Representations of *p*-adic groups and applications

Jessica Fintzen

University of Cambridge and Duke University

September 2020

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $GL_n(F), SL_n(F), SO_n(F), Sp_{2n}(F), \dots$

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex G.

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G. (ℓ a prime $\neq p$)

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

• representation theory of p-adic groups

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p-adic groups
- explicit local Langlands correspondence

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p-adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)

Notation: F/\mathbb{Q}_p finite or $F=\mathbb{F}_q((t))$, $F\supset\mathcal{O}\supset\mathfrak{p}$, residue field \mathbb{F}_q G (connected) reductive group over F, e.g. $\mathrm{GL}_n(F),\mathrm{SL}_n(F),\mathrm{SO}_n(F),\mathrm{Sp}_{2n}(F),\ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of *p*-adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)
- p-adic automorphic forms, p-adic Langlands program
- •

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n : R. Howe, A. Moy, ..., (1970s and later)

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n :

R. Howe, A. Moy, ..., (1970s and later)

C. Bushnell and P. Kutzko (1993),

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n :

R. Howe, A. Moy, ..., (1970s and later) C. Bushnell and P. Kutzko (1993),

M.-F. Vigneras (1996)

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n : R. Howe, A. Moy, ..., (1970s and later)

C. Bushnell and P. Kutzko (1993),

M.-F. Vigneras (1996)

classical groups $(p \neq 2)$: ..., S. Stevens (2008),

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n : R. Howe, A. Moy, ..., (1970s and later)

C. Bushnell and P. Kutzko (1993),

M.-F. Vigneras (1996)

classical groups $(p \neq 2)$: ..., S. Stevens (2008),

R. Kurinzcuk and S. Stevens (2018)

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_{\ell}$ -) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

 GL_n : R. Howe, A. Moy, ..., (1970s and later)

C. Bushnell and P. Kutzko (1993),

M.-F. Vigneras (1996)

classical groups $(p \neq 2)$: ..., S. Stevens (2008),

R. Kurinzcuk and S. Stevens (2018)

inner forms of GL_n : ..., V. Sécherre and S. Stevens (2008)

Constructions of supercuspidal representations for general G:

Constructions of supercuspidal representations for general G: 1994/96 A. Moy and G. Prasad

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad

Constructions of supercuspidal representations for general *G*: 1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99) 1998, 2001 J. Adler, J.-K. Yu

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Jessica Fintzen

Epipelagic representations

Figure: The epipelagic zone of the ocean; source: Sheri Amsel. Glossary (what words mean) with pictures!. 2005-2015. April 2, 2015, http://www.exploringnature.org/db/detail.php?dbID=13&detID=406

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F = 0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F = 0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F = 0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad (L. Morris: 1993/99)

1998, 2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and char F=0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

type	$A_n (n \geqslant 1)$	$B_n, C_n (n \geqslant 2)$	$D_n (n \geqslant 3)$	E_6
W	(n+1)!	$2^n \cdot n!$	$2^{n-1} \cdot n!$	$2^7 \cdot 3^4 \cdot 5$

type	E ₇	E ₈	F ₄	G_2
W	$2^{10} \cdot 3^4 \cdot 5 \cdot 7$	$2^{14} \cdot 3^5 \cdot 5^2 \cdot 7$	$2^7 \cdot 3^2$	$2^2 \cdot 3$

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_{\ell}$ -representations if $p \nmid |W|$ (and G is tame).

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_{\ell}$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_{\ell}$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)

Results

Theorem 1 (F., Oct 2018)

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu's construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu's construction yields all cuspidal $\overline{\mathbb{F}}_{\ell}$ -representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

• Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \operatorname{SL}_n(\mathbb{Z}_p)$ inside $G = \operatorname{SL}_n(\mathbb{Q}_p)$).

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

- Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \mathsf{SL}_n(\mathbb{Z}_p)$ inside $G = \mathsf{SL}_n(\mathbb{Q}_p)$).
- **2** Build a representation of G from the representation ρ_K (keyword: compact-induction).

$$G = SL_2(F)$$
,

$$G = \mathsf{SL}_2(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$G = \operatorname{SL}_2(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

 $\rho_K : K \to \operatorname{GL}_1(\mathbb{C}) = \mathbb{C}^*,$

$$G = \mathsf{SL}_2(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \to \mathsf{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{\pm 1\} \to 1 \in \mathbb{C}^*$$

$$G = \mathsf{SL}_2(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$
$$\rho_K : K \to \mathsf{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{\pm 1\} \to 1 \in \mathbb{C}^*$$

$$G = \mathsf{SL}_2(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_K : K \to \mathsf{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{\pm 1\} \to 1 \in \mathbb{C}^*$$

$$\rho_{\mathcal{K}}: \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix}$$

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{\times,0.5}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$$

$$G = \operatorname{SL}_{2}(F), K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{\times,0.5} \qquad G_{\times,0.5} / G_{\times,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \xrightarrow{\mathcal{P}} \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \twoheadrightarrow \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix}$$

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \twoheadrightarrow \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b$$

$$G = \operatorname{SL}_{2}(F), K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \xrightarrow{\mathcal{M}} \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix} \to \mathbb{F}_{q}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a+b$$

Jessica Fintzen

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} \twoheadrightarrow \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1+\mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1+\mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1+\mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix} \to \mathbb{F}_{q} \to \mathbb{C}^{*}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a+b$$

Jessica Fintzen

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix} \to \mathbb{F}_{q} \to \mathbb{C}^{*}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b$$

Supercuspidal representation:

$$\operatorname{c-ind}_{K}^{G}\rho_{K} = \left\{ f: G \to \mathbb{C} \;\middle|\; f(kg) = \rho_{K}(k)f(g) \; \forall g \in G, k \in K \right. \right\}$$

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix} \to \mathbb{F}_{q} \to \mathbb{C}^{*}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b$$

Supercuspidal representation:

$$\operatorname{c-ind}_K^G \rho_K = \left\{ f: G \to \mathbb{C} \;\middle|\; \begin{array}{l} f(kg) = \rho_K(k) f(g) \; \forall g \in G, k \in K \\ f \text{ compactly supported} \end{array} \right\}$$

Jessica Fintzen

$$G = \operatorname{SL}_{2}(F), \ K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \times \{\pm 1\}$$

$$\rho_{K} : K \to \operatorname{GL}_{1}(\mathbb{C}) = \mathbb{C}^{*}, \ \rho_{K} : \{\pm 1\} \to 1 \in \mathbb{C}^{*}$$

$$G_{x,0.5} \qquad G_{x,0.5} / G_{x,0.5+}$$

$$\rho_{K} : \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix} / \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p}^{2} \\ \mathfrak{p} & 1 + \mathfrak{p} \end{pmatrix}$$

$$\simeq \begin{pmatrix} 0 & \mathbb{F}_{q} \\ \mathbb{F}_{q} & 0 \end{pmatrix} \to \mathbb{F}_{q} \to \mathbb{C}^{*}$$

$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b$$

Supercuspidal representation:

$$\text{c-ind}_{K}^{G} \rho_{K} = \left\{ f : G \to \mathbb{C} \middle| \begin{array}{l} f(kg) = \rho_{K}(k)f(g) \ \forall g \in G, k \in K \\ f \text{ compactly supported} \end{array} \right\}$$
 G-action: $g.f(\star) = f(\star \cdot g)$

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations:

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations: c-ind $_{K_{Y_{11}}}^{G}$.

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations: c-ind $_{K_{Y_{11}}}^{G}$.

Theorem 5 (F.-Kaletha-Spice, 2019/2020)

There exists a character $\epsilon: K_{Yu} \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu} .

Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu's proof (Yu's Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu's construction yields indeed supercuspidal representations: c-ind $_{K_{Y_{11}}}^{G}$.

Theorem 5 (F.-Kaletha-Spice, 2019/2020)

There exists a character $\epsilon: K_{Yu} \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu} . In particular, c-ind $_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon: K \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K. In particular, c-ind $_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon: K \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K. In particular, c-ind $_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

• Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon: K \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K. In particular, c-ind $_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon: K \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Y_u}}$ of K. In particular, c-ind $_{K_{Y_u}}^G \epsilon \rho_{K_{Y_u}}$ is supercuspidal.

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon: K \to \{\pm 1\}$ such that Yu's Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K. In particular, c-ind $_{K_{Yu}}^G \epsilon \rho_{K_{Yu}}$ is supercuspidal.

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)
- Hecke-algebra identities (hope)

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G.

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G.

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G.

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

 $\operatorname{\mathsf{Hom}}_{\mathsf{K}}(\rho,\pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal }$

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G.

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

$$\mathsf{Hom}_{\mathcal{K}}(\rho,\pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal }$$

Example:
$$G = \operatorname{SL}_2(F)$$
: $K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$, $\rho = \rho_K : K \to \mathbb{F}_q \to \mathbb{C}^*$

Types

Theory of types: Obtain information about representations of G by studying representations of compact open subgroups of G.

Definition

A pair (K, ρ) of a compact open subgroup $K \subset G$ and a finite dimensional representation ρ is a **supercuspidal type** if for every irreducible representation π :

$$\mathsf{Hom}_{\mathcal{K}}(\rho,\pi) \neq \{0\} \Rightarrow \pi \text{ is supercuspidal }$$

Example:
$$G = SL_2(F)$$
: $K = \begin{pmatrix} 1 + \mathfrak{p} & \mathfrak{p} \\ \mathcal{O} & 1 + \mathfrak{p} \end{pmatrix}$, $\rho = \rho_K : K \to \mathbb{F}_q \to \mathbb{C}^*$

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda: U \twoheadrightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi: \mathbb{Z}/p^m\mathbb{Z} \to \mathbb{C}^*$.

Omni-supercuspidal types - results

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda: U \twoheadrightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi: \mathbb{Z}/p^m\mathbb{Z} \to \mathbb{C}^*$.

Omni-supercuspidal types - results

Definition

An **omni-supercuspidal type** of level p^m is a pair (U, λ) , where U is an open compact subgroup of G and $\lambda: U \twoheadrightarrow \mathbb{Z}/p^m\mathbb{Z}$ such that $(U, \psi \circ \lambda)$ is a supercuspidal type for every nontrivial character $\psi: \mathbb{Z}/p^m\mathbb{Z} \to \mathbb{C}^*$.

Theorem 6 (F.-Shin, Sep 2020, draft available at https://www.dpmms.cam.ac.uk/~jf457/research.html)

Assume G splits over a tame extension, $\operatorname{char}(F)=0$ and $p>\operatorname{Cox}(G)$. Then there exists a sequence $\{(U_m,\lambda_m)\}_{m\geqslant 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \triangleright U_2 \triangleright \cdots$, and $\{U_m\}_{m \geqslant 1}$ forms a basis of open neighborhoods of 1.

Omni-supercuspidal types - applications

Theorem 6 (F.-Shin, Sep 2020, draft available at https://www.dpmms.cam.ac.uk/~jf457/research.html)

Assume G splits over a tame extension, $\operatorname{char}(F)=0$ and $p>\operatorname{Cox}(G)$. Then there exists a sequence $\{(U_m,\lambda_m)\}_{m\geqslant 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \rhd U_2 \rhd \cdots$, and $\{U_m\}_{m\geqslant 1}$ forms a basis of open neighborhoods of 1.

13

Omni-supercuspidal types - applications

Theorem 6 (F.—Shin, Sep 2020, draft available at https://www.dpmms.cam.ac.uk/~jf457/research.html)

Assume G splits over a tame extension, $\operatorname{char}(F)=0$ and $p>\operatorname{Cox}(G)$. Then there exists a sequence $\{(U_m,\lambda_m)\}_{m\geqslant 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \rhd U_2 \rhd \cdots$, and $\{U_m\}_{m\geqslant 1}$ forms a basis of open neighborhoods of 1.

Applications of Theorem 6

 congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p (for groups that are compact-mod-center at infinity)

Omni-supercuspidal types - applications

Theorem 6 (F.—Shin, Sep 2020, draft available at https://www.dpmms.cam.ac.uk/~jf457/research.html)

Assume G splits over a tame extension, $\operatorname{char}(F)=0$ and $p>\operatorname{Cox}(G)$. Then there exists a sequence $\{(U_m,\lambda_m)\}_{m\geqslant 1}$ such that

- each (U_m, λ_m) is an omni-supercuspidal type of level p^m ,
- $U_1 \rhd U_2 \rhd \cdots$, and $\{U_m\}_{m\geqslant 1}$ forms a basis of open neighborhoods of 1.

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work by Emerton–Paškūnas)

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
 (for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
 (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of **1** or **2**:

"May assume that an automorphic form is supercuspidal at p."

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
 (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at p are dense in the spectrum of the Hecke algebra (based on work of Emerton-Paškūnas)

Applications of **1** or **2**:

"May assume that an automorphic form is supercuspidal at p."

Example: Global Langlands correspondence for GL_n :

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
 (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of **①** or **②**:

"May assume that an automorphic form is supercuspidal at p."

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n such that Π is (ess) square integrable at some prime

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p
 (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of **1** or **2**:

"May assume that an automorphic form is supercuspidal at p."

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n such that Π is (ess) square integrable at some prime

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p (for groups that are compact-mod-center at infinity)
- ② (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of **1** or **2**:

"May assume that an automorphic form is supercuspidal at p."

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n such that Π is (ess) square integrable at some prime

Galois representation with $\overline{\mathbb{Q}}_p$ -coefficients

Applications of Theorem 6

- congruences between arbitrary algebraic automorphic forms and those that are supercuspidal at p (for groups that are compact-mod-center at infinity)
- (classical) automorphic forms with fixed weight that are supercuspidal at *p* are dense in the spectrum of the Hecke algebra (based on work of Emerton–Paškūnas)

Applications of **1** or **2**:

"May assume that an automorphic form is supercuspidal at p."

Example: Global Langlands correspondence for GL_n :

nice autom rep Π of GL_n such that Π is (ess) square integrable at some prime

Galois representation with $\overline{\mathbb{Q}}_p$ -coefficients

or ② ⇒ remove square integrability assumption (F-Shin, Paškūnas)

 ${\mathcal G}$ (connected) reductive group over ${\mathbb Q}$ such that ${\mathcal G}({\mathbb R})$ is compact,

 $\mathcal G$ (connected) reductive group over $\mathbb Q$ such that $\mathcal G(\mathbb R)$ is compact, $\mathbb A=\mathbb A_\mathbb O,$

$$\mathcal{G}$$
 (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A}=\mathbb{A}_{\mathbb{Q}},\ U^p\subset\prod_{\ell\neq p}'\mathcal{G}(\mathbb{Q}_{\ell})$ compact open,

15

$$\mathcal{G}$$
 (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod_{l \neq p} ' \mathcal{G}(\mathbb{Q}_l)$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

$$\mathcal{G}$$
 (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$, $U^p \subset \prod_{\ell \neq p}' \mathcal{G}(\mathbb{Q}_I)$ compact open, $U_p \subset \mathcal{G}(\mathbb{Q}_p)$

$$\mathcal{G}$$
 (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A}=\mathbb{A}_{\mathbb{Q}},\ U^p\subset\prod_{\ell\neq p}'\mathcal{G}(\mathbb{Q}_I)$ compact open, $U_p\subset\mathcal{G}(\mathbb{Q}_p)$

$$\mathcal{G}$$
 (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A}=\mathbb{A}_{\mathbb{Q}},\ U^p\subset\prod_{\ell\neq p}'\mathcal{G}(\mathbb{Q}_I)$ compact open, $U_p\subset\mathcal{G}(\mathbb{Q}_p)$

- **6** $m \in \mathbb{N}, A_m := \mathbb{Z}_p[T]/(1+T+\ldots+T^{p^m-1}),$ suppose U_p acts smoothly on A_m smoothly:

 \mathcal{G} (connected) reductive group over \mathbb{Q} such that $\mathcal{G}(\mathbb{R})$ is compact, $\mathbb{A}=\mathbb{A}_{\mathbb{Q}},\ U^p\subset\prod_{\ell\neq p}'\mathcal{G}(\mathbb{Q}_I)$ compact open, $U_p\subset\mathcal{G}(\mathbb{Q}_p)$

- $\begin{aligned} \mathbf{o} \quad m \in \mathbb{N}, \ A_m := \mathbb{Z}_p[T]/(1+T+\ldots+T^{p^m-1}), \\ \text{suppose } U_p \text{ acts smoothly on } A_m \text{ smoothly:} \\ M(U_pU^p,A_m) &= \{\mathcal{G}(\mathbb{Q})\backslash\mathcal{G}(\mathbb{A})/U^p\mathcal{G}(\mathbb{R})^\circ \to A_m \mid \\ f(gu_p) &= u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p \} \end{aligned}$

Definition (algebraic automorphic forms)

- $m \in \mathbb{N}, \ A_m := \mathbb{Z}_p[T]/(1+T+\ldots+T^{p^m-1}),$ suppose U_p acts smoothly on A_m smoothly $M(U_pU^p,A_m) = \{\mathcal{G}(\mathbb{Q})\backslash\mathcal{G}(\mathbb{A})/U^p\mathcal{G}(\mathbb{R})^\circ \to A_m \mid \\ f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.–Shin, Sep 2020, draft available on my homepage, special case due to Scholze, 2018)

Let
$$p > \mathsf{Cox}(\mathcal{G})$$
. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \subset A_m$

②
$$M(U_{p,m}U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m}U^p, A_m)/(1-T)$$

Definition (algebraic automorphic forms)

Theorem 7 (F.–Shin, Sep 2020, draft available on my homepage, special case due to Scholze, 2018)

Let
$$p > \mathsf{Cox}(\mathcal{G})$$
. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \subset A_m$

- **2** $M(U_{p,m}U^p, \mathbb{Z}_p)/(p^m) \simeq M(U_{p,m}U^p, A_m)/(1-T)$
- If $\Pi = \prod' \Pi_{\ell} \otimes \Pi_{\infty}$ is an automorphic rep contributing to $M(U_{p,m}U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p$, then Π_p is supercuspidal.

Definition (algebraic automorphic forms)

- $\bullet \quad m \in \mathbb{N}, \ A_m := \mathbb{Z}_p[T]/(1+T+\ldots+T^{p^m-1}),$ suppose U_p acts smoothly on A_m smoothly $M(U_pU^p, A_m) = \{\mathcal{G}(\mathbb{Q}) \setminus \mathcal{G}(\mathbb{A}) / U^p \mathcal{G}(\mathbb{R})^\circ \to A_m$ $f(gu_p) = u_p^{-1} f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p$

Theorem 7 (F.-Shin, Sep 2020, draft available on my homepage, special case due to Scholze, 2018)

Let $p > \mathsf{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \subset A_m$

- ① $U_{p,1} \triangleright U_{p,2} \triangleright \cdots$, and $\{U_{p,m}\}_{m \geqslant 1}$ forms a basis of open neighborhoods of $1 \in \mathcal{G}(\mathbb{Q}_p)$
- $M(U_{p,m}U^p,\mathbb{Z}_p)/(p^m) \simeq M(U_{p,m}U^p,A_m)/(1-T)$
- **3** If $\Pi = \prod' \Pi_{\ell} \otimes \Pi_{\infty}$ is an automorphic rep contributing to $M(U_{p,m}U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p$, then Π_p is supercuspidal.

Definition (algebraic automorphic forms)

- $m \in \mathbb{N}, \ A_m := \mathbb{Z}_p[T]/(1+T+\ldots+T^{p^m-1}),$ suppose U_p acts smoothly on A_m smoothly $M(U_pU^p,A_m) = \{\mathcal{G}(\mathbb{Q})\backslash\mathcal{G}(\mathbb{A})/U^p\mathcal{G}(\mathbb{R})^\circ \to A_m \mid$ $f(gu_p) = u_p^{-1}f(g) \ \forall g \in \mathcal{G}(\mathbb{A}), u_p \in U_p\}$

Theorem 7 (F.–Shin, Sep 2020, draft available on my homepage, special case due to Scholze, 2018)

Let $p > \mathsf{Cox}(\mathcal{G})$. Then $\exists U_{p,m} \subset \mathcal{G}(\mathbb{Q}_p)$ with $U_{p,m} \subset A_m$

- $U_{p,1} \rhd U_{p,2} \rhd \cdots$, and $\{U_{p,m}\}_{m\geqslant 1}$ forms a basis of open neighborhoods of $1 \in \mathcal{G}(\mathbb{Q}_p)$
- $\textbf{0} \quad M(U_{p,m}U^p,\mathbb{Z}_p)/(p^m) \simeq M(U_{p,m}U^p,A_m)/(1-T)$ (+ Hecke algebra)
- If $\Pi = \prod' \Pi_{\ell} \otimes \Pi_{\infty}$ is an automorphic rep contributing to $M(U_{p,m}U^p, A_m) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p$, then Π_p is supercuspidal.

The end of the talk, but only the beginning of the story ...

