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Dick Gross and Curt McMullen (2002)

Characteristic polynomials of isometries of even, unimodular
[attices.



DEFINITIONS

Lattice : (L,q)

e [ is a free Z-module of finite rank,

e g: L xL— Zisasymmetric bilinear form.

unimodular : det(q) = £1.



DEFINITIONS

Lattice : (L,q)

e [ is a free Z-module of finite rank,

e g: L xL— Zisasymmetric bilinear form.

unimodular : det(q) = £1.

even : q (x,x) = 0 (mod 2)

for all x € L.



SIGNATURE

Well-known :

(L, qg) an even, unimodular lattice

signature



DEFINITIONS

Isometry of (L, q) : element of SO(L, q)

t:L—L

q(t(x), t(y)) = q(x,y).

det(t) = 1.



GEOMETRY : K3 SURFACES

X complex analytic K3 surface

L=H?*(X,Z), q:LxL— Z: intersection form.

(L,q) is an even, unimodular lattice.

signature (3,19)

(Lq)~(—E)® (—Es) ®HOH®H.



GEOMETRY : K3 SURFACES

Automorphism of X induces an isometry of (L, q)

Characteristic polynomial F € Z[X] symmetric, product of a

Salem polynomial and of cyclotomic polynomials.

Real root > 1 of the Salem polynomial = dynamical degree of the
automorphism (McMullen, Gross-McMullen, Brandhorst,...).



GEOMETRY - KNOTS

K C S3 knot, A Seifert matrix. We have det(A — Af) = 1.

Set
g=A+ AL

signature of K : signature of q

The signature is a knot invariant.



GEOMETRY - KNOTS

Alexander polynomial of K :

A(X) = det(AX — AY).

A is symmetric, A(1) = 1.

The Alexander polynomial is a knot invariant.



A THEOREM OF SEIFERT

A square integral matrix with det(A — A) =1

Then there exists a knot with Seifert matrix A.



GEOMETRY - KNOTS

Assume that det(A) = 1. Set t = A~1AL

t is an isometry of q.

det(A).det(IX — t) = det(AX — A") = A(X)
A is the characteristic polynomial of t.

Assume that
q is unimodular : A(—=1) = £1



EXAMPLE

(X" —-1)(X-1)

u,v > 1 odd integers with v and v prime to each other.

Alexander polynomial of the (u, v) torus knot.






GROSS and McMULLEN

Let F € Z[X], monic, symmetric, irreducible, deg(F) = 2n.
(r,s) integers > 0 such that
r =s (mod 8),

r+s=2n.



GROSS and McMULLEN

If there exists an even, unimodular lattice of signature (r,s) having
an isometry with characteristic polynomial F, then :

(C1) [F(1)|, |F(-=1)| and (=1)"F(1)F(—1) are all squares.

Set
m(F) = number of roots z of F with |z| > 1.



GROSS and McMULLEN

F € Z[X] monic, symmetric, IRREDUCIBLE, deg(F) = 2n, and
(r,s) such that
r =s (mod 8),

r-+s=2n.
Theorem. (Gross-McMullen, 2002) Assume that
FI=IF-1D[=1.

Then there exists an even, unimodular lattice of signature (r,s)
having an isometry with characteristic polynomial F <=
conditions (C 1) and (C 2) hold.



GROSS and McMULLEN

F € Z[X] monic, symmetric, IRREDUCIBLE, deg(F) = 2n, and
(r,s) such that
r =s (mod 8),

r-+s=2n.
Gross and McMullen (2002) speculate that
conditions (C 1) and (C 2)

may be sufficient for the existence of an even, unimodular lattice of
signature (r, s) having an isometry with characteristic polynomial
F.



GROSS and McMULLEN

F(X)=(X%—=3X% - X*+5X3 - X2 -3X +1)(X* - X?+1).
Gross-McMullen (2002)
Conditions (C 1) and (C 2) hold for (r,s) = (9,1), but

Es® H

does not have an isometry with characteristic polynomial F.



E.B. and TAELMAN

F € Z[X] monic, symmetric, IRREDUCIBLE, deg(F) = 2n, and
(r,s) such that
r =s (mod 8),

r+s=2n.
Theorem. (E.B.-Taelman, 2020) There exists an even, unimodular

lattice of signature (r,s) having an isometry with characteristic
polynomial F <= conditions (C 1) and (C 2) hold.



K3 SURFACES

Corollary. Let F be a Salem polynomial of degree 22, and assume
that |F(1)], |[F(—1)| and (—1)"F(1)F(—1) are all squares.

Then there exists a complex analytic K3 surface X and an
automorphism T of X such that the characteristic polynomial of
T*on H?(X,Z) is F.



KNOTS

Corollary. Let A € Z[X] be a monic, symmetric, irreducible
polynomial such that A(1) = 1. Set deg(A) = 2n, and assume
that A(-1) = (-1)".

Let (r,s) such that r =s (mod 8), r + s = deg(A) = 2n.

There exists a knot with Alexander polynomial equal to A and
signature (r, s) if and only if condition (C 2) holds.

Follows from Gross-McMullen, since |A(1)| = |A(-1)| = 1.



E.B. - TAELMAN : PROOF

Theorem. Let F € Z[X] be a monic, symmetric, irreducible
polynomial and (r,s) such that r =s (mod 8), r + s = deg(F).

There exists an even, unimodular lattice of signature (r,s) having
an isometry with characteristic polynomial F <= the conditions
(C1) and (C 2) hold.

Strategy to prove this result :

e Prove it everywhere locally.

e Local-global principle.



LOCAL RESULTS

F € Z[X] monic, symmetric, deg(F) = 2n, irrreducible.
(r,s) such that r =s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

e p odd prime : There exists a unimodular Z,-lattice having an
isometry with characteristic polynomial F.

e p =2 : There exists an even, unimodular Z»-lattice having an
isometry with characteristic polynomial F.

e There exists a non-degenerate quadratic form over R of signature
(r,s) having an isometry with characteristic polynomial F.



REDUCIBLE POLYNOMIALS 7

F=1]f

fel

f € Z[X] distinct, irreducible, symmetric, of even degree.

e Local results hold.

Conditions (C 1) and (C 2) are local conditions.

e Local-global principle does not always hold.



LOCAL RESULTS

F € Z[X] monic, symmetric, deg(F) = 2n, as above.
(r,s) such that r =s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

e p odd prime : There exists a unimodular Z,-lattice having an
isometry with characteristic polynomial F.

e p =2 : There exists an even, unimodular Z»-lattice having an
isometry with characteristic polynomial F.

e There exists a non-degenerate quadratic form over R of signature
(r,s) having an isometry with characteristic polynomial F.



LOCAL-GLOBAL

Example.
F(X):(X6—3X5—X4+5X3—X2—3X—|—]_)(X4_X2_|_1)_
F(1)=-1, F(-1)=1.

Condition (C 1) holds.
m(F) = 1.

(r,s)=1(9,1) or (5,5) or 1,9).

Condition (C 2) holds for all three.



LOCAL-GLOBAL

F(X) = (X® —3X5 — X* +5X3 — X2 - 3X + 1)(X* — X2 +1).

(r,s)=1(9,1) or (5,5) or (1,9).

local conditions hold.

no even, unimodular lattice of signature (9,1) or (1,9) has an
isometry with characteristic polynomial F.

Hasse principle does not hold for (9,1) and (1,9).



REDUCIBLE POLYNOMIALS

F=]]f" = FoFF

fed
A=TI Fo= T
feh felh

1 : set of irreducible, symmetric factors of F of even degree.

b={X-1,X+1}, [=1IlUh.
Fo(X) = (X —1)™ (X +1)"- with n_, ny even.

isometry = semi-simple isometry.



(C1)and (C2)

(C1) [F(1)|, |F(-=1)| and (=1)"F(1)F(—1) are all squares.

m(F) = number of roots z of F with |z| > 1.

(C2)
m(F) <r, m(F)<s,.

If moreover F(1)F(—1) # 0, then

m(F)=r=s (mod 2).



LOCAL RESULTS

F € Z[X] monic, symmetric deg(F) = 2n.
(r,s) such that r =s (mod 8), and r + s = 2n.

Assume that conditions (C 1) and (C 2) hold.

e p odd prime : There exists a unimodular Z,-lattice having an
isometry with characteristic polynomial F.

e p =2 : There exists an even, unimodular Z»-lattice having an
isometry with characteristic polynomial F.

e There exists a non-degenerate quadratic form over R of signature
(r,s) having an isometry with characteristic polynomial F.



HASSE PRINCIPLE

Hasse principle in terms of an
obstruction group

HlIr

Il =0 == conditions (C 1) and (C 2) suffice.



OBSTRUCTION GROUP

F € Z[X] symmetric, monic, C(/) : maps | — Z/2Z.

Let f,g € /. Let V¢, be the set of prime numbers p such that
f (mod p) and g (mod p)
have a common symmetric irreducible factor in F,[X].
Co(l) = ¢ € C(I) such that
c(f)=c(g) if Vig#@.

[II£ : quotient of Cy(/) by the constant maps.



EXAMPLES

Example.
F(X)=(X®—-3X% - X*+5X3 - X2 -3X +1)(X* - X?+1).
f(X)=X®—3X5—X*4+5X3 - X2 -3X +1,

g(X)=X* - X% 41.

Vf’g = .



EXAMPLES

A(X) = X2 = X1+ X10 - X9 — X0 — X3+ X2 - X +1,
H(X) =X = X5+ X4 — X3+ X2 — X +1=0dy(X)
(X)) = X* = X2 +1 = dp(X).

F = thfs.

Vi ={7} Vi ={13}, Vi = 2.

IIF = 0.



EASY EXAMPLE

f € Z[X] symmetric, irreducible,
g(X)=X-1.
Vi g @ set of prime divisors of f(1).

FI# 1,

then

Vf’g #+ O,



ANOTHER EASY EXAMPLE

f € Z[X] symmetric, irreducible,
g(X)=X+1.

Vi g © set of prime divisors of f(—1).

[F(=DI#1,

then

Vf’g #+ O,



THEOREM

F € Z[X] monic, symmetric deg(F) = 2n.

(r,s) such that r =s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that
IlF = 0.

Then there exists an even, unimodular lattice of signature (r, s)
having an isometry with characteristic polynomial F.



QUESTION

F € Z[X] monic, symmetric deg(F) = 2n.
(r,s) such that r =s (mod 8), and r + s = 2n.

Question. Let t € SO, s(R) be a semi-simple isometry with
characteristic polynomial F.

Does t preserve an even, unimodular lattice ?



THEOREM

F € Z[X] monic, symmetric deg(F) = 2n.

(r,s) such that r =s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that
IlF = 0.

Let t € SO, s(R) be a semi-simple isometry with characteristic
polynomial F. Then t preserves an even, unimodular lattice.



MILNOR INDICES
Let V be a finite dimensional R-vector space, and let
g:VxV—=R

be a quadratic form of signature (r, s).
indexof g=r—s

Let t : V — V be an isometry of (V, q).
P € R[X] : irreducible, symmetric polynomial.
Vp : P(t)-primary subspace of V.

(x € V such that P(t)Vx = 0 for large N.)



MILNOR INDICES

P € R[X] : irreducible, symmetric polynomial.

Vp : P(t)-primary subspace of V.

Milnor index of t € SO(q) at P :

Index of g restricted to Vp.

Index of g = sum of Milnor indices.



MILNOR INDICES

Irrgr(F) : irreducible, symmetric factors of F € R[X].

np > 0 : integer such that PP is the power of P dividing F.
Mil(F) : maps

7:Irrg(F) = Z
Such that

7(P) € {—np deg(P),...,np deg(P)}.



MILNOR INDICES

Mil,, (F) :
T € Mil(F)

such that

ZT(P) =m.
P



THEOREM
F € Z[X] monic, symmetric deg(F) = 2n.
(r,s) such that r =s (mod 8), and r + s = 2n.

Theorem. Assume that conditions (C 1) and (C 2) hold, and that
IIIr = 0.

Let 7 € Mil,_<(F). Then there exists an even, unimodular lattice
having an isometry with

e characteristic polynomial F, and

e Milnor index 7.



THEOREM
F € Z[X] monic, symmetric deg(F) = 2n.
(r,s) such that r =s (mod 8), and r + s = 2n.
Theorem. Assume that conditions (C 1) and (C 2) hold, and that
IIIr = 0.

Let 7 € Mil,_<(F). Then there exists an even, unimodular lattice
having an isometry with

e characteristic polynomial F, and

e Milnor index 7.

Hence signature (r, s).



BIJECTION

t €S0, 4(R)  7¢ € Mil,_.(F).

Bijection between

e Conjugacy classes of elements of SO, s(R) with characteristic

polynomial F.
and

e Mil, _.(F).



THEOREM

F € Z[X] monic, symmetric deg(F) = 2n, and (r, s) such that
r =s (mod 8), and r + s = 2n. Assume that conditions (C 1)
and (C 2) hold.

Let 7 € Mil,(F).

Define a homomorphism

e, Ulp — Z/2Z.

Theorem. There exists an even, unimodular lattice of signature
(r,s) having an isometry with

e characteristic polynomial F, and
e Milnor index 7

if and only if
e = 0.



THEOREM

F € Z[X] monic, symmetric deg(F) = 2n.
(r,s) such that r =s (mod 8), and r + s = 2n.
Assume that conditions (C 1) and (C 2) hold.

Let t € SO, s(R) be a semi-simple isometry with characteristic
polynomial F. Define a homomorphism

e 1l — Z/2Z.

Theorem. The isometry t preserves an even, unimodular lattice if
and only if
e = 0.



K3 SURFACES

Let d be an integer, 4 < d < 20. Let S be a Salem polynomial of
degree d, and assume that |S(1)| # 1 and that |F(—1)] is a square.

Let § € St be a root of S.

Let

Theorem. There exists a complex analytic K3 surface X and an
automorphism T of X such that

e The characteristic polynomial of T* on H?(X,Z) is F.
e T* acts on H?9(X) by multiplication by 4.



K3 SURFACES

The proof uses results of Brandhorst and McMullen.
Let A € R be the root of S with A > 1.

Corollary. ) is realized as the dynamical degree of an
automorphism of a complex holomorphic K3 surface.

Let d be an integer, 4 < d < 18. Let S be a Salem polynomial of
degree d, and assume that |S(1)S(—1)| # 1.

Theorem. )2 is realized as the dynamical degree of an
automorphism of a complex holomorphic K3 surface.



KNOTS

Let A € Z[X] be a monic, symmetric polynomial such that
A(1) = 1. Suppose that A is a product of distinct irreducible
polynomials.

Set deg(A) = 2n, and assume that A(—1) = (—1)".
Let (r,s) such that r =s (mod 8), r + s = deg(A) = 2n.

Assume that condition (C 2) holds.



KNOTS

Let 7 € Mil,_s(A). We have a homomorphism

€r . HIA — Z/2Z
Theorem. There exists a knot with Alexander polynomial A and
Milnor index 7 if and only if

e = 0.



EXAMPLE

v op(x-1)
Buv = (e ZD(xv=1)’

u,v > 1 odd integers with u and v prime to each other.

Let p and g be two distinct odd prime numbers with
g = 3 (mod 4), let e > 1 be an integer, and set

u:pe, v =gq;
set

A =Dy



EXAMPLE

° (g):—l

There exists a knot with Alexander polynomial A and index m

if and only if
m =0 (mod 8), and |m| < deg(A).
Py _

There exists a knot with Alexander polynomial A and index m

if and only if
m =0 (mod 8), and |m| < deg(A) - 4(e-1).



EXAMPLE



EXAMPLE - INDICES

Necessary conditions

m =0 (mod 8), and |m| < deg(A).

deg(A) = 12 + 36 = 48.

m =0 (mod 8), and |m| < 48.

Im| = 0,8,16,24,32,40, 48.



EXAMPLE - MILNOR INDICES

Let 7 € Mil,,(A) for

Im| = 0,8,16,24,32,40, 48.

There exists a knot with
e Alexander polynomial A, and

e Milnor index .



EXAMPLE - MILNOR INDICES

Milig(A)| =1, [Milo(A)] = (3), [Mils(A)] = (%),
Mila(A)] = (%), Milis(A)] = (%),

|M118(A)!—(10) IMilo(A)| = (33)-



EXAMPLE

A=D37 =Ny =

)

®o1P147.



EXAMPLE - INDICES

Necessary conditions

m =0 (mod 8), and |m| < deg(A).

deg(A) = 12 + 84 = 96.

m =0 (mod 8), and |m| < 96.



EXAMPLE

T € Mil,,(A)

e, lp — Z/2Z

there exists a knot with
e Alexander polynomial A, and

e Milnor index 7

if and only if e, = 0.



EXAMPLE

7 € Mil,(A)

e, lp — Z/2Z

there exists a knot with
e Alexander polynomial A, and
e Milnor index 7

if and only if e, = 0.

Set
Mil,,(A)* : 7 € Mil,,(A) such that e, = 0.



EXAMPLE

Mﬂg6(A)+ = .
i 48
IMilgg(A)] = < , > = 24.47 = 12.94

[Milgg(A) "] = 6.42 = 12.21



EXAMPLE

NO KNOT with

e Alexander polynomial A

e signature 96.
There exist knots with

e Alexander polynomial A

e signature 88,

but not all Milnor indices occur.



Thank you



