Periods, L-functions, and duality of Hamiltonian spaces MIT number theory seminar

Yiannis Sakellaridis (Johns Hopkins); joint w. David Ben-Zvi (Texas) and Akshay Venkatesh (IAS)

Tuesday, February 16, 2021

Abstract

The relationship between periods of automorphic forms and L-functions has been studied since the times of Riemann, but remains mysterious. In this talk, I will explain how periods and L-functions arise as quantizations of certain Hamiltonian spaces, and will propose a conjectural duality between certain Hamiltonian spaces for a group G, and its Langlands dual group \check{G} , in the context of the geometric Langlands program, recovering known and conjectural instances of the aforementioned relationship. This is joint work with David Ben-Zvi and Akshay Venkatesh.

1	Introduction	2
2	Derived endomorphisms and the Plancherel formula	9
3	Global conjecture	20

1 Introduction

•Riemann: $\int_0^\infty y^{\frac{s}{2}} \sum_{n=1}^\infty e^{-n^2\pi y} dx = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$, and proof of functional equation based on symmetry of the theta series:

$$\theta(y) = \sum_{n=1}^{\infty} e^{-\pi n^2 y} = y^{-\frac{1}{2}} \theta(y^{-1}).$$

•Iwasawa–Tate reformulation as $(x \leftrightarrow \sqrt{y})$

$$\int_{k^{\times}\backslash\mathbb{A}^{\times}} \chi(x) \sum_{\gamma \in k^{\times}} \Phi(\gamma x) d^{\times} x \quad "=" L(\chi, s),$$

where the critical local calculation is that, for $\Phi_v = 1_{\mathfrak{o}_v}$,

$$\int_{k_v^{\times}} \chi_v(x) \Phi_v(x) d^{\times} x = L_v(\chi_v, 0).$$

•Generalized by Godement–Jacquet to Mat_n under the action of $G = (\mathrm{GL}_n \times \mathrm{GL}_n)/\mathbb{G}_m$ (set $[G] = G(k)\backslash G(\mathbb{A})$), $\varphi \in \pi \otimes \tilde{\pi}$ a cusp form,

$$\int_{[G]} \varphi(g_1, g_2) \sum_{\gamma \in \operatorname{Mat}_n(k)} \Phi(g_2^{-1} \gamma g_1) d(g_1, g_2) \text{ "=" } L(\pi, \frac{1-n}{2}),$$

where the critical local calculation is that, for $\Phi_v = 1_{\text{Mat}(\mathfrak{o}_v)}$,

$$\int_{\operatorname{Mat}_n(k_v)} \langle \varphi_1(g), \varphi_2 \rangle \, \Phi_v(g) d^{\times} g = L_v(\pi_v, \frac{1-n}{2}).$$

Integrals that use other spaces:

•Hecke: $X = PGL_2$, $G = GL_1 \times PGL_2$, $\chi \otimes \pi \ni \chi \otimes \varphi$,

$$\int_{[G]} \chi(a) \varphi(g) \sum_{\gamma \in X(k)} \Phi(a^{-1} \gamma g) d(a,g) \text{ "=" } \int_{[\mathbb{G}_m]} \chi(a) \varphi \begin{pmatrix} a \\ & 1 \end{pmatrix} d^{\times} a \text{ "=" } L(\chi \otimes \pi, \frac{1}{2}).$$

Local integral:

$$\int_{G(k_v)} \chi_v(a) \otimes W_{\varphi,v}(g) \Phi_v(a^{-1} \cdot g) d(a,g) \quad = L(\chi_v \otimes \pi_v, \frac{1}{2}).$$

Note: Over function fields, φ everywhere unramified. There is a canonical choice $\Phi = \prod_v 1_{X(\mathfrak{g}_v)}$. The associated theta series will be denoted by Θ_X ,

$$\Theta_X(g) = \sum_{\gamma \in X(k)} \Phi(\gamma g) \in C^{\infty}([G]),$$

where $[G] = G(k) \backslash G(\mathbb{A})$.

When $X = H \setminus G$, φ unramified, up to measures $\langle \varphi, \Theta_X \rangle_{[G]} = \int_{[H]} \varphi(h) dh$.

•Waldspurger: Same as Hecke, but with $X = T \setminus (T \times \mathrm{PGL}_2)$, $T \hookrightarrow \mathrm{PGL}_2$ a non-split 1-dimensional torus, then

$$\left| \int_{[G]} \chi(a) \varphi(g) \sum_{\gamma \in X(k)} \Phi(a^{-1} \gamma g) d(a,g) \right|^2 \quad \text{``=''} \quad \left| \int_{[T]} \chi(a) \varphi(a) d^{\times} a \right|^2 \quad \text{``=''} \quad L(\chi \otimes \pi, \otimes, \frac{1}{2}).$$

•(Gan–)Gross–Prasad: $X = SO_n \setminus (SO_n \times SO_{n+1}) = H \setminus G$,

$$\left| \int_{[G]} \varphi(g) \sum_{\gamma \in X(k)} \Phi(\gamma g) dg \right|^2 \quad \text{``=''} \quad \left| \int_{[H]} \varphi(h) dh \right|^2 \quad \text{``=''} \quad L(\pi, \otimes, \frac{1}{2}).$$

Here the relevant local integral is that of Ichino-Ikeda,

$$\int_{H(k_v)} \langle \pi(h)\phi_v, \phi_v \rangle \, dh_v.$$

[Technicalities:

- 1. Sum over X vs X^{\bullet} can regularize.
- 2. Unitary normalization produces L-values at $\frac{1}{2}$ in all examples above.
- 3. The good choice that makes "=" true varies by example: In Godement–Jacquet case need $\int_{[PGL_n]^{\text{diag}}} \varphi = 1$. In Hecke case need Whittaker normalization $W_{\varphi}(1) = 1$. The two differ by $\sqrt{L(\pi, \operatorname{Ad}, 1)}$, i.e.,

if
$$W_{\phi}(1) = 1$$
 then $\int_{[G]} |\phi|^2 = L(\pi, \text{Ad}, 1)$,

at least for unramified data (& suitable choice of Haar measures). Morally, the last two examples should have Whittaker normalization, but this is not always possible (e.g., may need to replace G by a non-quasisplit inner form); so, we use the unitary normalization and correct by the factor $L(\pi, Ad, 1)$.

4. Volume factors (OK) and small rational factor $\frac{1}{|S_{\varphi}|}$ missing from the Gross–Prasad example.]

The local factors in general are not known to have a meaningful formula for the period itself; for the (abs. value) square of the period, we have the Ichino–Ikeda conjecture. Venkatesh realized that it is related to the local Plancherel formula, so conjecturally,

$$\sum_{\varphi \in ON(\pi)} \left| \int_{[G]} \varphi(g) \sum_{\gamma \in X(k)} \Phi(\gamma g) dg \right|^2 = ? \cdot \prod_{v} \langle \Phi_v, \Phi_v \rangle_{\pi_v}, \tag{1.1}$$

where

$$\langle \Phi_v, \Phi_v \rangle_{L^2(X(k_v))} = \int_{\hat{G}} \langle \Phi_v, \Phi_v \rangle_{\pi_v} \mu(\pi_v)$$

is the local Plancherel formula.

[Actually, over the tempered dual $\widehat{G_X}$ of another group G_X ; its L-group $^LG_X \subset ^LG$ is the L-group of X.]

The L-function has completely disappeared! Where is it? By a stupefying calculation, when Φ_v is "the basic function of X" (when X is smooth affine: $\Phi_v = 1_{X(\mathfrak{o}_v)}$),

$$\langle \Phi_v, \Phi_v \rangle_{\pi_v} = L_v(\pi_X, \rho_v) \tag{1.2}$$

for a distinguished representation $\rho_X: {}^LG_X \to \operatorname{GL}(V_X)$ of the *L*-group.

Two directions one can go towards:

- 1. Generalize the above to non-smooth affine varieties X. Then $1_{X(\mathfrak{o})}$ should be replaced by $IC_{X(\mathfrak{o})}$, and we have generalizations of (1.2) w. Jonathan Wang.
- 2. (Today:) Stick to X =smooth, and seek a deeper explanation for (1.1), (1.2).

It should be mentioned that there are other examples that display the behavior of (1.1), (1.2), without coming from homogeneous G-spaces, i.e.:

Howe duality (theta correspondence): $G = G_1 \times G_2 \hookrightarrow \operatorname{Sp}(M)$ a dual pair (ignore metaplectic covers). Weil representation $\omega = \otimes'_v \omega_v$ of $\operatorname{Sp}(M)(\mathbb{A})$, theta series $\Theta : \omega \to C^\infty([G])$ — in Schrödinger model: $\Phi \in \mathcal{S}(X(\mathbb{A}))$, where X: Lagrangian (not G-stable!),

$$\Theta_{\Phi}(g) = \sum_{\gamma \in X(k)} (\omega(g)\Phi)(\gamma).$$

Rallis inner product (RIP) formula, say for $G_1=\mathrm{SO}_{2n},\,G_2=\mathrm{Sp}_{2n}$: $\pi=\tau\otimes\theta(\tau),\,\Phi\in\omega$, then

$$\langle \Theta_{\Phi}, \Theta_{\Phi} \rangle_{\pi} = \prod_{v} \langle \Phi_{v}, \Phi_{v} \rangle_{\pi_{v}},$$

where

$$\langle \Phi_v, \Phi_v \rangle_{\omega_v} = \int \langle \Phi_v, \Phi_v \rangle_{\pi_v} \mu(\pi_v);$$

and moreover

$$\langle \Phi_v, \Phi_v \rangle_{\pi_v} = L_v(\tau_v, \frac{1}{2})$$

at almost every place. (Omitting factors that don't depend on the representation!)

2 Derived endomorphisms and the Plancherel formula

Now let $\mathbb{F} = \overline{\mathbb{F}_q}$, $F = \mathbb{F}((t)) \supset \mathfrak{o} = \mathbb{F}[[t]]$, and for an affine variety X think of $X(F) = LX(\mathbb{F})$, $X(\mathfrak{o}) = L^+(\mathbb{F})$, points of the loop and the arc space.

We'll take X = a smooth, affine, spherical G-variety.

Set $\operatorname{Shv}(LX/L^+G)$ denote an appropriate — bounded DG – category of L^+G -equivariant "sheaves" on LX — should be l-adic for translation to functions, but once we abstract from functions one can also take $\mathbb{F} = \mathbb{C}$ and work with D-modules. Let k: coefficient field, characteristic 0.

[Technicalities:

1. $X \hookrightarrow V$ (a vector space),

$$X(F) = \lim_{\stackrel{\rightarrow}{r}} X^r$$
, where $X^r = t^{-r}V(\mathfrak{o}) \cap X(F)$,

and

$$t^{-r}V(\mathfrak{o}) = \lim_{\stackrel{\leftarrow}{s}} t^{-r}V(\mathfrak{o}/t^s), \text{ so } X^r = \lim_{\stackrel{\leftarrow}{s}} X^r_s$$

and similarly for $L^+G = \lim_{\stackrel{\leftarrow}{s}} G_s$, so we have maps $X_s^r/G_{s+k+1} \to X_s^r/G_{s+k}$. Sheaves are defined by pullback and pushforward along such maps of *bounded, constructible, equivariant* complexes of sheaves.

No good theory of t-structures (to the best of my knowledge), but at least for r = 0, because X is smooth, the transition maps are smooth, so we have the "basic object" (constant sheaf) k_{L^+X} .

2. Crash course on equivariant derived category, and the case of $B\mathbb{G}_m$. Let X be a G-space. If (say, in the topological setting) we were able to find a contractible cover $\tilde{X} \xrightarrow{f} X$, with a free G-action, we would have

$$Shv(X/G) = \{ (\mathcal{F}, \mathcal{G}, \alpha) | \mathcal{F} \in Shv(X), \mathcal{G} \in Shv(\tilde{X}/G), \alpha : f^*\mathcal{F} \simeq \pi^*\mathcal{G} \}.$$

In the algebraic setting, we approximate this by "n-acyclic covers", e.g., for $B\mathbb{G}_m = \mathrm{pt}/\mathbb{G}_{\mathrm{m}}$:

$$\tilde{X} = \mathbb{A}^{\infty} \setminus \{0\} = \lim_{n \to \infty} \mathbb{A}^n \setminus \{0\},$$

$$\tilde{X}/G = \mathbb{P}^{\infty} = \lim_{n \to \infty} \mathbb{P}^n,$$

and
$$\operatorname{Shv}(X/G) = \underset{\longleftarrow}{\lim} H^{\bullet}(\mathbb{P}^n) = k[\eta], \operatorname{deg}(\eta) = 2.$$

3. To "center" the *L*-functions, we need "metaplectic correction":

Fact: $X \to H \setminus G$ a vector bundle with some fiber S_+ , with H reductive. For simplicity, assume that $\det S_+$ extends uniquely to a character of G, gives $G(F) \to \mathbb{G}_m(F) \xrightarrow{\mathrm{val}} \mathbb{Z}$, and twist the action of $G(F)_n$ by $\langle n \rangle = [n] \left(\frac{n}{2} \right)$. This allows for an extension of this definition to include the Weil representation, i.e., when X is not a G-space, but the Lagrangian fiber of a G-equivariant symplectic induction

$$M = S \times_{\mathfrak{h}^*}^H T^*G,$$

S a symplectic H-vector space, $S_+ \subset S$ a Lagrangian subspace.

4. Whittaker-type induction: *M* could be a "twisted cotangent space", e.g.,

$$M = \{d\psi\} \times_{\mathfrak{n}^*} \mathfrak{g}^* \times^N G = T^*((N, \psi)\backslash G),$$

the cotangent space of the Whittaker model. More generally, ψ could be a central character of a Heisenberg subgroup quotient, and we could induce the associated irreducible representation, e.g.,

$$\operatorname{Ind}_{\widetilde{\operatorname{Sp}}(W) \ltimes U}^{\widetilde{\operatorname{Sp}}(W')} \omega_{\psi},$$

where W is a symplectic space, $W' = W \oplus l \oplus l'$ is its sum with a 2-dimensional symplectic space, U = the unipotent radical of the parabolic stabilizing the isotropic subspace (line) l, and ω_{ψ} the oscillator representation associated to $l^{\vee} \otimes W$. These are the Fourier–Jacobi models.

To see how these fit into the same framework, the relevant space is not the spherical variety X but M, a coisotropic Hamiltonian G-space, satisfying certain conditions. Coisotropic: $\mathbb{F}[M]^G$ is Poisson–commutative — the analog of the spherical condition.

Under certain conditions, there is a unique closed orbit $M_0 \subset M$ with nilpotent image under the moment map $M \stackrel{\mu}{\to} \mathfrak{g}^*$. An \mathfrak{sl}_2 -triple (h,e,f) with $f \in \mu(M_0)$ gives rise to a Heisenberg group such as N, U above, with a central additive character.

Sheaf–function dictionary: In an *l*-adic setting, the inner product of functions should be obtained as Frobenius trace of derived homomorphisms (Ext) of sheaves:

Given two l-adic sheaves \mathcal{F}, \mathcal{G} on an \mathbb{F}_q -variety Y, let f and g^{\vee} be the trace functions associated to respectively \mathcal{F} and $D\mathcal{G}$, with D the Verdier dual. Then

$$\sum_{Y(\mathbb{F}_q)} f(y)g^{\vee}(y) = \operatorname{tr}(\operatorname{Fr}, \operatorname{Hom}(\mathcal{F}, \mathcal{G})^{\vee}).$$

Conjecture 1: There is a representation (ρ_X, V_X) of \check{G}_X and an equivalence of k-linear triangulated categories:

$$Shv(LX/L^+G) = QC_{perf}^{//}(V_X/\check{G}_X),$$

sending the basic object k_{L+X} to the structure sheaf. [More structures to be added.]

Here, $QC_{perf}^{/\!\!/}(V_X/\check{G}_X)$ denotes (a "shearing" — will discuss below) of the triangulated category of (generated by) perfect complexes of \check{G}_X -equivariant $k[V_X]$ -modules.

The data (ρ_X, V_X) come with an LG_X -action when (G, X) are defined over a finite field, and are those of the L-value associated to the *square* of the corresponding period.

Generalizes:

• Bezrukavnikov–Finkelberg derived Satake: $G = H \times H$, X = H, $G_X = H$, $V_X = H$.

$$\operatorname{Shv}(L^+H\backslash LH/L^+H) = \operatorname{QC}_{\operatorname{perf}}(\check{\mathfrak{h}}^*[2]/\check{H}).$$

- Braverman–Finkelberg–Ginzburg–Travkin: $G = \operatorname{GL}_n \times \operatorname{GL}_{n+1}, \ \check{G}_X = \check{G}, \ V_X = \operatorname{Hom}(k^n, k^{n+1}) \oplus \operatorname{Hom}(k^n, k^{n+1})^{\vee}.$
- Trivial period, X = pt, $\text{Shv}(LX/L^+G) = \text{Shv}(\text{pt}/L^+G) = \text{Shv}(BG) = k[\mathfrak{t} /\!\!/ W] = k[\mathfrak{t}^* /\!\!/ W]$.

"Corollary" of the conjecture, under a purity assumption: The unramified Plancherel formula, $k = \mathbb{C}$,

$$\langle 1_{X(\mathfrak{o})}, 1_{X(\mathfrak{o})} \rangle = \operatorname{tr}(\operatorname{Fr}, \mathbb{C}[V_X]^{\check{G}_X}) = \int_{\check{G}_X^{\text{compact}}} L(\pi, V_X) d\pi,$$

Here and later, $L(\pi, V_X)$ denotes the special value of an L-function (or product thereof) at points depending on a grading — V_X is really a $\check{G} \times \mathbb{G}_m$ -space, with \mathbb{G}_m -action depending on the cohomological grading.

E.g., in the group case, X = H, $\check{G}_X /\!\!/ \check{G} = \check{T}_H /\!\!/ W_H \ni \chi$, $d\pi = L(\chi, (\check{\mathfrak{h}}/\check{\mathfrak{t}}_H)^*, 0)^{-1}$, and we get the unramified Plancherel measure (up to zeta factors depending on our choice of measures)

$$\frac{L(\chi, \check{\mathfrak{h}}^*, 1)}{L(\chi, (\check{\mathfrak{h}}/\check{\mathfrak{t}}_H)^*, 0)}.$$

In the trivial case, X = pt, we obtain

$$\langle 1_{\mathrm{pt}}, 1_{\mathrm{pt}} \rangle = \frac{1}{\operatorname{Vol} G(\mathfrak{o})} = \frac{1}{\# G(\mathbb{F}_q)} = L(\check{\mathfrak{t}}^* /\!\!/ W), \text{ the "motive of } G$$
".

More structures:

$$Shv(LX/L^+G) = QC_{perf}^{//}(V_X/\check{G}_X),$$

Note that the right hand side can also be written as \check{M}/\check{G} , where $\check{M}=V_X\times^{\check{G}_X}\check{G}$.

Conjecture 2: \check{M} has a natural symplectic structure, with moment map $\check{M} \to \check{\mathfrak{g}}^*$, and the equivalence of Conjecture 1 is equivariant with respect to the Satake category, i.e., the action of $\operatorname{Shv}(L^+G\backslash LG/L^+G)$ on the LHS corresponds to the action of $QC_{\operatorname{perf}}(\check{\mathfrak{g}}^*[2]/\check{G})$ on the RHS.

The Poisson structure should follow by considering loop rotations coming from the action of \mathbb{G}_m on \mathfrak{o} . This gives a deformation $\operatorname{Shv}_{\mathbb{G}_m}(L^+G\backslash LG/L^+G)$ of \mathbb{G}_m -equivariant sheaves, living over $\operatorname{Shv}(B\mathbb{G}_m)=k[\hbar]$, whose specialization at $\hbar=0$ is the original category. Alternatively: factorization algebras, E_2 -algebras,

Example: Tate's thesis. $X = \mathbb{A}^1$, $G = \mathbb{G}_m$, first without the "metaplectic correction". L^+G -strata on LX parametrized by integers, $X^n := t^n X(\mathfrak{o})$. The basic object $\mathcal{F}_0 = k_{X^0} = k_{L^+X}$, acting by the perverse sheaf $k_{t^n \mathbb{G}_m(\mathfrak{o})}$, we get $\mathcal{F}_n = k_{X^n}$. Let $\operatorname{Shv}(L^+G \setminus LG/L^+G) = \operatorname{Rep}(\check{G}) \otimes \operatorname{Shv}(B\mathbb{G}_m) = \operatorname{QC}_{\operatorname{perf}}(B\check{G}) \otimes k[\eta]$, with η in degree 2. Ext-groups:

$$\operatorname{Hom}(\mathcal{F}_{i}, \mathcal{F}_{j}) = \begin{cases} k[\eta], & \text{if } i = j, \\ k[0] \otimes k[\eta], & \text{if } i < j, \\ k[-2(i-j)] \otimes k[\eta], & \text{if } i > j, \end{cases}$$

with generators $x \in \text{Hom}^0(\mathcal{F}_i, \mathcal{F}_{i+1})$, $y \in \text{Hom}^2(\mathcal{F}_{i+1}, \mathcal{F}_i)$ with $xy = \eta$.

The category $Shv(LX/L^+G)$ is generated by those objects, and that means that we can identify

$$\operatorname{Shv}(LX/L^+G) \xrightarrow{\sim} QC_{\operatorname{perf}}(\operatorname{Spec} k[x,y]/\check{G})$$

with x in degree 0, y in degree 2, and $\check{G} = \mathbb{G}_m$ -action $z \cdot (x, y) = (zx, z^{-1}y)$, by sending \mathcal{F}_i to $z^i \otimes k[x, y]$. Indeed,

$$\operatorname{Hom}_{k[x,y]\text{-}\mathbf{mod}}^{\check{G}}(z^{i} \otimes k[x,y], z^{j} \otimes k[x,y]) = \begin{cases} k[x,y]^{\check{G}} = k[xy], & \text{if } i = j, \\ k[0] \otimes k[xy], & \text{if } i < j, \\ k[-2(i-j)] \otimes k[xy], & \text{if } i > j, \end{cases}$$

Moreover, $\operatorname{Spec} k[x,y] = T^*[2]\mathbb{A}^1$ is Hamiltonian with moment map $T^*[2]\mathbb{A}^1 \to \check{\mathfrak{g}}^* = \operatorname{Spec} k[\eta]$ given by $\eta = xy$, under which the above isomorphism becomes $\operatorname{Shv}(BG) = k[\eta]$ -equivariant.

Conjecture 3: The association $M \mapsto \check{M}$ is involutive, when you switch the roles of G and \check{G} . Here, $M = T^*X$, or a symplectic space, or some more general "affine coisotropic Hamiltonian space" satisfying certain conditions.

[I'm told that this should reflect a correspondence of "boundary conditions under S-duality for the Kapustin–Witten 4D–TQFT" (see also Gaiotto–Witten).]

Examples:

Enampies.							
attribution/name	M or (G, M)	\check{M} or (\check{G},\check{M})	attribution/name				
Tate	$(\mathbb{G}_m, T^*\mathbb{A}^1)$	$(\mathbb{G}_m, T^*\mathbb{A}^1)$	Tate				
Godement-Jacquet	$(\mathrm{GL}_n \times \mathrm{GL}_n, T^*M_n)$	$T^*(\mathbb{A}^n \times^{\mathrm{GL}_n} \check{G})$	Rankin-Selberg				
Hecke	$T^*(\mathbb{G}_m \backslash \operatorname{PGL}_2)$	$(\mathrm{SL}_2, T^*\mathbb{A}^2)$	normalized Eisenstein series				
Gross–Prasad	$SO_{2n}\backslash SO_{2n}\times SO_{2n+1}$	$(SO_{2n} \times Sp_{2n}, std \otimes std)$	heta-correspondence				
group	$\Delta H \setminus (H \times H)$	$\Delta'(\check{H})ackslash(\check{H} imes\check{H})$	(twisted) group				
point	$G \backslash G$	$(\check{N},\psi)ackslash\check{G}$	Whittaker				

Remark: We expect a more general story, where we can drop the "smooth affine" condition on one side and the "spherical/coisotropic" condition on the other, e.g., this is suggested by the example of toric varieties. Part of our interest in our conjectures is the possibility of studying non-unique periods; but this has not been our focus for now.

Recipe for building \check{M} out of M: Would have to talk about structure of spherical varieties and their associated Hamiltonian spaces. No time today, see [S.–Jonathan Wang], or my older paper on "Spherical functions on spherical varieties".

3 Global conjecture

There is a whole hierarchy of conjectures, according to the paradigm of TQFT which associates to manifolds of different dimensions objects of different categorical depth:

Dim	"Manifold"	(G, M) -theory $\in G$ -theory	(\check{G},\check{M}) -theory $\in \check{G}$ -theory
3	global field k	X -theta series $\Theta_X \in C^{\infty}(G(k)\backslash G(\mathbb{A}))$	L-value
2	geometric function field $k = \mathbb{F}(C)$	Period sheaf $P_X \in Shv(Bun_G^C)$	L -sheaf $L_X \in \mathrm{QC}(\mathrm{Loc}_{\check{G}}^C)$
2	local field $F = k_v$	$\operatorname{Fns}(X(F)) \in \operatorname{Rep}(G(F))$	()
1	the unramified closure $ar{F}$	$\operatorname{Shv}(X(\bar{F})) \in (G(\bar{F})\text{-module cat.})$	$\mathrm{QC}(\mathrm{Loc}^{\check{X}}) \in (\mathrm{QC}(\mathrm{Loc}_{\check{G}}^{D^*})\text{-module cat.})$

Hence, there is a local conjecture relating the G(F)-category $\operatorname{Shv}(X(\bar{F}))$ to a $\operatorname{QC}(\operatorname{Loc}_{\bar{G}}^{D^*})$ -category associated to \check{M} — although: "spectral quantization" missing!, see below. For Tate's thesis, this was proven recently by Sam Raskin and Justin Hilburn.

I will describe the global conjecture (over a curve C over an algebraically closed field \mathbb{F} , although you should be thinking of Frobenius actions when $\mathbb{F} = \overline{\mathbb{F}_q}$; no ramification). However, I need to know that

$$\check{M} = T^{*,\psi} \underbrace{(S_+ \times^{\check{G}_X \check{U}} \check{G})}_{\check{X}}, \text{ a } \check{G}\text{-polarization,}$$

and in fact I'll take (\check{U}, ψ) to be trivial (for simplicity), so $\check{M} = T^*\check{X}$, for an honest \check{G} -space \check{X} living over $\check{G}_X \backslash \check{G}$.

By Koszul duality the local conjecture can be rewritten (dropping boundedness of sheaves from now on)

$$\operatorname{Shv}(LX/L^+G) \simeq \operatorname{QC}^!(T[-1]\check{X}/\check{G}),$$

where $T[-1]\check{X}$, the shifted tangent bundle of \check{X} , is the derived self-intersection of \check{X} (the derived fixed-point scheme of \check{X} under the trivial action of \check{G}).

We will globalize it to a matching of objects

$$\mathcal{P}_X \leftrightarrow \mathcal{L}_X$$

under the conjectural geometric Langlands duality

$$\operatorname{Shv}(\operatorname{Bun}_G) \simeq \operatorname{QC}^!(\operatorname{Loc}_{\check{G}})$$

(meaning of "Shv" and "QC!" interdependent here), expressing the formulas relating theta series and L-functions.

The "period sheaf" (corresponding to the "X-theta series") is $\mathcal{P}_X = \pi_! k$, where $\pi : \operatorname{Bun}_G^X \to \operatorname{Bun}_G$. Here, Bun_G^X is the stack of G-bundles together with a section to X:

$$\operatorname{Bun}_G^X = \operatorname{Map}(C, X/G) \to \operatorname{Bun}_G = \operatorname{Map}(C, BG).$$

The "L-sheaf" (corresponding to the special value of an L-function) is $\check{\pi}_*\omega$, where $\check{\pi}: \mathrm{Loc}_{\check{G}}^{\check{X}} \to \mathrm{Loc}_{\check{G}}$.

Here, $\operatorname{Loc}_{\check{G}}^{\check{X}}$ is the derived stack of \check{G} -local systems, together with a flat section to \check{X} , e.g., in the Betti setting, $\operatorname{Loc}_{\check{G}}$ classifies representations of the étale fundamental group $\rho:\pi_1(C)\to\check{G}$, and the fiber over ρ is the derived invariant scheme \check{X}^{ρ} . In the setting of de Rham local systems,

$$\operatorname{Loc}_{\check{G}}^{\check{X}} = \operatorname{Map}(C_{dR}, \check{X}/\check{G}) \to \operatorname{Loc}_{\check{G}} = \operatorname{Map}(C_{dR}, B\check{G}).$$

Basic case and numerical conjecture: Assume that a geometric Langlands parameter (\check{G} -local system) ρ only has isolated (classical) fixed points x_i on \check{X} . Then, the fiber of $\operatorname{Loc}_{\check{G}}^{\check{X}} \to \operatorname{Loc}_{\check{G}}$ over ρ is

$$\sum_{i} H^{1}(\rho, T_{x_{i}}\check{X}).$$

Given that \check{X} is a vector bundle over $\check{G}_X \setminus \check{G}$ (say with fiber V), for the existence of fixed points the local system admits a reduction ρ_X to \check{G}_X , and we have $T_{x_i}\check{X} = V \oplus \check{\mathfrak{g}}/\check{\mathfrak{g}}_X$.

Applying the sheaf–function dictionary, suppose that ρ is restriction of a Langlands parameter (denoted by same letter), and f is the automorphic form associated to the skyscraper sheaf δ_{ρ} , then (assuming that ρ is a smooth point of $\operatorname{Loc}_{\check{G}}$)

$$\langle \Theta_X, f^{\vee} \rangle = \operatorname{tr}(\operatorname{Fr}, \operatorname{Hom}(\mathcal{L}_X, \delta_{\rho})^{\vee}) = q^{-(g-1)\dim G} \operatorname{tr}(\operatorname{Fr}, \bigoplus_i \wedge^{\bullet} H^1(\rho, T_{x_i}\check{X})) = q^{-(g-1)\dim G} \sum_i L(\rho, T_{x_i}\check{X}).$$

(I will ignore the factor $q^{-(g-1)\dim G}$ from now on; it has to do with choices of measures I haven't explained.)

Examples (a lot of interesting scalars/measures swept under the rug! denoted by \approx):

1. Whittaker case: $\check{X} = pt$, so

$$\langle \Theta_X, f^{\vee} \rangle \approx 1.$$

(Here, Θ_X is the Poincaré series, and the pairing computes the Whittaker coefficient of f^{\vee} .)

2. Group case: X=H, say semisimple, $\check{X}=\check{H}$ with Chevalley-twisted action of $\check{G}=\check{H}\times\check{H}$. Hence, for ρ to have fixed points, it has to be of the form $\rho=\tau\times\tau^{\vee}$.

Assume τ to be geometrically elliptic (= its restriction to the geometric fundamental group does not lie in a proper Levi). Then, its centralizer $S_{\tau} \subset \check{H}$ is discrete, and corresponds to the (classical) fixed points on \check{H} . Their tangent space is $\check{\mathfrak{h}}$, and we get

$$\langle \Theta_X, f^{\vee} \rangle \approx |S_{\tau}| L(\tau, \check{\mathfrak{h}}, 0).$$

3. There is a version of the conjecture which doesn't require polarization, which arises when we consider endomorphisms of the period sheaf \mathcal{P}_X : Normalize the automorphic form $f \leftrightarrow \rho$ so that $\langle f, f \rangle = |S_{\pi}|L(\tau, \check{\mathfrak{g}}, 1)$, then

$$|\langle \Theta_X, f \rangle|^2 \approx \sum_i L(\rho, T_{x_i} \check{M})$$
 — the Ichino–Ikeda conjecture.