Almost primes in almost all very short intervals

Kaisa Matomäki

University of Turku, Finland

MIT Number Theory Seminar, April 6th, 2021
Contents

1 Background and results
 • Primes
 • Primes in short intervals
 • Primes in almost all short intervals
 • Almost primes in (almost all) short intervals

2 Methods
 • The sieve method
 • Type I sums
 • To Kloosterman sums

3 Summary and further thoughts

Kaisa Matomäki
Almost primes in almost all very short intervals
1 Background and results
 - Primes
 - Primes in short intervals
 - Primes in almost all short intervals
 - Almost primes in (almost all) short intervals

2 Methods
 - The sieve method
 - Type I sums
 - To Kloosterman sums

3 Summary and further thoughts
Letter p always denotes a prime, $p \in \{2, 3, 5, 7, 11, 13, \ldots \}$, i.e. a natural number > 1 that is only divisible by 1 and itself.
How many primes are there?

- Letter p always denotes a prime, $p \in \{2, 3, 5, 7, 11, 13, \ldots \}$, i.e. a natural number > 1 that is only divisible by 1 and itself.
- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$ (1 + o(1)) \int_2^x \frac{dx}{\log x} = (1 + o(1)) \frac{x}{\log x}. $$
How many primes are there?

- Letter \(p \) always denotes a prime, \(p \in \{2, 3, 5, 7, 11, 13, \ldots \} \), i.e. a natural number \(> 1 \) that is only divisible by 1 and itself.

- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to \(x \) is

 \[
 (1 + o(1)) \int_{2}^{x} \frac{dx}{\log x} = (1 + o(1)) \frac{x}{\log x}.
 \]

 This is called the prime number theorem (PNT).

- It asserts that the "probability" that an integer \(n \) is prime is about \(1/\log n \).
Letter p always denotes a prime, $p \in \{2, 3, 5, 7, 11, 13, \ldots \}$, i.e. a natural number > 1 that is only divisible by 1 and itself.

Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$ (1 + o(1)) \int_2^x \frac{dx}{\log x} = (1 + o(1)) \frac{x}{\log x}. $$

This is called the prime number theorem (PNT).

It asserts that the "probability" that an integer n is prime is about $1/\log n$.

PNT is equivalent to the fact that the Riemann zeta function does not have zeros with $\Re s = 1$.
One wants to know about primes in short intervals: If we look at a "short" segment \((x, x + H]\) around \(x\), is the density of primes in that segment still \(1/\log x\)?
One wants to know about primes in short intervals: If we look at a ”short” segment $(x, x + H]$ around x, is the density of primes in that segment still $1/\log x$?

The smaller the H, the more difficult the problem.

Huxley’s prime number theorem from 1972 gives

$$\sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log x}, \quad H \geq x^{\frac{7}{12} + \varepsilon}.$$

This is based on Huxley’s zero-density estimate for the zeta function and has resisted improvements, except Heath-Brown (1988) has shown this for $H \geq x^{\frac{7}{12} - o(1)}$.

Kaisa Matomäki

Almost primes in almost all very short intervals
What about primes in short intervals?

- One wants to know about primes in short intervals: If we look at a "short" segment \((x, x + H]\) around \(x\), is the density of primes in that segment still \(1/\log x\)?
- The smaller the \(H\), the more difficult the problem.
- Huxley's prime number theorem from 1972 gives

\[
\sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log x}, \quad H \geq x^{7/12 + \varepsilon}.
\]
What about primes in short intervals?

- One wants to know about primes in short intervals: If we look at a "short" segment \((x, x + H]\) around \(x\), is the density of primes in that segment still \(1/\log x\)?
- The smaller the \(H\), the more difficult the problem.
- Huxley’s prime number theorem from 1972 gives
 \[
 \sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log x}, \quad H \geq x^{7/12+\varepsilon}.
 \]
- This is based on Huxley’s zero-density estimate for the zeta function and has resisted improvements, except Heath-Brown (1988) has shown this for \(H \geq x^{7/12-o(1)}\).
Baker-Harman-Pintz (2001) showed with a sieve method

\[\sum_{x < p \leq x + H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525} \]

for some \(\varepsilon > 0 \).
Baker-Harman-Pintz (2001) showed with a sieve method

\[\sum_{x < p \leq x + H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525} \]

for some \(\varepsilon > 0 \).

For shorter intervals one does not even know existence of primes!

Assuming RH one knows that \([x, x + x^{1/2} \log x]\) always contains primes.
Baker-Harman-Pintz (2001) showed with a sieve method

\[\sum_{x < p \leq x + H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525} \]

for some \(\varepsilon > 0 \).

For shorter intervals one does not even know existence of primes!

Assuming RH one knows that \([x, x + x^{1/2} \log x]\) always contains primes.

Cramer made a probabilistic model based on ”probability of \(n \) being prime is \(1/\log n \)”. Based on this, one expects that intervals \([x, x + (\log x)^{2+\varepsilon}]\) contain primes for all large \(x \).
Baker-Harman-Pintz (2001) showed with a sieve method
\[\sum_{x < p \leq x + H} 1 \geq \varepsilon \frac{H}{\log X}, \quad H \geq x^{0.525} \]
for some \(\varepsilon > 0 \).

For shorter intervals one does not even know existence of primes!

Assuming RH one knows that \([x, x + x^{1/2} \log x]\) always contains primes.

Cramer made a probabilistic model based on "probability of \(n \) being prime is \(1/\log n \). Based on this, one expects that intervals \([x, x + (\log x)^{2+\varepsilon}]\) contain primes for all large \(x \).

Huge gap between what's known and what's expected!
Primes in almost all short intervals

- Even under RH it is not known that \([x, x + x^{1/2}]\) always contains primes.
- What if one only requires that almost all intervals contain primes?
Even under RH it is not known that \([x, x + x^{1/2}]\) always contains primes.

What if one only requires that almost all intervals contain primes?

A variant of Huxley’s prime number theorem says that, for almost all \(x \in [X, 2X]\) (i.e. with \(o(X)\) exceptions),

\[
\sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log X}, \quad H \geq x^{1/6+\epsilon}.
\]

This can be proved using the same zero-density estimates and has also resisted improvements.
Even under RH it is not known that \([x, x + x^{1/2}]\) always contains primes.

What if one only requires that almost all intervals contain primes?

A variant of Huxley’s prime number theorem says that, for almost all \(x \in [X, 2X]\) (i.e. with \(o(X)\) exceptions),

\[
\sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log X}, \quad H \geq x^{1/6 + \varepsilon}.
\]

This can be proved using the same zero-density estimates and has also resisted improvements.

A lower bound has been shown for \(H \geq X^{1/20}\) by Jia.
Primes in almost all short intervals

- Even under RH it is not known that \([x, x + x^{1/2}]\) always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley’s prime number theorem says that, for almost all \(x \in [X, 2X]\) (i.e. with \(o(X)\) exceptions),
 \[
 \sum_{x < p \leq x + H} 1 = (1 + o(1)) \frac{H}{\log X}, \quad H \geq x^{1/6+\varepsilon}.
 \]
- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for \(H \geq X^{1/20}\) by Jia.
- One expects that, for any \(h \to \infty\) with \(X \to \infty\), the interval \((x, x + h \log x]\) contains primes for almost all \(x \in [X, 2X]\).
One expects that, for any $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains primes for almost all $x \in [X/2, X]$.

One can ask similar questions about almost-primes, i.e. P_k numbers that have at most k prime factors or E_k numbers that have exactly k prime factors.
One expects that, for any \(h \to \infty \) with \(X \to \infty \), the interval \((x - h \log X, x]\) contains primes for almost all \(x \in [X/2, X] \).

One can ask similar questions about almost-primes, i.e. \(P_k \) numbers that have at most \(k \) prime factors or \(E_k \) numbers that have exactly \(k \) prime factors.

Teräväinen has showed that, for almost all \(x \in [X/2, X] \), the interval \((x - (\log X)^{3.51}, x]\) contains an \(E_2 \)-number and the interval \((x - (\log \log X)^{6+\varepsilon} \log X, x]\) contains an \(E_3 \)-number.
Almost primes

- One expects that, for any $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains primes for almost all $x \in [X/2, X]$.
- One can ask similar questions about almost-primes, i.e. P_k numbers that have at most k prime factors or E_k numbers that have exactly k prime factors.
- Teräväinen has showed that, for almost all $x \in [X/2, X]$, the interval $(x - (\log X)^{3.51}, x]$ contain an E_2-number and the interval $(x - (\log \log X)^{6+\varepsilon} \log X, x]$ contains an E_3-number.
- Wu has shown that the interval $(x - x^{101/232}, x]$ contains P_2 numbers for all sufficiently large x.
From now on we will concentrate on P_k numbers in almost all short intervals.
From now on we will concentrate on P_k numbers in almost all short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_{19}-numbers for almost all $x \in [X/2, X]$. They used β-sieve with $\beta = 8$ and had level of distribution $D = X^{1/2}/(\log X)^A$. They say that if one was careful, one could use linear sieve instead and this would give P_4-numbers (with no prime factors $\leq X^{1/4-\varepsilon}$). Furthermore, they say that, using Duke-Friedlander-Iwaniec bounds on bilinear forms with Kloosterman fractions, one could slightly increase the level of distribution and obtain P_3 numbers. They write “It would be interesting to get integers with at most two prime divisors.”
From now on we will concentrate on P_k numbers in almost all short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_{19}-numbers for almost all $x \in [X/2, X]$.

They used β-sieve with $\beta = 8$ and had level of distribution $D = X^{1/2} / (\log X)^A$.
From now on we will concentrate on P_k numbers in almost all short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_{19}-numbers for almost all $x \in [X/2, X]$.

They used β-sieve with $\beta = 8$ and had level of distribution $D = X^{1/2}/(\log X)^A$.

They say that if one was careful, one could use linear sieve instead and this would give P_4-numbers (with no prime factors $\leq X^{1/4-\varepsilon}$).
From now on we will concentrate on P_k numbers in almost all short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_{19}-numbers for almost all $x \in [X/2, X]$.

They used β-sieve with $\beta = 8$ and had level of distribution $D = X^{1/2}/(\log X)^A$.

They say that if one was careful, one could use linear sieve instead and this would give P_4-numbers (with no prime factors $\leq X^{1/4-\varepsilon}$).

Furthermore, they say that, using Duke-Friedlander-Iwaniec bounds on bilinear forms with Kloosterman fractions, one could slightly increase the level of distribution and obtain P_3 numbers.
From now on we will concentrate on P_k numbers in almost all short intervals.

Following Friedlander, Friedlander and Iwaniec showed that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_{19}-numbers for almost all $x \in [X/2, X]$.

They used β-sieve with $\beta = 8$ and had level of distribution $D = X^{1/2}/(\log X)^A$.

They say that if one was careful, one could use linear sieve instead and this would give P_4-numbers (with no prime factors $\leq X^{1/4-\varepsilon}$).

Furthermore, they say that, using Duke-Friedlander-Iwaniec bounds on bilinear forms with Kloosterman fractions, one could slightly increase the level of distribution and obtain P_3 numbers.

They write "It would be interesting to get integers with at most two prime divisors".
Theorem (M. (202?))

As soon as \(h \to \infty \) with \(X \to \infty \), the interval \((x - h \log X, x]\) contains \(P_2 \)-numbers for almost all \(x \in [X/2, X] \).
Theorem (M. (202?))

As soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_2-numbers for almost all $x \in [X/2, X]$.

Write $\Omega(n)$ for the number of prime factors, counted with multiplicity. E.g. $\Omega(18) = \Omega(2 \cdot 3 \cdot 3) = 3$.

P_2 numbers in almost all very short intervals
Theorem (M. (202?))

As soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_2-numbers for almost all $x \in [X/2, X]$.

Write $\Omega(n)$ for the number of prime factors, counted with multiplicity. E.g. $\Omega(18) = \Omega(2 \cdot 3 \cdot 3) = 3$. We have the following more precise theorem.

Theorem (M. (202?))

Let $h \leq X^{1/100}$. There exist constants $c, C > 0$ such that

$$ch \leq \sum_{x-h \log X < n \leq x} 1_{\Omega(n) \leq 2} \leq Ch$$

for all $x \in [X/2, X]$ apart from an exceptional set of measure $O(X/h)$.
Theorem (M. (202?))

Let \(h \leq X^{1/100} \). There exists constant \(c > 0 \) such that

\[
\sum_{x-h \log X \leq n \leq x} 1_{\Omega(n) \leq 2} \geq ch
\]

for all \(x \in [X/2, X] \) apart from an exceptional set of measure \(O(X/h) \).
Theorem (M. (202?))

Let $h \leq X^{1/100}$. There exists constant $c > 0$ such that

$$\sum_{x-h \log X < n \leq x} 1_{\Omega(n) \leq 2} \geq ch$$

for all $x \in [X/2, X]$ apart from an exceptional set of measure $O(X/h)$.

- We use Richert’s weighted sieve with well-factorability and Vaughan’s identity. We get level of distribution $D = X^{5/9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman numbers. Mikawa used similar strategy with Weil bound, but lost some logs in h.
1 Background and results
 - Primes
 - Primes in short intervals
 - Primes in almost all short intervals
 - Almost primes in (almost all) short intervals

2 Methods
 - The sieve method
 - Type I sums
 - To Kloosterman sums

3 Summary and further thoughts
Theorem (M. (202?))

Let $h \leq X^{1/100}$. There exists constant $c > 0$ such that

$$
\sum_{x-h \log X < n \leq x \atop p|n \implies p > X^{1/8}} 1_{\Omega(n) \leq 2} \geq ch
$$

for all $x \in [X/2, X]$ apart from an exceptional set of measure $O(X/h)$.

- We use Richert’s weighted sieve with well-factorability and Vaughan’s identity. We get level of distribution $D = X^{5/9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums.
Write $A(x) = (x - h \log X, x] \cap \mathbb{N}$ and $P(z) = \prod_{p < z} p$. Define $z := X^{5/36}$ and $y = X^{1/2}$. Study, for $x \in (X/2, X]$,

$$
\sum_{n \in A(x) \atop (n, P(z)) = 1} w_n := \sum_{n \in A(x) \atop (n, P(z)) = 1} \left(1 - \sum_{p | n \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \right)
$$
Write $\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N}$ and $P(z) = \prod_{p < z} p$. Define $z := X^{5/36}$ and $y = X^{1/2}$. Study, for $x \in (X/2, X]$,

$$\sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1}} w_n := \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1}} \left(1 - \sum_{\substack{p | n \\ z \leq p < y}} \left(1 - \frac{\log p}{\log y}\right)\right)$$

$$\leq \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1}} \left(1 - \sum_{\substack{p | n}} \left(1 - \frac{\log p}{\log y}\right)\right)$$

$$\leq \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1}} (1 - \sum_{\substack{p | n}} (1 - \frac{\log p}{\log y}))$$

Hence it suffices to show that, with $O\left(X/h\right)$ exceptions, $\sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1}} w_n \gg h$.

Kaisa Matomäki
Almost primes in almost all very short intervals
Write $\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N}$ and $P(z) = \prod_{p < z} p$. Define $z := X^{5/36}$ and $y = X^{1/2}$. Study, for $x \in (X/2, X]$,

$$
\sum_{n \in \mathcal{A}(x) \cap \mathbb{N}, (n, P(z)) = 1} w_n := \sum_{n \in \mathcal{A}(x) \cap \mathbb{N}, (n, P(z)) = 1} \left(1 - \sum_{p \mid n, z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \right)
$$

$$
\leq \sum_{n \in \mathcal{A}(x) \cap \mathbb{N}, (n, P(z)) = 1} \left(1 - \sum_{p \mid n} \left(1 - \frac{\log p}{\log y} \right) \right)
$$

$$
\asymp \sum_{n \in \mathcal{A}(x) \cap \mathbb{N}, (n, P(z)) = 1} \left(1 - \Omega(n) + \frac{\log X}{\log y} \right). \quad \text{.}
$$
Write \(\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N} \) and \(P(z) = \prod_{p \leq z} p \). Define \(z := X^{5/36} \) and \(y = X^{1/2} \). Study, for \(x \in (X/2, X] \),

\[
\sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} w_n := \sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} \left(1 - \sum_{p \mid n \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \right)
\]

\[
\leq \sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} \left(1 - \sum_{p \mid n} \left(1 - \frac{\log p}{\log y} \right) \right)
\]

\[
\geq \sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} \left(1 - \Omega(n) + \frac{\log X}{\log y} \right) \leq 2 \sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} 1_{\Omega(n) \leq 2}.
\]
Setting up Richert’s weighted sieve

Write $\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N}$ and $P(z) = \prod_{p < z} p$. Define $z := X^{5/36}$ and $y = X^{1/2}$. Study, for $x \in (X/2, X]$,

$$\sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} w_n := \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} \left(1 - \sum_{p \mid n \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \right)$$

$$\leq \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} \left(1 - \sum_{p \mid n} \left(1 - \frac{\log p}{\log y} \right) \right)$$

$$\ll \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} \left(1 - \Omega(n) + \frac{\log X}{\log y} \right) \leq 2 \sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} 1_{\Omega(n) \leq 2}.$$

Hence it suffices to show that, with $O(X/h)$ exceptions,

$$\sum_{\substack{n \in \mathcal{A}(x) \\ (n, P(z)) = 1 \atop (n, P(z)) = 1}} w_n \gg h.$$
A sieve lower bound

Recall $\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N}$ and $P(z) = \prod_{p < z} p$. We need

$$\sum_{n \in \mathcal{A}(x), (n, P(z)) = 1} w_n = \sum_{n \in \mathcal{A}(x), (n, P(z)) = 1} 1 - \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y}\right) \sum_{np \in \mathcal{A}(x), (n, P(z)) = 1} 1 \gg h$$
Recall $\mathcal{A}(x) = (x - h \log X, x] \cap \N$ and $P(z) = \prod_{p < z} p$. We need

$$
\sum_{n \in \mathcal{A}(x) \atop (n,P(z)) = 1} w_n = \sum_{n \in \mathcal{A}(x) \atop (n,P(z)) = 1} 1 - \sum_{z \leq p < y} (1 - \frac{\log p}{\log y}) \sum_{np \in \mathcal{A}(x) \atop (n,P(z)) = 1} 1 \gg h
$$

By sieve theory we have nice α^+_d and $\alpha^-_{d,p}$ such that

$$
\sum_{d \mid (n,P(z)) \atop d \leq D} \alpha^-_d \leq 1(n,P(z)) = 1 \leq \sum_{d \mid (n,P(z)) \atop d \leq D/p} \alpha^+_d,
$$

where $D = X^{5/9}$,
A sieve lower bound

Recall \(\mathcal{A}(x) = (x - h \log X, x] \cap \mathbb{N} \) and \(P(z) = \prod_{p < z} p \). We need

\[
\sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} w_n = \sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} 1 - \sum_{z \leq p < y} (1 - \frac{\log p}{\log y}) \sum_{n p \in \mathcal{A}(x) \atop (n, P(z)) = 1} 1 \gg h
\]

By sieve theory we have nice \(\alpha_d^+ \) and \(\alpha_d^- \) such that

\[
\sum_{d \mid (n, P(z)) \atop d \leq D} \alpha_d^- \leq 1_{(n, P(z)) = 1} \leq \sum_{d \mid (n, P(z)) \atop d \leq D/p} \alpha_d^+
\]

where \(D = X^{5/9} \), so that, with \(\mathcal{B}_d := \{ n \in \mathbb{N} : dn \in \mathcal{B} \} \),

\[
\sum_{n \in \mathcal{A}(x) \atop (n, P(z)) = 1} w_n \geq \sum_{d \mid P(z) \atop d \leq D} \alpha_d^- |\mathcal{A}(x)_d| - \sum_{z \leq p < y} (1 - \frac{\log p}{\log y}) \sum_{d \mid P(z) \atop d \leq D/p} \alpha_d^+ |\mathcal{A}(x)_{dp}|,
\]
\[\sum_{n \in A(x)} w_n \geq \sum_{d \mid P(z) \atop d \leq D} \alpha_d^- |A(x)_d| - \sum_{z \leq p < y} (1 - \frac{\log p}{\log y}) \sum_{d \mid P(z) \atop d \leq D/p} \alpha_{d,p}^+ |A(x)_{dp}| \]
A sieve lower bound

$$\sum_{n \in A(x) \atop (n, P(z)) = 1} w_n \geq \sum_{d \mid P(z) \atop d \leq D} \alpha_d^+ |A(x)_d| - \sum_{z \leq p < y} (1 - \frac{\log p}{\log y}) \sum_{d \mid P(z) \atop d \leq D/p} \alpha_{d, p}^+ |A(x)_{dp}|$$

Writing, for $e \in \{d, dp\}$, $|A(x)_e| = \frac{h \log X}{e} + \left(|A(x)_e| - \frac{h \log X}{e} \right)$,
A sieve lower bound

\[\sum_{n \in A(x) \atop (n, P(z)) = 1 \atop (n, P(z)) = 1} w_n \geq \sum_{d | P(z) \atop d \leq D} \alpha_d^- |A(x)_d| - \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d | P(z) \atop d \leq D/p} \alpha_{d,p}^+ |A(x)_{dp}| \]

Writing, for \(e \in \{d, dp\}, |A(x)_e| = \frac{h \log X}{e} + \left(|A(x)_e| - \frac{h \log X}{e} \right), \)

\[\sum_{n \in A(x) \atop (n, P(z)) = 1} w_n \geq h \log X \cdot M(z, y) + E^-(x, y, z) - E^+(x, y, z), \]

\[M(z, y) := \sum_{d | P(z)} \alpha_d^- \frac{d}{d} - \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d | P(z)} \frac{\alpha_{d,p}^+}{dp} \gg \frac{1}{\log X} \]

\[E^-(x, y, z) := \sum_{d | P(z)} \alpha_d^- \left(|A(x)_d| - \frac{h \log X}{d} \right) \]

\[E^+(x, y, z) := \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d | P(z)} \frac{\alpha_{d,p}^+}{dp} \left(|A(x)_{dp}| - \frac{h \log X}{dp} \right). \]
A reduction to mean square estimates

\[\sum_{n \in A(x)} w_n \geq 3ch + E^{-}(x, y, z) - E^{+}(x, y, z),\]

where \(c > 0\),

\[E^{-}(x, y, z) := \sum_{d | P(z)} \alpha_{d}^{-} \left(|A(x)_{d}| - \frac{h \log X}{d} \right)\]

\[E^{+}(x, y, z) := \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d | P(z)} \alpha_{d, p}^{+} \left(|A(x)_{dp}| - \frac{h \log X}{dp} \right).\]
A reduction to mean square estimates

\[
\sum_{n \in A(x) \cap \{n, P(z)\} = 1} w_n \geq 3ch + E^-(x, y, z) - E^+(x, y, z),
\]

where \(c > 0 \),

\[
E^-(x, y, z) := \sum_{d \mid P(z)} \alpha_d^- \left(|A(x)_d| - \frac{h \log X}{d} \right)
\]

\[
E^+(x, y, z) := \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d \mid P(z)} \alpha^+_{d, p} \left(|A(x)_{dp}| - \frac{h \log X}{dp} \right).
\]

Hence \(\sum w_n \geq ch \) with \(O(X/h) \) exceptions if \(|E^\pm(x, y, z)| \leq ch \) with \(O(X/h) \) exceptions.
A reduction to mean square estimates

\[\sum_{n \in A(x)} w_n \geq 3ch + E^{-}(x, y, z) - E^{+}(x, y, z), \]

where \(c > 0 \),

\[E^{-}(x, y, z) := \sum_{d \mid P(z)} \alpha^{-}_d \left(|A(x)_d| - \frac{h \log X}{d} \right) \]

\[E^{+}(x, y, z) := \sum_{z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \sum_{d \mid P(z)} \alpha^{+}_{d,p} \left(|A(x)_{dp}| - \frac{h \log X}{dp} \right). \]

Hence \(\sum w_n \geq ch \) with \(O(X/h) \) exceptions if \(|E^{\pm}(x, y, z)| \leq ch \) with \(O(X/h) \) exceptions. This follows if

\[\int_{X/2}^{X} |E^{\pm}(x, y, z)|^2 dx = O(hX). \]
We need to show that

\[
\int_{X/2}^{X} \left| \sum_{d \leq D} \lambda_d \left(|A(x)_{d}| - \frac{h \log X}{d} \right) \right|^2 dy = O(hX)
\]

with \(\lambda_d = \alpha_d^- \) in case of \(E^-(x, y, z) \) and with

\[
\lambda_d = \sum_{d = pe \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \alpha_{e,p}^+
\]

in case of \(E^+(x, y, z) \).
The requirement

- We need to show that

\[\int_{X/2}^X \left| \sum_{d \leq D} \lambda_d \left(|A(x)_d| - \frac{h \log X}{d} \right) \right|^2 dy = O(hX) \]

with \(\lambda_d = \alpha_d^- \) in case of \(E^- (x, y, z) \) and with

\[\lambda_d = \sum_{d=p e \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \alpha_{e,p}^+ \]

in case of \(E^+ (x, y, z) \).

- In other words, we need type I information for almost all very short intervals with level of distribution \(D = X^{5/9} \) and some useful bilinear structure in the coefficients.

Kaisa Matomäki Almost primes in almost all very short intervals
Mean square of type I sums

Let \(g : \mathbb{R} \to \mathbb{R} \) be a smooth, supported on \([1/4, 2]\), \(H = h \log X \)

\[
\int_{-\infty}^{\infty} g \left(\frac{y}{X} \right) \left| \sum_{d \leq D} \lambda_d \left(|A(x)_d| - \frac{H}{d} \right) \right|^2 dy
\]
Let $g: \mathbb{R} \to \mathbb{R}$ be a smooth, supported on $[1/4, 2]$, $H = h \log X$

\[
\int_{-\infty}^{\infty} g \left(\frac{y}{X} \right) \left| \sum_{d \leq D} \lambda_d \left(|A(x)_d| - \frac{H}{d} \right) \right|^2 dy
\]

\[
\ll HX \sum_{d \leq D} d \left(\sum_{m \leq D, \ m \equiv 0 \mod d} \lambda_m \right)^2 + H^3 X^\varepsilon
\]

\[
+ \sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D, \ (d_1, d_2) \mid k} \lambda_{d_1} \lambda_{d_2} \left(\sum_{\substack{m_1, m_2 \ \mid\mid d_1 m_1 = d_2 m_2 + k \ \text{gcd}(d_1, d_2) = 1}} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right)
\]

\[
+ H \sum_{n} g \left(\frac{n}{X} \right) \left(\sum_{d \mid n} \lambda_d \right)^2 + HX \frac{1}{X^{10}} \sum_{n \leq X^{10}} \left(\sum_{d \mid n} \lambda_d \right)^2.
\]
Mean square of type I sums

Let \(g : \mathbb{R} \to \mathbb{R} \) be a smooth, supported on \([1/4, 2]\), \(H = h \log X \)

\[
\int_{-\infty}^{\infty} g \left(\frac{y}{X} \right) \left| \sum_{d \leq D} \lambda_d \left(|A(x)_d| - \frac{H}{d} \right) \right|^2 dy
\]

\[
\ll HX \sum_{d \leq D} d \left(\sum_{m \leq D} \frac{\lambda_m}{m} \right)^2 + H^3 X^\varepsilon
\]

\[
+ \sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D} \lambda_{d_1} \lambda_{d_2} \left(\sum_{m_1, m_2} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right)
\]

\[
+ H \sum_{n} g \left(\frac{n}{X} \right) \left(\sum_{d | n} \lambda_d \right)^2 + HX \frac{1}{X^{10}} \sum_{n \leq X^{10}} \left(\sum_{d | n} \lambda_d \right)^2.
\]

First and third lines \(\ll hX \) utilizing definition of sieve coefficients.
Need to bound, for $H = h \log X$,

$$\sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D \mid (d_1, d_2) \mid k} \lambda_{d_1} \lambda_{d_2} \left(\sum_{m_1, m_2 \mid d_1 m_1 = d_2 m_2 + k} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right).$$

with $\lambda_d = \alpha_d^-$ in case of $E^-(x, y, z)$ and with

$$\lambda_d = \sum_{\substack{d = pe \leq y \mid z \leq p \leq y}} \left(1 - \frac{\log p}{\log y} \right) \alpha_{e, p}^+.\$$

in case of $E^+(x, y, z)$.
The critical terms

Need to bound, for \(H = h \log X \),

\[
\sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D} \lambda_{d_1} \lambda_{d_2} \left(\sum_{d_1 m_1 = d_2 m_2 + k} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) X \frac{1}{[d_1, d_2]} \right).
\]

with \(\lambda_d = \alpha_d^- \) in case of \(E^-(x, y, z) \) and with

\[
\lambda_d = \sum_{d = pe \atop z \leq p < y} \left(1 - \frac{\log p}{\log y} \right) \alpha_{e, p}^+.
\]

in case of \(E^+(x, y, z) \). Note that in both cases \(\lambda_d \) can be factored to type I and II sums since the linear sieve weights are well-factorable and Vaughan’s identity applicable to \(p \).
Need to bound, for \(H = h \log X \),

\[
\sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D} \lambda_{d_1} \lambda_{d_2} \left(\sum_{m_1, m_2} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right)
\]
Need to bound, for $H = h \log X$,

$$
\sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D} \lambda_{d_1} \lambda_{d_2} \left(\sum_{m_1, m_2 \atop d_1 m_1 = d_2 m_2 + k} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right).
$$

Concentrate on $(d_1, d_2) = 1$. The sum is over $m_1 \equiv \overline{d_1} k \pmod{d_2}$.
To Kloosterman sums

Need to bound, for $H = h \log X$,

$$
\sum_{0 < |k| \leq H} (H - |k|) \sum_{d_1, d_2 \leq D} \lambda_{d_1} \lambda_{d_2} \left(\sum_{\substack{m_1, m_2 \in \mathbb{Z} \mid d_1 m_1 = d_2 m_2 + k \frac{d_1 m_1}{X}}} g \left(\frac{d_1 m_1}{X} \right) - \hat{g}(0) \frac{X}{[d_1, d_2]} \right).
$$

Concentrate on $(d_1, d_2) = 1$. The sum is over $m_1 \equiv \overline{d_1} k \pmod{d_2}$ and by Poisson this is

$$
\leq HX \sum_{0 < |k| \leq H} \left| \sum_{d_1, d_2 \leq D} \frac{\lambda_{d_1} \lambda_{d_2}}{d_1 d_2} \sum_{\substack{\ell \in \mathbb{Z} \mid \ell \neq 0 \frac{\ell X}{d_1 d_2}} \sum_{d_1, d_2 \leq D \mid (d_1, d_2) = 1}} \hat{g} \left(\frac{\ell}{d_1 d_2} \right) e \left(- \frac{k \ell \overline{d_1}}{d_2} \right) \right|
$$

which is an average of incomplete Kloosterman sums.
Suffices to show that, for some $\varepsilon > 0$,

$$
\sum_{0 < |k| \leq H} \left| \sum_{d_1, d_2 \leq D, (d_1, d_2) = 1} \lambda_{d_1} \lambda_{d_2} \sum_{\ell \in \mathbb{Z}, \ell \neq 0} \hat{g} \left(\frac{\ell X}{d_1 d_2} \right) e \left(-\frac{k \ell d_1}{d_2} \right) \right| \ll X^{-\varepsilon}.
$$
Suffices to show that, for some $\varepsilon > 0$,

$$
\sum_{0 < |k| \leq H} \left| \sum_{d_1, d_2 \leq D \atop (d_1, d_2) = 1} \lambda_{d_1} \lambda_{d_2} \sum_{\ell \in \mathbb{Z} \atop \ell \neq 0} \widehat{g} \left(\frac{\ell X}{d_1 d_2} \right) e \left(- \frac{k \ell d_1}{d_2} \right) \right| \ll X^{-\varepsilon}.
$$

Decompose λ_d to type I and II sums and use Deshouillers-Iwaniec bounds for averages of Kloosterman sums.
The Kloosterman sums

Suffices to show that, for some \(\varepsilon > 0 \),

\[
\sum_{0 < |k| \leq H} \left| \sum_{d_1, d_2 \leq D} \frac{\lambda_{d_1} \lambda_{d_2}}{d_1 d_2} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \hat{g} \left(\frac{\ell X}{d_1 d_2} \right) e \left(- \frac{k \ell d_1}{d_2} \right) \right| \ll X^{-\varepsilon}.
\]

Decompose \(\lambda_d \) to type I and II sums and use Deshouillers-Iwaniec bounds for averages of Kloosterman sums. They imply e.g.

Lemma (Type II estimate)

Assume that \(\alpha_n, \beta_n \) and \(\gamma_n \) are bounded complex coefficients. Let \(H \leq X^{1/60} \) and \(N \leq M \leq X^{21/50} \) and \(\max\{MN, Q\} \leq X^{14/25} \). Let \(g \) be smooth with compact support. Then

\[
\sum_{|k| \leq H} \left| \sum_{m \sim M \atop n \sim N} \frac{\alpha_m \beta_n}{mn} \sum_{q \sim Q} \frac{\gamma_q}{q} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \hat{g} \left(\frac{\ell X}{mnq} \right) e \left(- \frac{k \ell mn}{q} \right) \right| \ll X^{-\frac{1}{1000}}
\]
Outline

1 Background and results
 - Primes
 - Primes in short intervals
 - Primes in almost all short intervals
 - Almost primes in (almost all) short intervals

2 Methods
 - The sieve method
 - Type I sums
 - To Kloosterman sums

3 Summary and further thoughts
Showed

Theorem (M. (202?))

Let $h \leq X^{1/100}$. There exist constants $c, C > 0$ such that

$$ch \leq \sum_{x-h \log X < n \leq x \atop p|n \implies p > X^{1/8}} 1_{\Omega(n) \leq 2} \leq Ch$$

for almost $x \in [X/2, X]$ apart from an exceptional set of measure $O(X/h)$.

We used Richert's weighted sieve with well-factorability and Vaughan's identity. We got level of distribution $D = X^{5/9}$ (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums.
Showed

Theorem (M. (202?))

Let \(h \leq X^{1/100} \). There exist constants \(c, C > 0 \) such that

\[
ch \leq \sum_{x-h \log X < n \leq x, \ p|n \Rightarrow p > X^{1/8}} 1_{\Omega(n) \leq 2} \leq Ch
\]

for almost \(x \in [X/2, X] \) apart from an exceptional set of measure \(O(X/h) \).

We used Richert’s weighted sieve with well-factorability and Vaughan’s identity. We got level of distribution \(D = X^{5/9} \) (not optimized) from Deshouillers-Iwaniec bounds for averages of Kloosterman sums.
We have optimized neither the sieve weights or the level of distribution. Rather we have used a very simple sieve and worked out a sufficient level of distribution for that.
Now that we have shown that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_2-numbers for almost all $x \in [X/2, X]$, it is natural to ask, what about primes?
Further thoughts — primes and E_k numbers

- Now that we have shown that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_2-numbers for almost all $x \in [X/2, X]$, it is natural to ask, what about primes?

- Unfortunately, there are no chances to replace P_2 by P_1 since we only use type I information. Due to the parity barrier, type I information never suffices for finding primes.

- Furthermore, our type I information is new only when the intervals are extremely short. In particular it does not help when trying to improve on Jia’s result that almost all intervals $(x - x^{1/20}, x]$ contain primes. Same issue for E_k numbers.
Further thoughts — primes and E_k numbers

- Now that we have shown that as soon as $h \to \infty$ with $X \to \infty$, the interval $(x - h \log X, x]$ contains P_2-numbers for almost all $x \in [X/2, X]$, it is natural to ask, what about primes?

- Unfortunately, there are no chances to replace P_2 by P_1 since we only use type I information. Due to the parity barrier, type I information never suffices for finding primes.

- Furthermore, our type I information is new only when the intervals are extremely short. In particular it does not help when trying to improve on Jia’s result that almost all intervals $(x - x^{1/20}, x]$ contain primes. Same issue for E_k numbers.

- In an on-going work with J. Merikoski we are showing that if there are infinitely many exceptional characters, then there are many scales X such that $(x - h \log X, x]$ contains primes for almost all $x \in (X/2, X]$ as soon as $h \to \infty$ with $X \to \infty$.
Thank you!