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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, say,

y2 = x3 + Ax + B,

and let p be a prime of good reduction (so p ∤ ∆(E)).

The number of Fp-points on the reduction Ep of E modulo p is

#Ep(Fp) = p + 1 − tp,

where the trace of Frobenius tp is an integer in [−2
√

p, 2
√

p].

We are interested in the limiting distribution of xp = −tp/
√

p ∈ [−2, 2],
as p varies over primes of good reduction up to N → ∞.
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Sato-Tate distribution of a typical elliptic curve
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Sato-Tate distribution of another typical elliptic curve
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Sato-Tate distribution of another typical elliptic curve
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Sato-Tate distribution of an atypical elliptic curve

Andrew V. Sutherland (MIT) Sato-Tate groups of abelian threefolds October 14, 2022 5 / 32



Sato-Tate distribution of an atypical elliptic curve
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Sato-Tate distribution of another atypical elliptic curve
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Sato-Tate distribution of another atypical elliptic curve
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)
Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(Also known for E/k, where k is a totally real or CM number field).

[CHT08, Taylor08, HST10, BGG11, BGHT11, ACCGHHNSTT18]

2. Exceptional cases (CM)
Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[Hecke, Deuring, early 20th century]

Andrew V. Sutherland (MIT) Sato-Tate groups of abelian threefolds October 14, 2022 7 / 32



Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
that is determined by the ℓ-adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the
distribution of normalized Frobenius traces of E converges to the
distribution of traces in its Sato-Tate group G (under its Haar measure).

G G/G0 E k E[x0
p],E[x

2
p],E[x

4
p] . . .

SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .
N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
U(1) C1 y2 = x3 + 1 Q(

√
−3) 1, 2, 6, 20, 70, 252, . . .

Fun fact: in the non-CM case the Sato-Tate conjecture implies that
E[xn

p] =
1

2π

∫ π
0 (2 cos θ)n sin2 θ dθ is the n

2 th Catalan number.
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Zeta functions and L-polynomials

For a smooth projective curve X/Q of genus g and each prime p of
good reduction for X we have the zeta function

Z(Xp/Fp;T) := exp

( ∞∑
k=1

#Xp(Fpk)Tk/k

)
=

Lp(T)
(1 − T)(1 − pT)

,

where Lp ∈ Z[T] has degree 2g. The normalized L-polynomial

L̄p(T) := Lp(T/
√

p) =
2g∑

i=0

aiT i ∈ R[T]

is monic, reciprocal, and unitary, with |ai| ≤
(2g

i

)
.

We can now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N → ∞.
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Sato-Tate a1-distribution of a typical genus 2 curve
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Sato-Tate a1-distribution of a typical genus 2 curve
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Sato-Tate a2-distribution of a typical genus 2 curve
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Sato-Tate a2-distribution of a typical genus 2 curve

Andrew V. Sutherland (MIT) Sato-Tate groups of abelian threefolds October 14, 2022 11 / 32



Sato-Tate a1-distribution of an atypical genus 2 curve
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Sato-Tate a2-distribution of an atypical genus 2 curve
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Sato-Tate a2-distribution of an atypical genus 2 curve
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Sato-Tate trace distributions of genus 2 curves:

Andrew V. Sutherland (MIT) Sato-Tate groups of abelian threefolds October 14, 2022 14 / 32



Andrew V. Sutherland (MIT) Sato-Tate groups of abelian threefolds October 14, 2022 15 / 32



L-polynomials of Abelian varieties
Let A be an abelian variety over a number field k and fix a prime ℓ.
The action of Gal(k̄/k) on the ℓ-adic Tate module

Vℓ(A) := lim
←−

A[ℓn]⊗Z Q

gives rise to a Galois representation

ρℓ : Gal(k̄/k) → AutQℓ
(Vℓ(A)) ≃ GSp2g(Qℓ).

For each prime p of good reduction for A we have the L-polynomial

Lp(T) := det(1 − ρℓ(Frobp)T), L̄p(T) := Lp(T/
√
∥p∥),

which appears as an Euler factor in the L-series

L(A, s) :=
∏
p

Lp(∥p∥−s)−1.
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The Sato-Tate group of an abelian variety

The Zariski closure of the image of

ρℓ : Gk → AutQℓ
(Vℓ(A)) ≃ GSp2g(Qℓ)

is a Qℓ-algebraic group Gzar
ℓ ⊆ GSp2g, and we let G1,zar

ℓ := Gzar
ℓ ∩ Sp2g.

Now fix ι : Qℓ ↪→ C, and let Gzar
ℓ,ι and G1,zar

ℓ,ι denote base changes to C.

Definition [Serre]

ST(A) ⊆ USp(2g) is a maximal compact subgroup of G1,zar
ℓ,ι (C) equipped

with the map s : p 7→ conj(∥p∥−1/2ρℓ,ι(Frobp)) ∈ Conj(ST(A)).

Note that the characteristic polynomial of s(p) is L̄p(T).
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The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

(Gzar
ℓ )0 = MT(A)⊗Q Qℓ, equivalently, (G1,zar

ℓ )0 = Hg(A)⊗Q Qℓ.
More generally, (Gzar

ℓ ) = AST(A)⊗Q Qℓ.

The algebraic Sato-Tate conjecture is known for g ≤ 3 [BK15].

Sato-Tate conjecture for abelian varieties.
The conjugacy classes s(p) are equidistributed with respect to µST(A),
the pushforward of the Haar measure to Conj(ST(A)).

The Sato-Tate conjecture implies that the distribution L̄p(T) is given
by the distribution of characteristic polynomials in ST(A).
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Sato-Tate axioms for abelian varieties

G ⊆ USp(2g) satisfies the Sato-Tate axioms (for abelian varieties) if:
1 Compact: G is closed;
2 Hodge: G contains a Hodge circle θ : U(1) → G0 whose elements

θ(u) have eigenvalues u, 1/u with multiplicity g, such that the
conjugates of θ conjugates generate a dense subset of G;

3 Rationality: for each component H of G and each irreducible
character χ of GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z;

4 Lefschetz: The subgroup of USp(2g) fixing End(C2g)G0 is G0.

Theorem [FKRS12, FKS19]
Let A/k be an abelian variety of dimension g ≤ 3.
Then ST(A) satisfies the Sato-Tate axioms.

Axioms 1-3 are expected to hold in general, but Axiom 4 fails for g = 4.
For any g, the set of G satisfying axioms 1-3 is finite.
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Galois endomorphism types
Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(AK) = End(Ak̄).
Gal(K/k) acts on the R-algebra End(AK)R = End(AK)⊗Z R.

Definition
The Galois endomorphism type of A is the isomorphism class of
[Gal(K/k),End(AK)R], where [G,E] ≃ [G′,E′] iff there are isomorphisms
G ≃ G′ and E ≃ E′ compatible with the group actions.

Theorem [FKRS12]
For abelian varieties A/k of dimension g ≤ 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G0 is uniquely determined by
End(AK)R and G/G0 ≃ Gal(K/k) (with corresponding actions).
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Real endomorphism algebras of abelian surfaces

abelian surface End(AK)R ST(A)0

square of CM elliptic curve M2(C) U(1)2

• QM abelian surface M2(R) SU(2)2

• square of non-CM elliptic curve

• CM abelian surface C× C U(1)× U(1)

• product of CM elliptic curves

product of CM and non-CM elliptic curves C× R U(1)× SU(2)

• RM abelian surface R× R SU(2)× SU(2)

• product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)
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Sato-Tate groups of abelian surfaces

Theorem [FKRS12]
Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that
arise for abelian surfaces A/k over number fields; 34 occur for k = Q.

U(1)2 : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2)2 : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fa,b,Fab,Fac

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

This theorem says nothing about equidistribution, however this is now
known in many special cases [FS12, Johansson13, Taylor18].
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Maximal Sato-Tate groups of abelian surfaces

G0 G/G0 X

USp(4) C1 y2 = x5 − x + 1
SU(2)× SU(2) C2 y2 = x6 + x5 + x − 1
U(1)× SU(2) C2 y2 = x6 + 3x4 − 2
U(1)× U(1) D2 y2 = x6 + 3x4 + x2 − 1

C4 y2 = x5 + 1
SU(2)2 D4 y2 = x5 + x3 + 2x

D6 y2 = x6 + x3 − 2
U(1)2 D6 × C2 y2 = x6 + 3x5 + 10x3 − 15x2 + 15x − 6

S4 × C2 y2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1

Each of the 9 maximal Sato-Tate groups in dimension 2 can be
realized by the Jacobian of a genus 2 curve X/Q.
One can now verify this using the algorithm of [CMSV19].

There are 3 subgroups of N(U(1)× U(1)) that satisfy the Sato-Tate
axioms but do not occur as Sato-Tate groups of abelian surfaces.
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Sato-Tate a1-distribution of a typical genus 3 curve
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Sato-Tate a2-distribution of a typical genus 3 curve
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Sato-Tate a2-distribution of a typical genus 3 curve
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Sato-Tate a3-distribution of a typical genus 3 curve
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Sato-Tate a3-distribution of a typical genus 3 curve
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Sato-Tate a1-distribution of an atypical genus 3 curve
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Sato-Tate a1-distribution of an atypical genus 3 curve
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Sato-Tate a2-distribution of an atypical genus 3 curve
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Sato-Tate a2-distribution of an atypical genus 3 curve
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Sato-Tate a3-distribution of a typical genus 3 curve
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Sato-Tate a3-distribution of a typical genus 3 curve
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Sato-Tate groups of abelian threefolds

Theorem [FKS19]
Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for
g = 3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Theorem [FKS19]
Up to conjugacy in USp(6) there are 410 Sato-Tate groups of abelian
threefolds over number fields, of which 33 are maximal.

The 33 maximal groups all arise as the Sato-Tate group of an abelian
threefold defined over Q; the rest can be realized via base change.

There are 14 distinct identity components that arise, and the order of
every component group always divides one of the following integers:
192 = 26 · 3, 336 = 24 · 3 · 7, 432 = 24 · 33.
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Real endomorphism algebras of abelian threefolds
abelian threefold End(AK)R ST(A)0

cube of a CM elliptic curve M3(C) U(1)3

cube of a non-CM elliptic curve M3(R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C × M2(C) U(1) × U(1)2

product of non-CM elliptic curve and square of CM elliptic curve R × M2(C) SU(2) × U(1)2

• product of CM elliptic curve and QM abelian surface C × M2(R) U(1) × SU(2)2

• product of CM elliptic curve and square of non-CM elliptic curve

• product of non-CM elliptic curve and QM abelian surface R × M2(R) SU(2) × SU(2)2

• product of non-CM elliptic curve and square of non-CM elliptic curve

• CM abelian threefold C × C × C U(1) × U(1) × U(1)
• product of CM elliptic curve and CM abelian surface
• product of three CM elliptic curves

• product of non-CM elliptic curve and CM abelian surface C × C × R U(1) × U(1) × SU(2)
• product of non-CM elliptic curve and two CM elliptic curves

• product of CM elliptic curve and RM abelian surface C × R × R U(1) × SU(2) × SU(2)
• product of CM elliptic curve and two non-CM elliptic curves

• RM abelian threefold R × R × R SU(2) × SU(3) × SU(3)
• product of non-CM elliptic curve and RM abelian surface
• product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface C × R U(1) × USp(4)

product of non-CM elliptic curve and abelian surface R × R SU(2) × USp(4)

quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)
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Connected Sato-Tate groups of abelian threefolds:

U(1)3 SU(2)3 U(1) × U(1)2 SU(2) × U(1)2

U(1) × SU(2)2 SU(2) × SU(2)2 U(1) × U(1) × U(1) U(1) × U(1) × SU(2)

U(1) × SU(2) × U(1) SU(2) × SU(2) × SU(2) U(1) × USp(4) SU(2) × USp(4)

U(3) USp(6)
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Maximal Sato-Tate groups of abelian threefolds
G0 G/G0 |G/G0|

USp(6) C1 1
U(3) C2 2
SU(2)× USp(4) C1 1
U(1)× USp(4) C2 2
SU(2)3 S3 6
U(1)× SU(2)2 D2 4
U(1)2 × SU(2) C2, D2 4
U(1)3 S3, C2

3, C2 × C4 6, 8
SU(2)× SU(2)2 D4, D6 8, 12
U(1)× SU(2)2 D4 × C2, D6 × C2 16, 24
SU(2)× U(1)2 D6 × C2, S4 × C2 48
U(1)× U(1)2 D6 × C2

2, S4 × C2
2 48, 96

SU(2)3 D6, S4 12, 24
U(1)3 see below 48×4, 96, 144×2,

192×2, 336, 432×2

⟨48, 15⟩, ⟨48, 15⟩, ⟨48, 38⟩, ⟨48, 41⟩, ⟨96, 193⟩, ⟨144, 125⟩,
⟨144, 127⟩, ⟨192, 988⟩, ⟨192, 956⟩, ⟨336, 208⟩, ⟨432, 523⟩, ⟨432, 734⟩.
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