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Dick Gross and Curt McMullen (2002)

Characteristic polynomials of isometries of even, unimodular
lattices.



DEFINITIONS

Lattice : (L, q)

• L is a free Z-module of finite rank,

• q : L ×L→ Z is a symmetric bilinear form.

unimodular : det(q) = ±1.

even : q (x , x) ≡ 0 (mod 2)

for all x ∈ L.



DEFINITIONS

Lattice : (L, q)

• L is a free Z-module of finite rank,

• q : L ×L→ Z is a symmetric bilinear form.

unimodular : det(q) = ±1.

even : q (x , x) ≡ 0 (mod 2)

for all x ∈ L.



SIGNATURE

Well-known :

(L, q) an even, unimodular lattice

signature
(r , s)

r ≡ s (mod 8)



DEFINITIONS

Isometry of (L, q) : element of SO(L, q)

t : L→ L

q(t(x), t(y)) = q(x , y).

det(t) = 1.



GEOMETRY : K3 SURFACES

X complex analytic K3 surface

L = H2(X ,Z), q : L× L→ Z : intersection form.

(L, q) is an even, unimodular lattice.

signature (3, 19)

(L, q) ' (−E8)⊕ (−E8)⊕ H ⊕ H ⊕ H.



GEOMETRY : K3 SURFACES

Automorphism of X induces an isometry of (L, q)

Characteristic polynomial F ∈ Z[X ] symmetric, product of a

Salem polynomial and of cyclotomic polynomials.

Real root > 1 of the Salem polynomial = dynamical degree of the
automorphism (McMullen, Gross-McMullen, Brandhorst,...).



GEOMETRY - KNOTS

K ⊂ S3 knot, A Seifert matrix. We have det(A− At) = 1.

Set
q = A + At .

signature of K : signature of q

The signature is a knot invariant.



GEOMETRY - KNOTS

Alexander polynomial of K :

∆(X ) = det(AX − At).

∆ is symmetric, ∆(1) = 1.

The Alexander polynomial is a knot invariant.



A THEOREM OF SEIFERT

A square integral matrix with det(A− At) = 1

Then there exists a knot with Seifert matrix A.



GEOMETRY - KNOTS

Assume that det(A) = 1. Set t = A−1At .

t is an isometry of q.

det(A).det(IX − t) = det(AX − At) = ∆(X )

∆ is the characteristic polynomial of t.

Assume that
q is unimodular : ∆(−1) = ±1



EXAMPLE

∆u,v =
(X uv − 1)(X − 1)

(X u − 1)(X v − 1)
,

u, v > 1 odd integers with u and v prime to each other.

Alexander polynomial of the (u, v) torus knot.





GROSS and McMULLEN

Let F ∈ Z[X ], monic, symmetric, irreducible, deg(F ) = 2n.

(r , s) integers > 0 such that

r ≡ s (mod 8),

r + s = 2n.



GROSS and McMULLEN

If there exists an even, unimodular lattice of signature (r , s) having
an isometry with characteristic polynomial F , then :

(C 1) |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

Set
m(F ) = number of roots z of F with |z | > 1.

(C 2)
m(F ) 6 r , m(F ) 6 s, m(F ) ≡ r ≡ s (mod 2).



GROSS and McMULLEN

F ∈ Z[X ] monic, symmetric, IRREDUCIBLE, deg(F ) = 2n, and
(r , s) such that

r ≡ s (mod 8),

r + s = 2n.

Theorem. (Gross-McMullen, 2002) Assume that

|F (1)| = |F − 1)| = 1.

Then there exists an even, unimodular lattice of signature (r , s)
having an isometry with characteristic polynomial F ⇐⇒
conditions (C 1) and (C 2) hold.



GROSS and McMULLEN

F ∈ Z[X ] monic, symmetric, IRREDUCIBLE, deg(F ) = 2n, and
(r , s) such that

r ≡ s (mod 8),

r + s = 2n.

Gross and McMullen (2002) speculate that

conditions (C 1) and (C 2)

may be sufficient for the existence of an even, unimodular lattice of
signature (r , s) having an isometry with characteristic polynomial
F .



GROSS and McMULLEN

F (X ) = (X 6 − 3X 5 − X 4 + 5X 3 − X 2 − 3X + 1)(X 4 − X 2 + 1).

Gross-McMullen (2002)

Conditions (C 1) and (C 2) hold for (r , s) = (9, 1), but

E8 ⊕ H

does not have an isometry with characteristic polynomial F .



E.B. and TAELMAN

F ∈ Z[X ] monic, symmetric, IRREDUCIBLE, deg(F ) = 2n, and
(r , s) such that

r ≡ s (mod 8),

r + s = 2n.

Theorem. (E.B.-Taelman, 2020) There exists an even, unimodular
lattice of signature (r , s) having an isometry with characteristic
polynomial F ⇐⇒ conditions (C 1) and (C 2) hold.



K3 SURFACES

Corollary. Let F be a Salem polynomial of degree 22, and assume
that |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

Then there exists a complex analytic K3 surface X and an
automorphism T of X such that the characteristic polynomial of
T ∗ on H2(X ,Z) is F .



KNOTS

Corollary. Let ∆ ∈ Z[X ] be a monic, symmetric, irreducible
polynomial such that ∆(1) = 1. Set deg(∆) = 2n, and assume
that ∆(−1) = (−1)n.

Let (r , s) such that r ≡ s (mod 8), r + s = deg(∆) = 2n.

There exists a knot with Alexander polynomial equal to ∆ and
signature (r , s) if and only if condition (C 2) holds.

Follows from Gross-McMullen, since |∆(1)| = |∆(−1)| = 1.



E.B. - TAELMAN : PROOF

Theorem. Let F ∈ Z[X ] be a monic, symmetric, irreducible
polynomial and (r , s) such that r ≡ s (mod 8), r + s = deg(F ).

There exists an even, unimodular lattice of signature (r , s) having
an isometry with characteristic polynomial F ⇐⇒ the conditions
(C 1) and (C 2) hold.

Strategy to prove this result :

• Prove it everywhere locally.

• Local-global principle.



LOCAL RESULTS

F ∈ Z[X ] monic, symmetric, deg(F ) = 2n, irrreducible.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

• p odd prime : There exists a unimodular Zp-lattice having an
isometry with characteristic polynomial F .

• p = 2 : There exists an even, unimodular Z2-lattice having an
isometry with characteristic polynomial F .

• There exists a non-degenerate quadratic form over R of signature
(r , s) having an isometry with characteristic polynomial F .



REDUCIBLE POLYNOMIALS ?

F =
∏
f ∈I

f

f ∈ Z[X ] distinct, irreducible, symmetric, of even degree.

• Local results hold.

Conditions (C 1) and (C 2) are local conditions.

• Local-global principle does not always hold.



LOCAL RESULTS

F ∈ Z[X ] monic, symmetric, deg(F ) = 2n, as above.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

• p odd prime : There exists a unimodular Zp-lattice having an
isometry with characteristic polynomial F .

• p = 2 : There exists an even, unimodular Z2-lattice having an
isometry with characteristic polynomial F .

• There exists a non-degenerate quadratic form over R of signature
(r , s) having an isometry with characteristic polynomial F .



LOCAL-GLOBAL

Example.

F (X ) = (X 6 − 3X 5 − X 4 + 5X 3 − X 2 − 3X + 1)(X 4 − X 2 + 1).

F (1) = −1, F (−1) = 1.

Condition (C 1) holds.

m(F ) = 1.

(r , s) = (9, 1) or (5, 5) or 1, 9).

Condition (C 2) holds for all three.



LOCAL-GLOBAL

F (X ) = (X 6 − 3X 5 − X 4 + 5X 3 − X 2 − 3X + 1)(X 4 − X 2 + 1).

(r , s) = (9, 1) or (5, 5) or (1, 9).

local conditions hold.

no even, unimodular lattice of signature (9, 1) or (1, 9) has an
isometry with characteristic polynomial F .

Hasse principle does not hold for (9, 1) and (1, 9).



REDUCIBLE POLYNOMIALS

F =
∏
f ∈J

f nf = F0F1F2

F 1 =
∏
f ∈I1

f nf , F 0 =
∏
f ∈I0

f nf

I1 : set of irreducible, symmetric factors of F of even degree.

I0 = {X − 1,X + 1}, I = I0 ∪ I1.

F0(X ) = (X − 1)n+(X + 1)n− with n−, n+ even.

isometry = semi-simple isometry.



(C 1) and (C 2)

(C 1) |F (1)|, |F (−1)| and (−1)nF (1)F (−1) are all squares.

m(F ) = number of roots z of F with |z | > 1.

(C 2)
m(F ) 6 r , m(F ) 6 s,.

If moreover F (1)F (−1) 6= 0, then

m(F ) ≡ r ≡ s (mod 2).



LOCAL RESULTS

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

• p odd prime : There exists a unimodular Zp-lattice having an
isometry with characteristic polynomial F .

• p = 2 : There exists an even, unimodular Z2-lattice having an
isometry with characteristic polynomial F .

• There exists a non-degenerate quadratic form over R of signature
(r , s) having an isometry with characteristic polynomial F .



HASSE PRINCIPLE

Hasse principle in terms of an

obstruction group

XF

XF = 0 =⇒ conditions (C 1) and (C 2) suffice.



OBSTRUCTION GROUP

F ∈ Z[X ] symmetric, monic, C (I ) : maps I → Z/2Z.

Let f , g ∈ I . Let Vf ,g be the set of prime numbers p such that

f (mod p) and g (mod p)

have a common symmetric irreducible factor in Fp[X ].

C0(I ) : c ∈ C (I ) such that

c(f ) = c(g) if Vf ,g 6= ∅.

XF : quotient of C0(I ) by the constant maps.



EXAMPLES

Example.

F (X ) = (X 6 − 3X 5 − X 4 + 5X 3 − X 2 − 3X + 1)(X 4 − X 2 + 1).

f (X ) = X 6 − 3X 5 − X 4 + 5X 3 − X 2 − 3X + 1,

g(X ) = X 4 − X 2 + 1.

Vf ,g = ∅.

XF ' Z/2Z.



EXAMPLES

f1(X ) = X 12 − X 11 + X 10 − X 9 − X 6 − X 3 + X 2 − X + 1,

f2(X ) = X 6 − X 5 + X 4 − X 3 + X 2 − X + 1 = Φ14(X )

f3(X ) = X 4 − X 2 + 1 = Φ12(X ).

F = f1f2f3.

Vf1,f2 = {7}, Vf1,f3 = {13}, Vf2,f3 = ∅.

XF = 0.



EASY EXAMPLE

f ∈ Z[X ] symmetric, irreducible,

g(X ) = X − 1.

Vf ,g : set of prime divisors of f (1).
If

|f (1)| 6= 1,

then

Vf ,g 6= ∅.



ANOTHER EASY EXAMPLE

f ∈ Z[X ] symmetric, irreducible,

g(X ) = X + 1.

Vf ,g : set of prime divisors of f (−1).
If

|f (−1)| 6= 1,

then

Vf ,g 6= ∅.



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that

XF = 0.

Then there exists an even, unimodular lattice of signature (r , s)
having an isometry with characteristic polynomial F .



QUESTION

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Question. Let t ∈ SOr ,s(R) be a semi-simple isometry with
characteristic polynomial F .

Does t preserve an even, unimodular lattice ?



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that

XF = 0.

Let t ∈ SOr ,s(R) be a semi-simple isometry with characteristic
polynomial F . Then t preserves an even, unimodular lattice.



MILNOR INDICES

Let V be a finite dimensional R-vector space, and let

q : V × V → R

be a quadratic form of signature (r , s).

index of q = r − s

Let t : V → V be an isometry of (V , q).

P ∈ R[X ] : irreducible, symmetric polynomial.

V P : P(t)-primary subspace of V .

(x ∈ V such that P(t)Nx = 0 for large N.)



MILNOR INDICES

P ∈ R[X ] : irreducible, symmetric polynomial.

V P : P(t)-primary subspace of V .

Milnor index of t ∈ SO(q) at P :

Index of q restricted to V P .

Index of q = sum of Milnor indices.



MILNOR INDICES

IrrR(F ) : irreducible, symmetric factors of F ∈ R[X ].

nP > 0 : integer such that PnP is the power of P dividing F .

Mil(F ) : maps

τ : IrrR(F )→ Z

Such that

τ(P) ∈ {−nP deg(P), . . . , nP deg(P)}.



MILNOR INDICES

Milm(F ) :
τ ∈ Mil(F )

such that ∑
P
τ(P) = m.



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that

XF = 0.

Let τ ∈ Milr−s(F ). Then there exists an even, unimodular lattice
having an isometry with

• characteristic polynomial F , and

• Milnor index τ .

Hence signature (r , s).



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that

XF = 0.

Let τ ∈ Milr−s(F ). Then there exists an even, unimodular lattice
having an isometry with

• characteristic polynomial F , and

• Milnor index τ .

Hence signature (r , s).



BIJECTION

t ∈ SOr ,s(R) 7→ τt ∈ Milr−s(F ).

Bijection between

• Conjugacy classes of elements of SOr ,s(R) with characteristic
polynomial F .

and

• Milr−s(F ).



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n, and (r , s) such that
r ≡ s (mod 8), and r + s = 2n. Assume that conditions (C 1)
and (C 2) hold.

Let τ ∈ Milm(F ).

Define a homomorphism

ετ : XF → Z/2Z.

Theorem. There exists an even, unimodular lattice of signature
(r , s) having an isometry with

• characteristic polynomial F , and

• Milnor index τ

if and only if
ετ = 0.



THEOREM

F ∈ Z[X ] monic, symmetric deg(F ) = 2n.

(r , s) such that r ≡ s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

Let t ∈ SOr ,s(R) be a semi-simple isometry with characteristic
polynomial F . Define a homomorphism

εt : XF → Z/2Z.

Theorem. The isometry t preserves an even, unimodular lattice if
and only if

ετ = 0.



K3 SURFACES

Let d be an integer, 4 6 d 6 20. Let S be a Salem polynomial of
degree d , and assume that |S(1)| 6= 1 and that |F (−1)| is a square.

Let δ ∈ S1 be a root of S .

Let
F (X ) = S(X )(X − 1)22−d .

Theorem. There exists a complex analytic K3 surface X and an
automorphism T of X such that

• The characteristic polynomial of T ∗ on H2(X ,Z) is F .

• T ∗ acts on H2,0(X ) by multiplication by δ.



K3 SURFACES

The proof uses results of Brandhorst and McMullen.

Let λ ∈ R be the root of S with λ > 1.

Corollary. λ is realized as the dynamical degree of an
automorphism of a complex holomorphic K3 surface.

Let d be an integer, 4 6 d 6 18. Let S be a Salem polynomial of
degree d , and assume that |S(1)S(−1)| 6= 1.

Theorem. λ2 is realized as the dynamical degree of an
automorphism of a complex holomorphic K3 surface.



KNOTS

Let ∆ ∈ Z[X ] be a monic, symmetric polynomial such that
∆(1) = 1. Suppose that ∆ is a product of distinct irreducible
polynomials.

Set deg(∆) = 2n, and assume that ∆(−1) = (−1)n.

Let (r , s) such that r ≡ s (mod 8), r + s = deg(∆) = 2n.

Assume that condition (C 2) holds.



KNOTS

Let τ ∈ Milr−s(∆). We have a homomorphism

ετ : X∆ → Z/2Z

Theorem. There exists a knot with Alexander polynomial ∆ and
Milnor index τ if and only if

ετ = 0.



EXAMPLE

∆u,v =
(X uv − 1)(X − 1)

(X u − 1)(X v − 1)
,

u, v > 1 odd integers with u and v prime to each other.

Let p and q be two distinct odd prime numbers with
q ≡ 3 (mod 4), let e > 1 be an integer, and set

u = pe , v = q;
set

∆ = ∆pe ,q.



EXAMPLE

• (pq ) = −1

There exists a knot with Alexander polynomial ∆ and index m

if and only if

m ≡ 0 (mod 8), and |m| ≤ deg(∆).

• (pq ) = 1

There exists a knot with Alexander polynomial ∆ and index m

if and only if

m ≡ 0 (mod 8), and |m| ≤ deg(∆) - 4(e-1).



EXAMPLE

p = 3, q = 7, e = 2.

∆ = ∆32,7 = ∆9,7 =

Φ21Φ63.

(37) = −1

X∆ = 0.



EXAMPLE - INDICES

Necessary conditions

m ≡ 0 (mod 8), and |m| ≤ deg(∆).

deg(∆) = 12 + 36 = 48.

m ≡ 0 (mod 8), and |m| ≤ 48.

|m| = 0, 8, 16, 24, 32, 40, 48.



EXAMPLE - MILNOR INDICES

Let τ ∈ Milm(∆) for

|m| = 0, 8, 16, 24, 32, 40, 48.

There exists a knot with

• Alexander polynomial ∆, and

• Milnor index τ .



EXAMPLE - MILNOR INDICES

|Mil48(∆)| = 1, |Mil40(∆)| =
(24

2

)
, |Mil32(∆)| =

(24
4

)
,

|Mil24(∆)| =
(24

6

)
, |Mil16(∆)| =

(24
8

)
,

|Mil8(∆)| =
(24

10

)
, |Mil0(∆)| =

(24
12

)
.



EXAMPLE

p = 7, q = 3, e = 2.

∆ = ∆3,72 = ∆3,49 =

Φ21Φ147.

(73) = 1

X∆ ' Z/2Z.



EXAMPLE - INDICES

Necessary conditions

m ≡ 0 (mod 8), and |m| ≤ deg(∆).

deg(∆) = 12 + 84 = 96.

m ≡ 0 (mod 8), and |m| ≤ 96.



EXAMPLE

τ ∈ Milm(∆)

ετ : X∆ → Z/2Z

there exists a knot with

• Alexander polynomial ∆, and

• Milnor index τ

if and only if ετ = 0.

Set

Milm(∆)+ : τ ∈ Milm(∆) such that ετ = 0.



EXAMPLE

τ ∈ Milm(∆)

ετ : X∆ → Z/2Z

there exists a knot with

• Alexander polynomial ∆, and

• Milnor index τ

if and only if ετ = 0.

Set

Milm(∆)+ : τ ∈ Milm(∆) such that ετ = 0.



EXAMPLE

Mil96(∆)+ = ∅.

|Mil88(∆)| =

(
48

2

)
= 24.47 = 12.94

|Mil88(∆)+| = 6.42 = 12.21



EXAMPLE

NO KNOT with

• Alexander polynomial ∆

• signature 96.

There exist knots with

• Alexander polynomial ∆

• signature 88,

but not all Milnor indices occur.



Thank you


