On the geometric connected components of moduli of *p*-adic shtukas. (Work in progress)

Ian Gleason

UC Berkeley

January 5, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local Shimura datum

•
$$\check{\mathbb{Q}}_{p} = \widehat{\mathbb{Q}_{p}^{un}}$$
. σ lift of Frobenious. $\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}}}_{p}$.

- Formalism conjectured by Rapoport-Viehmann. Materialized by Scholze-Weinstein.
- *p*-adic shtuka datum is a triple: (G, b, μ) .
- G/\mathbb{Q}_p reductive group.
- ► $b \in G(\breve{Q}_p).$
- ▶ $\mu \in \{ \mathbb{G}_m \to G_{\overline{\mathbb{Q}}_p} \} / G$ conjugacy class of cocharacters.
- If μ is minuscule \implies (G, b, μ) is local Shimura datum.
- ln analogy with Shimura datum (G, ν) .
- Just as *ν* → Hodge structure. (*b*, *μ*) → "*p*-adic Hodge structure".
- ▶ $b \rightsquigarrow$ "isocrystal". $\mu \rightsquigarrow$ "filtration".

Some gadgets

We can associate:

- 1. $E = E(\mu)$ reflex field (of conj. class).
 - Consider the Weil group W_E .
- 2. Reductive group J_b .
 - σ -centralizer of b.
 - $J_b(\mathbb{Q}_p) = \{g \in G(\breve{\mathbb{Q}}_p) \mid g^{-1}b\sigma(g) = b\}$
 - Inner form of a Levi subgroup.
 - ► J_b(Q_p) is "Automorphism group of isocrystal".
- 3. A *p*-adic period domain $Gr_{B_{dR}}^{\leq \mu}/\mathbb{C}_p$.
 - Some geometric object of *p*-adic analytic geometry. (Scholze's diamonds).
 - If μ is minuscule $\mathscr{F}\ell_{\mu} = G/P_{\mu}$. In particular, it is a rigid-analytic space.
 - Open subset $\mathscr{F}\ell^b_{\mu} \subseteq \mathscr{F}\ell_{\mu}$. Called admissible locus.
 - Comes equipped with $J_b(\mathbb{Q}_p) \times W_E$ -action.

Local Shimura Varieties/moduli of *p*-adic shtukas.

Tower parametrized by compact open subgroups K ⊆ G(Q_p):
 J_b(Q_p) × W_E-equivariant tower of analytic spaces:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Local Shimura Varieties/moduli of *p*-adic shtukas.

Tower parametrized by compact open subgroups K ⊆ G(Q_p):
 J_b(Q_p) × W_E-equivariant tower of analytic spaces:

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

э

Local Shimura Varieties/moduli of *p*-adic shtukas.

• $J_b(\mathbb{Q}_p) \times W_E$ -equivariant tower of analytic spaces:

Sht[∞]_(G,b,µ) → \$\mathcal{F} \ell_{µ}^{b-adm}\$. A G(Q_p) proétale Galois cover.
 G(Q_p) × J_b(Q_p) × W_E acts on Sht[∞]_(G,b,µ). Geometric incarnation of LLC and JLC. (Kottwitz conjecture).

(日) (四) (日) (日) (日)

Example

• If
$$G = GL_n$$
.
• $b = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & 1 \\ p & 0 & 0 & \dots & 0 \end{pmatrix}$, $\mu = (1, 0, \dots, 0)$,

Then Sht_(GLn,b,µ) is the Lubin-Tate tower. Used on Harris-Taylor's proof of LLC.

$$\blacktriangleright \mathscr{F}\ell^b_\mu = \mathbb{P}^{n-1}$$

- Sht^{GL_n(ℤ_p)}_(GL_n,b,μ) = M_η it is the Raynaud generic fiber of a formal scheme.
- *M* is deformation space of 1-dimensional formal *p*-divisible group of height *n*.

Main Goal

- ▶ Describe connected components. $\pi_0(\operatorname{Sht}_{(G,b,\mu)}^{\infty}) \Leftrightarrow \pi_0(\operatorname{Tower}).$
- Understand $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p) \times W_E$ -action.
- Consequences:
 - 1. Explicit computation of $H^0(Sht_{(G,b,\mu)})$.
 - H⁰(Sht_(G,b,µ)) acts on rest of cohomology through "cup product". Allows twists by characters.
 - 3. Expresses geometrically: LLC and JLC are compatible with character twists.

Case of tori

If G is a torus:

$$\begin{aligned} x \cdot_{J_b} j &= x \cdot_G j^{-1} \\ x \cdot_{W_E} \gamma &= x \cdot_{G(\mathbb{Q}_p)} \left[\mathsf{Nm} \circ \mu \circ \mathsf{Art}_E(\gamma)^{-1} \right] \\ W_E \xrightarrow{\mathsf{Art}_E} E^{\times} \xrightarrow{(-1)} E^{\times} \xrightarrow{\mu} G(E) \xrightarrow{\mathsf{Nm}} G(\mathbb{Q}_p) \end{aligned}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Main Result

Theorem (G.)

Assume G unramified, (b, μ) HN-irreducible and G^{der} is simply connected, then det : $(G, b, \mu) \rightarrow (G^{ab}, det(b), det(\mu))$ gives

$$\det: \operatorname{Sht}_{(G,b,\mu)}^{\infty} \to \operatorname{Sht}_{(G^{ab},det(b),det(\mu))}^{\infty}$$

and induces a $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p) \times W_E$ -equivariant bijection

$$\pi_{0}(\det): \pi_{0}(\operatorname{Sht}_{(G,b,\mu)}) \xrightarrow{=} \pi_{0}(\operatorname{Sht}_{(G^{ab},det(b),det(\mu))})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Canonical map $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p) \times W_E \to G^{ab}(\mathbb{Q}_p) \times G^{ab}(\mathbb{Q}_p) \times W_E.$

Remarks

- 1. De Jong (1994): Lubin-Tate case over \mathbb{Q}_p .
- 2. Strauch(2006): Lubin-Tate case over arbitrary local field (including ramification).
- 3. M. Chen(2012): Computation for tori. Introduced determinant map.
- 4. M. Chen(2014): Unramified Rapoport-Zink space of EL or PEL type.
- 5. New for local Shimura varieties associated to exceptional reductive groups. We handle μ non-minuscule. We handle G^{der} non-simply connected.
- 6. Central strategy is the same, but techniques and difficulties are very different.

Road map for de Jong + M. Chen

Blue From infinite to hyperspecial level.

- Group theoretic techniques.
- M. Chen's work on "generic" crystalline representations.

Green Theory of Rapoport-Zink spaces.

 $\begin{array}{l} \mbox{Magenta} & \mbox{Formal smoothness of unramified RZ spaces.} \\ & \mbox{$\Gamma(\mathcal{M}^{\mathcal{K}}_{\eta},\mathcal{O}^+)=\Gamma(\mathcal{M},\mathcal{O})$} \end{array}$

Brown Dieudonné Theory

Red Computation of connected components of minuscule affine Deligne Lusztig varieties . (Chen-Kisin-Viehmann).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Integral models

- Main difficulty: What are integral models for diamonds? We make a modest attack to this question.
- Solve analogy:

Rigid analytic spaces → Diamonds Formal schemes →?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

First approximation to "?": Kimberlites

Road map for us

Blue Adapt Chen's strategy to diamonds.

Green Scholze-Weinstein propose a model.

- Magenta Specialization maps for kimberlites. Prove SW are kimberlites. Brown Reduction functor for kimberlites.
 - Red Computation of connected components of general ADLV. (Chen-Kisin-Viehmann, He-Zhou, Nie).

Main technical theorem

Theorem (G.)

Let $\mathcal{K} \subseteq G(\mathbb{Q}_p)$ a hyperspecial subgroup. There is a specialization map $\operatorname{Sp} : |\operatorname{Sht}_{(G,b,\mu)}^{\mathcal{K}}| \to |X_{\leq \mu}^{\mathcal{K}}(b)|$ that satisfies the following properties:

- Continuous and spectral (of locally spectral spaces).
- ▶ J_b(Q_p)-equivariant.
- A quotient map.
- Induces a bijection $\pi_0(\operatorname{Sp}) : \pi_0(\operatorname{Sht}_{(G,b,\mu)}^{\mathcal{K}}) \cong \pi_0(X_{\leq \mu}^{\mathcal{K}}(b)).$

Kimberlites

- ${Diamonds} \subseteq {v sheaves} \supseteq {Kimberlites}.$
- (Lourenço) For "nice" formal schemes X/Z_p → (X_η, X^{red}, Sp) is a fully-faithful embedding.
- Axioms on a v-sheaf F that allow us to construct a triple!!! F ↦ (F^{an}, F^{red}, Sp)

How to construct $\mathcal{F}^{\mathrm{red}}$ and \mathcal{F}^{an} ?

Scholze constructs fully-faithful functor:

$$\diamond : \{ \text{Perfect Schemes} \} \rightarrow \{ v - \text{sheaves} \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Observation: ◊ admits a right adjoint (-)^{red} (sort of). Not always a scheme!!!.
- ▶ If $[(\mathcal{F})^{red}]^{\Diamond} \to \mathcal{F}$ is closed immersion, then $\mathcal{F}^{an} := \mathcal{F} \setminus [(\mathcal{F})^{red}]^{\Diamond}$. Complementary open subsheaf.

How to construct *Sp*?

- Descend it from a known case: Let (R, R⁺) be a Tate Huber pair, ∞ ∈ R is pseudo-uniformizer.
- ► Spa(R, R^+) ⊆ Spa(R^+, R^+). Also, one computes Spd(R^+, R^+)^{red} = Spec(R^+/ϖ)^{*perf*}.
- ▶ There is a specialization map $Sp: |\operatorname{Spa}(R^+, R^+)| \to |\operatorname{Spec}(R^+/\varpi)|$. Formula:

$$x\mapsto \mathfrak{p}_x=\{r\in R^+\mid |r|_x<1\}$$

$$egin{aligned} &|\operatorname{Spd}(R^+,R^+) \mid \stackrel{cover}{\longrightarrow} \mid \mathcal{F} \mid & \ &\downarrow^{\operatorname{sp}_{R^+}} & \qquad &\downarrow^{\operatorname{sp}_{\mathcal{F}}} & \ &\downarrow^{\operatorname{sp}_{\mathcal{F}}} & \ &\downarrow^{\operatorname{sp}_{\mathcal{F}}} & \downarrow^{\operatorname{sp}_{\mathcal{F}}} & \ &\downarrow^{\operatorname{Spd}(R^+,R^+)^{\operatorname{red}} \mid \longrightarrow \mid \mathcal{F}^{\operatorname{red}} \mid & \ &\downarrow^{\operatorname{red}} \mid & \ &\downarrow^{\operatorname$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The axioms:

Definition

- ${\mathcal F}$ is a kimberlite if:
 - F is v-locally formal (covered by Spd(R⁺, R⁺) in the sense of v-sheaves).

- *F* is separated.
- $(\mathcal{F}^{\mathrm{red}})^{\Diamond} \to \mathcal{F}$ is a closed immersion.
- $\mathcal{F}^{\mathrm{red}}$ is represented by a perfect scheme.
- $\mathcal{F}^{an} := \mathcal{F} \setminus (\mathcal{F}^{\mathrm{red}})^{\Diamond}$ is a locally spatial diamond.

Examples:

- If $\mathfrak{X}/\mathbb{Z}_p$ is a separated formal scheme then \mathfrak{X}^{\Diamond} is a kimberlite.
- Product of kimberlites are kimberlites.
- Exotic example $\mathbb{Z}_{\rho}^{\Diamond} \times_{\mathbb{F}_{\rho}^{\Diamond}} \mathbb{Z}_{\rho}^{\Diamond}$ is a kimberlite. $((\mathbb{Z}_{\rho}^{\Diamond} \times_{\mathbb{F}_{\rho}^{\Diamond}} \mathbb{Z}_{\rho}^{\Diamond})^{\mathrm{red}})^{\Diamond} = \mathbb{F}_{\rho}^{\Diamond}$
- Main example: Scholze-Weinstein's integral model Sht^K_(G,b,µ) is a kimberlite, we have an open immersion (Sht^K_(G,b,µ)) ⊆ (Sht^K_(G,b,µ))^{an}, and (Sht^K_(G,b,µ))^{red} = X^K_{≤µ}(b).

Theorem

(G.) Given a kimberlite \mathcal{F} , there is a canonical, well-defined specialization map $\operatorname{Sp} : |\mathcal{F}^{an}| \to |\mathcal{F}^{red}|$. It is continuous and a spectral map of locally spectral spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

(G.) Given a kimberlite \mathcal{F} , there is a canonical, well-defined specialization map $\operatorname{Sp} : |\mathcal{F}^{an}| \to |\mathcal{F}^{red}|$. It is continuous and a spectral map of locally spectral spaces.

Main technical theorem

Theorem (G.)

There is a specialization map $\text{Sp} : |\text{Sht}_{(G,b,\mu)}^{\mathcal{K}}| \to |X_{\leq \mu}^{\mathcal{K}}(b)|$, it satisfies the following properties:

- Continuous and spectral
- ▶ J_b(ℚ_p)-equivariant.

Remains:

• Induces a bijection $\pi_0(\operatorname{Sp}) : \pi_0(\operatorname{Sht}_{(G,b,\mu)}^{\mathcal{K}}) \cong \pi_0(X_{\leq \mu}^{\mathcal{K}}(b)).$

Ingredients: $\pi_0(\operatorname{Sht}_{(G,b,\mu)}^{\mathcal{K}}) \cong \pi_0(X_{\leq \mu}^{\mathcal{K}}(b))$

• Tubular neighborhoods: given $x \in |\mathcal{F}^{red}|$ a closed point define:

$$\widehat{\mathcal{F}}_{/x} = \operatorname{Sp}^{-1}(x)^{\circ} \subseteq \operatorname{Sp}^{-1}(x)$$

Admits moduli interpretation. It is an open subdiamond

 *<i>F*_{/x} = Sp⁻¹(x)[°] ⊆ *F<sup>an*
</sup>

Point-set topology arguments in the constructible topology reduces to prove: |Sht^K_{(G,b,µ)/x}| connected for all x ∈ |X^K_{≤µ}(b)|.

Ingredients: $\pi_0(\operatorname{Sht}_{(G,b,\mu)}^{\mathcal{K}}) \cong \pi_0(X_{\leq \mu}^{\mathcal{K}}(b))$

- Classic theme: 𝒴ℓ_µ and 𝓜 have isomorphic tubular neighborhoods. Prove "Kimberlite version" for Sht^𝔅_(𝔅,b,µ) and *Gr^{≤µ}_{𝔅𝑌}*.
- ► This finishes the proof for minuscule cocharacters since $Gr_{B_{dR}}^{\leq \mu}$ is represented by a smooth formal scheme.
- For non-minuscule cocharacters we use a "Kimberlite version" of the Demazure resolution.

This is the end

Thanks!!!

