Summing $\mu(n)$: an even faster elementary algorithm

Lola Thompson
(Joint work with Hamal An res Helfgott)

The Martens Function
Def The function

$$
M(N)=\sum_{n \leq N} \mu(n)
$$

is called the Martens Function.
Ex

$$
\begin{aligned}
M(6)= & \mu(1)+\mu(2)+\mu(3)+\mu(4) \\
& +\mu(5)+\mu(6) \\
= & 1+(-1)+(-1)+0 \\
& +(-1)+1 \\
= & -1
\end{aligned}
$$

Our goal: Compute $M(N)$ as quickly as possible, using as little space as Possible.

Why Compute M(N)?

* Testing conjectures
E.g., Until when is $|M(N)| \leq \sqrt{N}$ tue?
\rightarrow known to be false for extremely large N (Odyzloo-te Ride)
* For N large, asymptotic expressions for $M(N)$ are good. For bounded N, they are not (Computations cure preferable).

Naive approach: Compute $\mu(n)$ for each $n \leq N$ and Sum.
Time: at least $O(N \cdot$ (Avg time it takes to compote $\mu(n)$)

A Slightly Less Naive Method

We can use the Sieve of Eratosthenes to compute $\mu(n)$ for $1 \leq n \leq N$ in time $O(N \log \log N)$ and space $\theta(N)$.

Step (1): Start w/ a " 1 " in ever j square:

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Step (2): Flip the signs on the even entries, \& male every other even entry 0 .

1	-1	1	0	1	-1	1	0	1	-1
1	0	1	-1	1	0	1	-1	1	0
1	-1	1	0	1	-1	1	0	1	-1
1	0	1	-1	1	0	1	-1	1	0
1	-1	1	0	1	-1	1	0	1	-1
1	0	1	-1	1	0	1	-1	1	0
1	-1	1	0	1	-1	1	0	1	-1
1	0	1	-1	1	0	1	-1	1	0
1	-1	1	0	1	-1	1	0	1	-1
1	0	1	-1	1	0	1	-1	1	0

even integers

Step (3) Flip the signs on the multiples of 3 , making every third multiple of three 0 .

$0=$ multiples of 3

Step (4): Flip the signs on the multiples of 5 , making every fifth multiple of five 0 .

Step (4): Flip the signs on the multiples of 7 , making every seventh multiple of seven 0 .

$\square=$ multiple of 7

* Since the rest prime is $11>\sqrt{100}$, we would seem to be finished... except that some of these entries are wrong!

What's going on?
Ex

Notice that there is at most one prime missing in each factorization.

To get around this, we can store the product of primes that wove found for each entry, so we know if there is a prime factor $>\sqrt{N}$ missing.

1	2	3	0	5	6	7	0	0	10
1	0	1	14	15	0	1	0	1	0
21	2	1	0	0	2	0	0	1	30
1	0	3	2	35	0	1	2	3	0
1	42	1	0	0	2	1	0	0	0
3	0	1	0	5	0	3	2	1	0
1	2	0	0	5	6	1	0	3	70
1	0	1	2	0	0	7	6	1	0
0	2	1	0	5	(2)	3	0	1	0
7	0	3	2	5	0	1	0	0	0

$O=$ missing one prime factor

Final Step: Flip all of the signs of the entries

1	2	3	0	5	6	7	0	0	10
11	0	13	14	15	0	17	0	19	0
21	22	23	0	0	26	0	0	29	30
31	0	33	34	35	0	37	38	39	0
41	42	43	0	0	46	47	0	0	0
51	0	53	0	55	0	57	58	59	0
61	62	0	0	65	66	67	0	69	70
71	0	73	74	0	0	77	78	79	0
0	82	83	0	85	86	87	0	89	0
91	0	93	94	95	0	97	0	0	0

$$
\begin{aligned}
& \mu(n)=1 \\
& \mu(n)=-1 \\
& \mu(n)=0
\end{aligned}
$$

To save space, we can use a Segmented Sieve:

70	71	72	73	74	75	76	77	78	79

Look at Segments of length \sqrt{N} and check for divisibility by primes up to \sqrt{N}.

Space: $O(\sqrt{N})$

One more way to save space...

Theorem (Helfgott, 2020)
One can construct all primer $p \leqslant N$ in
time $\theta(N \log N)$ and space $\theta\left(N^{1 / 3}(\log N)^{2 / 3}\right)$.
$\overbrace{\text { slower but uses less } 5 \text { pace }}$

Less Naive Methods
(1) Combinatorial Methods

First Steps: Meissel (1870s), Lehmer (1959) Improved by Lagarias - Miller -odlyzko (1989) \& Deléglise-Rivat (1996)

Main Idea: Use number theoretical identities to break $M(N)=\sum_{n \leq N} \mu(n)$ into shorter sums. Compute the short sums once a use them many times.
Time: about $\Theta\left(N^{2 / 3}\right)$
(2) Analytic Methods

Lagarias - odlyzloo (1987)
Main 1 Dea: Can write $M(N)$ as sums over the Zeroes of the Riemann Zeta function. There are coly many zeros, but one can
for $\pi(x)$; hasid beer for $M(x)$
implenereted truncate \& round. If econ is $<\frac{1}{2}$, the result is exact.
Time: $O\left(N^{1 / 2+\varepsilon}\right)$ in theory
(nontrivial to implement (Slat, 2012) ϕ Slower than Combinatorial methods in practice)

Our Goal:
Formulate a Combinatorial algorithm that

* improves on the prasiaus time bound of $\theta\left(N^{2 / 5}\right)$
* Uses as little Space as possible
* is practical to implement on a computer.

Theorem (Helfgott, T., 2020?)
One Can Compute $M(N)$ in $N^{3 / 5} \log N$ time $O\left(N^{3 / 5} \log \log N\right)$ and Helfgoti's sieve
Space $O\left(N^{3 / 10} \log N\right)$.

$$
N^{1 / s} \log _{\text {Help got t's sieve }} N \text { using }
$$

Combinatorial Algorithms:
general approach
Start w/ an identity:

$$
M(N)=2 M(\sqrt{N})-\sum_{n \leqslant N} \sum_{\substack{m_{1} m_{2} n_{1}=n \\ m_{1}, m_{2} \leqslant \sqrt{N}}} \mu\left(m_{1}\right) \mu\left(m_{2}\right)
$$

($k=2$ case of Heath-Brown; also follows from Vaughan or Could use Mübius Inversion)

Swapping the order of Summation:

$$
\begin{aligned}
& M(N)=\underbrace{2 M(\sqrt{N})}_{\begin{array}{c}
\text { Compute in } \\
\text { time } \theta(\sqrt{N})
\end{array}}-\sum_{m_{1}, m_{2} \leq \sqrt{N}} \mu\left(m_{1}\right) \mu\left(m_{2}\right)\left\lfloor\frac{N}{m_{1} m_{2}}\right\rfloor \\
& \text { time } g(\sqrt{N})
\end{aligned}
$$

* Choose a pararreter $\nu \leq \sqrt{N}$ and split into cases:
(1) $m_{1}, m_{2} \leq \nu$
(2) m_{1} or $m_{2}>V$

To obtain time $O\left(N^{2 / 3}\right)$: Deleglisee Rival,
Take $\nu=N^{1 / 3}$. Lagarias - millerodyzto, etc.

- Case (1) $\left(m_{1}, m_{2} \leqslant \nu\right)$ is the easy case use a segmented sieve.
- Case (2) (m_{1} or $\left.m_{2}>v\right)$ talas more work.

What we do instead:
take $N=N^{2 / 5}$

Larger $\nu \Rightarrow$ case (1) is the hard case now. - This will be the focus of the rest of my talk

Case (2) is easier.

How we handle Case (1)
want to Compute:

$$
\text { case }{ }^{\mathbb{D}} \rightarrow m_{1}, m_{2} \leqslant \nu
$$

$$
\sum_{m_{2}<v} \mu\left(m_{1}\right) \mu\left(m_{2}\right)\left\lfloor\sum_{\substack{m_{1} \\ \uparrow}} \left\lvert\, \frac{N}{n} m_{2}\right.\right. \text { from now on }
$$

Spit $[1, v] \times[1, v]$ in to nbhds
$U=I_{x} \times I_{y}$ around points $\left(m_{0}, n_{0}\right)$

$$
\left[m_{0}-a, m_{0}+a\right) \quad "\left(n_{0}-b, n_{0}+b\right)
$$

Applying a local linear approximation:

$$
\begin{aligned}
& \frac{N}{m n}=\frac{N}{m 0 n_{0}}+C_{x}\left(m-m_{0}\right)+C_{y}\left(n-n_{0}\right)+\underbrace{E T_{\text {vat }}}_{Q_{\text {Quadratic }}} \\
& C_{x}=\frac{-N}{m_{0}^{2} n_{0}}, C_{y}=\frac{-N}{m_{0} n_{0}^{2}} \uparrow_{\substack{\text { Small } \\
\text { Provided }}}^{E T} \\
& \text { that U } \\
& \text { is small }
\end{aligned}
$$

If there were no floor functions...

$$
\begin{aligned}
& \sum_{(m, n) \in I_{x} \times I_{y}} \mu(m) \mu(n) \frac{N}{m n} \\
&=\sum_{(m, n) \in I_{x} \times I_{y}} \mu(m) \mu(n)\left(\frac{N}{m_{0} n_{0}}+C_{x}\left(m-m_{0}\right)+C_{y}\left(n-n_{0}\right)\right) \\
& \stackrel{\otimes \theta}{=}\left(\sum_{m \in I_{x}} \mu(m)\left(\frac{N}{m_{0} n_{0}}+C_{x}\left(m-m_{0}\right)\right) \cdot \sum_{n \in I_{y}} \mu(n)\right. \\
& \text { separation } \\
& \text { of variables }+\left(\sum_{n \in I_{y}} \mu(n) C_{y}(n-n 0)\right) \cdot \sum_{m \in I_{x}} \mu(m)
\end{aligned}
$$

* Use Segmented Sieve to compute $\mu(m)$ for $m \in I_{x}$ and $\mu(n)$ for $n \in I_{y}$.
* Computing the Sum * talas time $\theta(\max (a, b))$ and negligible space.

How to handle LJ:

Notice that Computing

$$
S_{0}:=\sum_{(m, n) \in I_{x} \times I_{y}} \mu(m) \mu(n)\left(\left[\frac{N}{m_{0} n_{0}}+c_{x}\left(m-m_{0}\right)\right\rfloor+\downarrow\right.
$$

variables are separated
is the same as above.

What we have from our Linear Approx:

$$
\left.S_{I}:=\sum_{(m, n) \in I_{x} \times I_{y}} \mu(m) \mu(n)\left(\sum_{\substack{m_{0} n o}}^{N}+C_{x}\left(m-m_{0}\right)+C_{j}\left(n-n_{0}\right)\right)\right),
$$

What we actually want:

$$
S_{2}:=\sum_{(m, n) \in I_{x} \times I_{y}} \mu(m) \mu(n)\left\lfloor\frac{N}{m n}\right\rfloor
$$

Notice that

So the difference between a term in $S_{1} \&$ a term in S_{0} is either 0 or 1 .
(Same for the terms in S_{2} vs S_{1})
Idea: Let

$$
\begin{aligned}
& L_{0}(m, n)=\left\lfloor\frac{N}{m_{0} n_{0}}+c_{x}\left(m-m_{0}\right)\right\rfloor+\left\lfloor c_{y}\left(n-n_{0}\right)\right\rfloor \\
& L_{1}(m, n)=\left\lfloor\frac{N}{m_{0} n_{0}}+c_{x}\left(m-m_{0}\right)+c_{y}\left(n-n_{0}\right)\right\rfloor \\
& L_{2}(m, n)=\left\lfloor\frac{N}{m n}\right\rfloor
\end{aligned}
$$

We show that $L_{2}-L_{1}$ and $L_{1}-L_{0}$ Can be Computed quickly

We approximate by by a rational \# $\begin{aligned} & \lambda \\ & \text { on each } \\ & \text { ibid }\end{aligned} \frac{a_{0}}{q}, \quad q \leqslant Q=2 b$
$I_{x} \times I_{y}$
Such that $\delta:=c_{y}-\frac{a_{0}}{q}$ satisfies

$$
|\delta| \leq \frac{1}{q Q}
$$

Thus,

$$
\left|c_{y}\left(n-n_{0}\right)-\frac{a_{0}\left(n-n_{0}\right)}{q}\right| \leq \frac{1}{2 q}
$$

(Can find Such an $\frac{90}{q}$ using Continued fractions)
\rightarrow Time $O(\log b)$

* Now our task is to show that
(Same for $L_{1}(m, n)$ vs $L_{0}(m, n)$)
* In the case where m or n is in a "bad" residue class $(\bmod q)$, we Show that $L_{2}-L_{1}, L_{1}$ - Lo are char. functions of intervals Cor unions of intervals) © To find them, we Solve a quadratic equation
* So, we just reed to Compute a table of

$$
\sum_{m \equiv a^{e}(\bmod q(m)} \mu(m)
$$

Which requires are - computing a table of values of $\mu(\mathrm{m})$, which can be dore in time $\theta(b) \&$ space $\theta(b \log b)$.

Tho we are saving a factor of "a" Compared w/ the naive method

Computations
We wrote Our algorithm in C^{++} and ran it on an 80-Core machine at the Max Planck Institute for Mathematics:

x	$M(x)$	x	$M(x)$
10^{17}	-21830254	2^{68}	2092394726
10^{18}	-46758740	2^{69}	-3748189801
10^{19}	899990187	2^{70}	9853266869
10^{20}	461113106	2^{71}	-12658250658
10^{21}	-3395895277	2^{72}	9558471405
10^{22}	-2061910120	2^{73}	-6524408924
These match			
with Kuznetsov*			
\& Hurst's			
Computations			
Rival's algonthm			

* Except for a possible sign error in levznetson for $x=10^{21}$.

Thank you!

