $X, Y, P \rightarrow \infty$ with $P$ prime, $Y \sim X^{1-\delta}, P \ll X^{1+\delta_{1}}, \delta, \delta_{1}>0$ and $2 \delta_{1}<\delta<1$, and put $y:=\sqrt{P / X}$. Then for every $\varepsilon>0$ we have

$$
\frac{\sum_{N \in[X, X+Y]}^{\square-\text { free }} \sum_{f} w(f) a_{P}(f) P^{(1-k / 2)}}{\sum_{N \in[X, X+Y]}^{\square-\text {-fee }} \sum_{f} 1}=M_{k}(y)+O_{\varepsilon}\left(X^{-\delta^{\prime}+\varepsilon}+P^{-1}\right)
$$

where $\delta^{\prime}:=\max \left(\delta / 2-\delta_{1},(\delta+1) / 9-\delta_{1}\right)$; for $\delta_{1}<2 / 9$ we can choose $\delta$ so $\delta^{\prime}>0$.

## Murmurations of elliptic curves with squareroot normalization

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at $\left(\sqrt{p}, \bar{a}_{p}\right.$ or $\left.\bar{m}_{p}\right)$ shows the average of $a_{p}$ or $m_{p}:=w(E) a_{p}(E)$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.
a_p averages of $3762 / 3985$ root number $+1 /-1$ elliptic curves $E / Q$ of conductor $2^{\wedge} 11<N<=2^{\wedge} 12$ for $p<2^{\wedge} 12$

w(E)*a_p averages of 3762/3985 root number $w(E)=+1 /-1$ elliptic curves $E / Q$ of conductor $2^{\wedge} 11<N<=2^{\wedge} 12$ for $p<2^{\wedge} 12$


## Murmurations of elliptic curves with squareroot normalization

Elliptic curve $L$-functions of conductor $N \in(M, 2 M]$ for $M=2^{11}, 2^{12}, \ldots, 2^{17}, 250000$. The $x$-axis range is $[0,2 M]$. A blue/red or purple dot at $\left(\sqrt{p}, \bar{a}_{p}\right.$ or $\left.\bar{m}_{p}\right)$ shows the average of $a_{p}$ or $m_{p}:=w(E) a_{p}(E)$ over even/odd or all $E / \mathbb{Q}$ with $N_{E} \in(M, 2 M]$.

$w(E) * a \_p$ averages of $530887 / 537808$ root number $w(E)=+1 /-1$ elliptic curves $E / Q$ of conductor $250000<N<=500000$ for $p<500000$

## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves $X / \mathbb{Q}$ of conductor at most $2^{20}$ includes $1,440,894$ isogeny classes with Sato-Tate group USp(4). Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with $x$-axis range $[0, M / 2]$.
a_p averages of $1514 / 1313$ root number $+1 /-1$ genus 2 curves $\mathrm{X} / \mathrm{Q}$ of conductor $2^{\wedge} 12<\mathrm{N}<=2^{\wedge} 13$ for $\mathrm{p}<2^{\wedge} 12$

$\mathrm{w}(\mathrm{E})^{*}$ a_p averages of $1514 / 1313$ root number $\mathrm{w}(\mathrm{E})=+1 /-1$ genus 2 curves $\mathrm{X} / \mathrm{Q}$ of conductor $2^{\wedge} 12<\mathrm{N}<=2^{\wedge} 13$ for $\mathrm{p}<2^{\wedge} 12$

0.05

Coming soon to the LMFDB.

## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves $X / \mathbb{Q}$ of conductor at most $2^{20}$ includes $1,440,894$ isogeny classes with Sato-Tate group USp(4). Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with $x$-axis range $[0, M / 2]$.


Coming soon to the LMFDB.

## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves $X / \mathbb{Q}$ of conductor at most $2^{20}$ includes $1,440,894$ isogeny classes with Sato-Tate group USp(4).
Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with $x$-axis range $[0, M / 2]$.
a_p averages of $1514 / 1313$ root number $+1 /-1$ genus 2 curves $\mathrm{X} / \mathrm{Q}$ of conductor $2^{\wedge} 12<\mathrm{N}<=2^{\wedge} 13$ for $\mathrm{p}<2^{\wedge} 12$

$\mathrm{w}(\mathrm{E})^{*}$ a_p averages of $1514 / 1313$ root number $\mathrm{w}(\mathrm{E})=+1 /-1$ genus 2 curves $\mathrm{X} / \mathrm{Q}$ of conductor $2^{\wedge} 12<\mathrm{N}<=2^{\wedge} 13$ for $\mathrm{p}<2^{\wedge} 12$


Coming soon to the LMFDB.

## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves $X / \mathbb{Q}$ of conductor at most $2^{20}$ includes $1,440,894$ isogeny classes with Sato-Tate group USp(4). Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with $x$-axis range $[0, M / 2]$.


Coming soon to the LMFDB.

## L-functions of genus 3 curves over $\mathbb{Q}$ with Sato-Tate group USp(6).

Recently constructed database of genus 3 curves $X / \mathbb{Q}$ of conductor at most $10^{7}$ includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6).
Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{22}$ with $x$-axis range $[0, M / 2]$.


Coming soon to the LMFDB.

## L-functions of genus 3 curves over $\mathbb{Q}$ with Sato-Tate group USp(6).

Recently constructed database of genus 3 curves $X / \mathbb{Q}$ of conductor at most $10^{7}$ includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6). Conductor of $L(X, s)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{22}$ with $x$-axis range $[0, M / 2]$.


Coming soon to the LMFDB.

## Computing trace averages of many $E / \mathbb{Q}$

When computing $a_{p}(E)$ for many elliptic curves $E / \mathbb{Q}$ we construct a lookup table $T[j]=a_{p}(E)$ for $E: y^{2}=x^{3}+A x+B$ with $j(E)=j \neq 0,1728$ and $B=\square$.

- Naive: $O(p)$ per curve.
- Mestre BSGS: $O\left(p^{1 / 4} \log p\right)$ per curve.
- Schoof: $O\left(\log ^{5} p\right)$ per curve.
- SEA: $O\left(\log ^{4} p\right)$ per curve.
- CM torsor (isogenies): $O\left(\log ^{3} p\right)$ per curve (GRH).
- CM torsor (isogenies): $O\left(\log ^{2} p\right)$ per curve (heuristic).
- CM torsor (GCDs): $O(\log p)$ per curve (heuristic).

Complexity estimates ignore $\log \log p$ factors.

## Realizing the CM torsor via isogenies

Having computed $a_{p}(E)$ for one $E / \mathbb{F}_{p}$, we can (typically) easily compute $\operatorname{End}(E)=\mathcal{O}$, since disc $\mathcal{O}$ divides $a_{p}(E)^{2}-4 p$. Let $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right):=\left\{j(E): E / \mathbb{F}_{p}\right.$ has $\left.\operatorname{End}(E)=\mathcal{O}\right\}$.
$\operatorname{Gal}\left(K_{\mathcal{O}} / K\right) \simeq \mathrm{cl}(\mathcal{O})$ acts on $\operatorname{Ell}(\mathcal{O})$ via (horizontal) isogenies. If $[l] \in \mathrm{cl}(\mathcal{O})$ has norm $\ell$ and $j_{1} \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ then

$$
\Phi_{\ell}\left(j_{1},\left[[] j_{1}\right)=0,\right.
$$

where $\Phi_{\ell}(X, Y)$ is the classical modular polynomial. Typically $[\check{l}] j_{1}$ and $[\bar{l}] j_{1}$ are the only roots of $\Phi_{\ell}\left(j_{1}, X\right)$ in $\mathbb{F}_{p}$, and we can choose them to ensure this.

A polycyclic presentation for $\mathrm{cl}(\mathcal{O})$ is a sequence of ideals $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{k}$ such that every $[\mathfrak{a}] \in \mathrm{cl}(\mathcal{O})$ may be written uniquely as

$$
[\mathfrak{a}]=\left[\mathfrak{l}_{1}^{e_{1}}\right] \cdots\left[\mathfrak{l}_{k}^{e_{k}}\right] \quad\left(0 \leq e_{i}<r_{i}\right),
$$

where $r_{i}=\min \left\{r:\left[r_{i}^{r}\right] \in\left\langle\left[\mathfrak{l}_{1}\right], \ldots,\left[\mathfrak{l}_{i-1}\right]\right\rangle\right\}$ is $\left[\mathfrak{l}_{i}\right]$ 's relative order.

## Using GCDs

We can replace most root-finding steps with GCDs.
Suppose we have computed a cycle of $\ell$-isogenies. After computing a single $\ell^{\prime}$-isogeny, we can compute the next cycle of $\ell$-isogenies using GCDs.


Provided $4 \ell^{2} \ell^{\prime 2}<|D|$, the monic polynomial

$$
\varphi(X)=\operatorname{gcd}\left(\Phi_{\ell}\left(j_{1}^{\prime}, X\right), \Phi_{\ell}^{\prime}\left(j_{2}, X\right)\right) \in \mathbb{F}_{p}[X]
$$

will have degree 1 and we can compute $j_{2}^{\prime}=-\varphi(0)$ as its unique root.
Even when our polycyclic presentation with one generator, we can choose an auxiliary prime $\ell^{\prime}$ so $\left[l^{\prime}\right]=[l]^{n}$ and use GCDs to a single line of $j$-invariants after $n$ steps.

## Computing murmurations using the trace formula

The sum of $w(f) a_{p}(f)$ over $f \in S_{k}^{\text {new }}(N)$ is equal to the trace of $T_{n} \circ W$ acting on $S_{k}^{\text {new }}(N)$, where the Fricke involution $W$ is defined by $W(f):=f \left\lvert\,\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)\right.$.
By massaging a theorem of Popa, one finds that

$$
\operatorname{tr}\left(T_{n} \circ W, S_{k}(N)\right)=-\frac{1}{2} \sum_{\substack{t^{2} N<4 n \\ D:=t^{2} N^{2}-4 n N}} g_{k}\left(t^{2} N, n\right) h^{*}(D, N)-\frac{1}{2} s_{k}(N, n)+\underset{\substack{N=2 \\ n=\square}}{\delta} \sigma_{N}(n)-\underset{\substack{N=1 \\ n=12}}{\delta} n^{k / 2-1},
$$

$$
h^{*}(D, N):=\sum_{\substack{u\left|N \\ u^{2}\right| D}} \mu(u) H^{\prime}\left(\frac{D}{u^{2}}\right), \quad s_{k}(N, n):=\frac{\varphi(N)}{N^{k / 2}} \sum_{\substack{u v=N n \\ N \mid(u+v)}} \min (u, v)^{k-1}, \quad \sigma_{N}(n):=\sum_{\substack{m \mid n \\ m \perp N}} \frac{n}{m},
$$

where $g_{k}:=g_{k}(b, c)$ is defined by $g_{2}:=1, g_{4}:=b-c, g_{k+4}:=(b-2 c) g_{k+2}-c^{2} g_{k}$.
Assaf's recent paper gives formulas for $\operatorname{tr}\left(T_{n} \circ W, S_{k}^{\text {new }}(N)\right)$ via $\operatorname{tr}\left(T_{n} \circ W, S_{k}(N)\right)$.
Key point: For $n=O(N)$ the sum contains $O(1)$ terms!

## Computing murmurations using the trace formula

We compute $h^{*}(D, N)$ as the product of a multiplicative function and a class number

$$
h^{*}(D, N)=\sum_{u\left|N, u^{2}\right| D} \mu(u) H^{\prime}\left(\frac{D}{u^{2}}\right)=\sum_{u \left\lvert\, \frac{c}{w}\right.} \mu(u) H^{\prime}\left(\frac{D}{u^{2}}\right)=\varphi_{1}^{D / w^{2}}(w) h^{\prime}\left(\frac{D}{w^{2}}\right),
$$

where $\varphi_{1}^{D}(n)$ is the multiplicative function defined on prime powers as

$$
\varphi_{1}^{D}\left(p^{e}\right)=1+\frac{p^{e}-1}{p-1}\left(p-\left(\frac{D}{p}\right)\right) .
$$

The class numbers for $|D| \leq 2^{40}$ have been computed by Jacobson and Mosunov and can be downloaded from the LMFDB, and can be crammed into a 1.125TB lookup table. Using a memory mapped file on fast SSD it takes 40s to load.

It then takes less than a minute to compute $\operatorname{tr}\left(T_{p} \circ W, S_{k}^{\text {new }}(N)\right)$ for $2^{18} \leq N<2^{19}$ and $p \leq 2^{19}$ for any reasonably small $k$ (on 256 cores).

## Computing murmurations of genus 2 and genus 3 curves

The average polynomial time algorithms described in [Harvey-S 2016] and [Costa-Harvey-S 2022] can readily compute the desired trace sums.

The main challenge is finding curves (and abelian varieties) of small conductor.
The algorithms described in [BSSVY 2016] and [S 2018] enumerate curves by discriminant, but curves with very large discriminants can have very small conductors.

This is already an issue in genus 1 with the Stein-Watkins database: it misses about $1 / 4$ of the isogeny classes of conductor up to $5 \cdot 10^{5}$, despite ranging up to $10^{8}$, but the situation is much worse in higher genus.

Curves may have bad reduction at primes of good reduction for the Jacobian (this happens a lot!). The genus 2 murmurations here use a new dataset of some 5 million curves with conductor below $10^{6}$ ( $98 \%$ of these are not in the LMFDB yet).

## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).
a_p averages of $427 / 713$ root number $+1 /-1$ genus 2 curves over $Q$ with conductor $2 \wedge 12<=N<2 \wedge 13$ for $p<2^{\wedge} 12$

a_p averages of $1514 / 1313$ root number $+1 /-1$ genus 2 curves $\mathrm{X} / \mathrm{Q}$ of conductor $2^{\wedge} 12<\mathrm{N}<=2^{\wedge} 13$ for $\mathrm{p}<$ 2^ $^{\wedge} 12$


## L-functions of genus 2 curves over $\mathbb{Q}$ with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).


## Thank you!



Animations available at https://math.mit.edu/~drew/murmurations.html.


[^0]:    ${ }^{1}$ See Sarnak's 2007 letter to Mazur.
    ${ }^{2}$ See Kazalicki-Vlah for some recent machine-learning work on this topic.

[^1]:    $W(E) * a_{n} p^{\prime} p^{\wedge} 2$ averages of $85 / 108$ root number $w(E)-+1 /-1$ weight 6 newforms for Gamma_ $0(N)$ of level $2^{\wedge} 7<N<-2^{\wedge} 8$ and dimension $g<-1$ for $p<2^{\wedge} 8$

