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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, say,
¥ =%+ Ax + B,
and let p be a prime of good reduction (so p t A(E)).
The number of IF,-points on the reduction E, of E modulo p is
#E,(Fp) =p+1—1,
where the trace of Frobenius #, is an integer in [-2,/p,2,/p].

We are interested in the limiting distribution of x, = —,/,/p € [-2,2],
as p varies over primes of good reduction up to N — oc.
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Sato-Tate distribution of a typical elliptic curve

al histogram of y"2 = x"3 + x + L for p <= 2710
170 data points in 13 buckets, z1 = 0.028, out of range data has area 0.018

Moments:1 0.051 1.03% 0.081 2.060 0.294 4971 1134 13.278 4.308 37954
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Sato-Tate distribution of a typical elliptic curve

al histogram of y"2 = x"3 + x + L for p <= 2740
41203088794 data points in 202985 buckets

Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0000 14.000 0.000 41899

Andrew V. Sutherland (MIT) October 14, 2022 3/32



Sato-Tate distribution of another typical elliptic curve

al histogram of y~2 + xy +y = x~3-x"2 - 20067762415575526585033208209338542750930230312178956502x
+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for p <=2"10
172 data points in 13 budkets, z1 = 0.023, out of range data has area 0.250

Moments: 1 1.034 1.716 2.532 4.446 7.203 13.024 22.220 40.854 72.100 133.961
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Sato-Tate distribution of another typical elliptic curve

al histogram of y~2 + xy +y = x~3-x"2 - 20067762415575526585033208209338542750930230312178956502x
+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for p <=2"40
41203088796 data points in 202985 buckets

Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0.001 14.000 0.003 42.000
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Sato-Tate distribution of an atypical elliptic curve

al histogram of y~2 = x"3+1 for p <= 2*10
170 data points in 13 buckets, z1 = 0.518, out of range data has area 0.418

Moments: 1 -0.044 0,934 -0.160 2754 -0660 9.051 -2.655 31.232 -10.427 110831
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Sato-Tate distribution of an atypical elliptic curve

al histogram of y22 = x"3+1 for p <= 2740
412030887394 data points in 202985 buckets, z1 = 0.500, out of range data has area 0.534

Moments: 1 -0.000 1.000 -0.000 3.000 -0.000 10.000 -0.000 35.000 -0.000 126000
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Sato-Tate distribution of another atypical elliptic curve

al histogram of y~2 = x"3+1 over Q(sqrt(-3)) for split p <= 2710
164 data points in 13 buckets, out of range data has area 0.122

Moments: 1 -0.092 1.8935 -0.331 5.710 -1.368 18.765 -5.504 64.750 -21.616 229.771
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Sato-Tate distribution of another atypical elliptic curve

al histogram of y~2 = x"3+1 over Q(sqrt(-3)) for split p <= 2740
41203047020 data points in 202985 buckets, out of range data has area 0.137

Moments: 1 -0.000 2.000 -0.000 6.000 -0.000 20.000 -0.000 70.000 -0.000 252000
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(Also known for E/k, where k is a totally real or CM number field).

[CHTO8, Taylor08, HST10, BGG11, BGHT11, ACCGHHNSTT18]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[Hecke, Deuring, early 20th century]
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
that is determined by the ¢-adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the
distribution of normalized Frobenius traces of E converges to the
distribution of traces in its Sato-Tate group G (under its Haar measure).

G G/G’ E k Elx)], Elx], E[x]] . ..
SU(2) C; V=x4x+1 Q 1,1,2,5,14,42, ...

N(U(1)) C, yV=x+1 Q 1,1,3,10,35,126,. ..
u(1) C, V¥ =x+1 Q(v=3) 1,2,6,20,70,252,...
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
that is determined by the ¢-adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the
distribution of normalized Frobenius traces of E converges to the
distribution of traces in its Sato-Tate group G (under its Haar measure).

G G/G’ E k Elx)], Elx], E[x]] . ..
SU(2) C, V=xr+x+1 Q 1,1,2,5,14,42, ...

N(U(1)) G, yV=x+1 Q 1,1,3,10,35,126,. ..
u(1) C, V¥ =x+1 Q(v=3) 1,2,6,20,70,252,...

Fun fact: in the non-CM case the Sato-Tate conjecture implies that
E[xt] = 5 [ (2cos6)"sin? 6 d6 is the 5th Catalan number.
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Zeta functions and L-polynomials

For a smooth projective curve X/Q of genus g and each prime p of
good reduction for X we have the zeta function

: Ly(T)
Z(X,/F,; T) := exp <Z #X,(F T"/k) T pT)"

where L, € Z[T| has degree 2g. The normalized L-polynomial

L,(T) := L,(T/\/p) = Za,T’ eR[T

is monic, reciprocal, and unitary, with |a;| < (zlg)

We can now consider the limiting distribution of a;,as, ..., a, over all
primes p < N of good reduction, as N — oc.
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Sato-Tate a,-distribution of a typical genus 2 curve

al histogram of y"2 = x5 - x + 1 for p <= 210
167 data points in 13 buckets, z1 = 0,030

Moments: 1 0.098 1.031 -0.011 3.041 -0.725 13944 -3.026 81644 4.428 547.633
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Sato-Tate a,-distribution of a typical genus 2 curve

al histogram of y"2 = x5 - x + 1 for p <= 2432
203280216 data points in 14257 buckets

Moments: 1 0.000 1.000 0000 2.998 0.002 13.999 0.009 84.014 0.054 594.283
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Sato-Tate a,-distribution of a typical genus 2 curve

a2 histogram of y"2 = x5 - x + 1 for p <= 210
167 data pointsin 13 buckets

Moments: 1 0.996 2.058 4129 10.085 26.401 75.879 231.863 746.430 2496195 8595.192
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Sato-Tate a,-distribution of a typical genus 2 curve

a2 histogram of y"2 = x5 - x + 1 for p <= 2432
203280216 data points in 14257 buckets

Moments: 1 1.000 2.000 4.000 10.000 27.001 82.011 268.079 940.466 3478625 13462470
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Sato-Tate a,-distribution of an atypical genus 2 curve

al histogram of y"2 = x5 + 2xM - xA3 - 32 - x for p <= 2710
168 data points in 13 buckets, z1 = 0,196

Moments: 1 0.034 1822 0.225 9.597 4.081 71.210 68.943 658.625 1080045 7157897
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Sato-Tate a,-distribution of an atypical genus 2 curve

al histogram of y"2 = x5 + 2xM - xA3 - 32 - x for p <= 2832
203280217 data points in 14257 buckets, z1 = 0.167, out of range data has area 0,166

Moments: 1 0.000 2000 0.000 11.899 0.003 99983 0.030 979.773 0.286 10581.031
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Sato-Tate a,-distribution of an atypical genus 2 curve

a2 histogram of y"2 = x5 + 2xM - xA3 - 32 - x for p <= 2710
168 data points in 13 buckets, z2 = [0.006 0.000 0,000 0.000 0.012]

Moments: 1 0.914 3.679 8930 33.618 120.114 506.202 2236.335 10692.983 53523391 278878.343
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Sato-Tate a,-distribution of an atypical genus 2 curve

a2 histogram of y"2 = x5 + 2xM - xA3 - 32 - x for p <= 2432
203280217 data points in 14257 buckets, out of range data has area 0.063

Moments: 1 1.000 4.000 10.999 43.894 171.968 753.838 3396.141 16015.474 77492.145 384452151
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Sato-Tate trace distributions of genus 2 curves:
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L-polynomials of Abelian varieties

Let A be an abelian variety over a number field k£ and fix a prime 2.
The action of Gal(k/k) on the ¢-adic Tate module

Ve(A) = imA[(") @7 Q
gives rise to a Galois representation
pe: Gal(k/k) — Autg,(Ve(A)) ~ GSp,, (Qy).
For each prime p of good reduction for A we have the L-polynomial
Ly(T) := det(1 — pe(Froby)T),  Ly(T) := Lp(T//[Ip]]),
which appears as an Euler factor in the L-series

L(A,s) = [T Lollpl =)~
p
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The Sato-Tate group of an abelian variety

The Zariski closure of the image of
pe: Gy — Athe(Vg(A)) ~ Gszg(Qg)
is a Q-algebraic group Gi* € GSp,,, and we let Gé’z"‘r = G{* N Spy,.

Now fix .: @, < C, and let G and G,7*" denote base changes to C.

Definition [Serre]

ST(A) C USp(2g) is a maximal compact subgroup of Géf“((C) equipped
with the map s: p + conj(||p||~/?ps,, (Froby)) € Conj(ST(A)).

Note that the characteristic polynomial of s(p) is L,(T).
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The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

(G7)0 = MT(A) ®g Q, equivalently, (G,™")° = Hg(A) ®g Qu.
More generally, (G7*") = AST(A) ®q Q.

The algebraic Sato-Tate conjecture is known for g < 3 [BK15].
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The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

(G7)0 = MT(A) ®g Q, equivalently, (G,™")° = Hg(A) ®g Qu.
More generally, (G7*") = AST(A) ®q Q.

The algebraic Sato-Tate conjecture is known for g < 3 [BK15].

Sato-Tate conjecture for abelian varieties.

The conjugacy classes s(p) are equidistributed with respect to ugr(a),
the pushforward of the Haar measure to Conj(ST(A)).

The Sato-Tate conjecture implies that the distribution L, (7) is given
by the distribution of characteristic polynomials in ST(A).
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Sato-Tate axioms for abelian varieties

G C USp(2g) satisfies the Sato-Tate axioms (for abelian varieties) if:
@ Compact: G is closed;

@ Hodge: G contains a Hodge circle §: U(1) — G° whose elements
6(u) have eigenvalues u, 1/u with multiplicity g, such that the
conjugates of 6 conjugates generate a dense subset of G;

© Rationality: for each component H of G and each irreducible
character x of GL,,(C) we have E[x(v) : v € H] € Z;

@ Lefschetz: The subgroup of USp(2g) fixing End(C?)% is G°.
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Sato-Tate axioms for abelian varieties

G C USp(2g) satisfies the Sato-Tate axioms (for abelian varieties) if:
@ Compact: G is closed;

@ Hodge: G contains a Hodge circle §: U(1) — G° whose elements
6(u) have eigenvalues u, 1/u with multiplicity g, such that the
conjugates of 6 conjugates generate a dense subset of G;

© Rationality: for each component H of G and each irreducible
character x of GL,,(C) we have E[x(v) : v € H] € Z;

@ Lefschetz: The subgroup of USp(2g) fixing End(C?)% is G°.

Theorem [FKRS12, FKS19]

Let A/k be an abelian variety of dimension g < 3.
Then ST(A) satisfies the Sato-Tate axioms.

Axioms 1-3 are expected to hold in general, but Axiom 4 fails for g = 4.
For any g, the set of G satisfying axioms 1-3 is finite.
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Galois endomorphism types

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(Ax) = End(Az).
Gal(K /k) acts on the R-algebra End(Ax)r = End(Ax) ®z R.

Definition

The Galois endomorphism type of A is the isomorphism class of
[Gal(K /k), End(Ak)Rr], where [G, E] ~ [G', E'] iff there are isomorphisms
G ~ G’ and E ~ E' compatible with the group actions.
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Galois endomorphism types

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(Ax) = End(Az).
Gal(K /k) acts on the R-algebra End(Ax)r = End(Ax) ®z R.

Definition

The Galois endomorphism type of A is the isomorphism class of
[Gal(K /k), End(Ak)Rr], where [G, E] ~ [G', E'] iff there are isomorphisms
G ~ G’ and E ~ E' compatible with the group actions.

Theorem [FKRS12]

For abelian varieties A/k of dimension g < 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G is uniquely determined by
End(Ag)r and G/G° ~ Gal(K /k) (with corresponding actions).
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Real endomorphism algebras of abelian surfaces

abelian surface End(Ag)r | ST(A)®
square of CM elliptic curve M;(C) U(1),

e QM abelian surface M,(R) SU(2),

e square of non-CM elliptic curve

o CM abelian surface CxC U(1) x U(1)

e product of CM elliptic curves

product of CM and non-CM elliptic curves | C x R U(1) x SU(2)
¢ RM abelian surface R xR SU(2) x SU(2)
e product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)

Andrew V. Sutherland (MIT)

October 14, 2022
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Sato-Tate groups of abelian surfaces

Theorem [FKRS12]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that
arise for abelian surfaces A /k over number fields; 34 occur for k = Q.
U(l)z: C1,C,C3,Cy4,Cq,Dr,D3,Dy, D, T, O,
J(C1)7J(C2)7J(C3)7](C4)7J(C6)’
J(DZ)aJ(D3)7‘](D4)aJ(D6)7J(T)?J(0)a
C2,1,C4,1,Ce,1,D2,1,D32,D4.1,D4,D¢ 1, D2, O

SUQ2)y:  Ei, E», Es, Ey, Ee,J(E1),J(E>), J(E3), J(Es),J (Ee)
U(1) x U(1):  F,Fa,Fap, Fap, Fac
U(1) x SU(2):  U(1) x SU(2), N(U(1) x SU(2))
SU(2) x SU(2):  SU(2) x SU(2), N(SU(2) x SU(2))
USp(4): USp(4)

This theorem says nothing about equidistribution, however this is now
known in many special cases [FS12, Johansson13, Taylor18].
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Maximal Sato-Tate groups of abelian surfaces

G() G/GO X
USp(4) C V=x —x+1
SU(2) x SU(2) C, Y=x+x+x-1
U(1) x SU(2) C, Y =x0+3x-2
U(1) x U(1) D, YV =x0 3t -1
Cq4 V=x4+1
SU(2), Dy V2 =x +x3 42
D¢ V=x4+x -2
U(1), De x Co  y?> =x0+38° +10x° — 1582 + 15x — 6
SaxCyp Y=a0—5x*+108° — 522 +2x— 1

Each of the 9 maximal Sato-Tate groups in dimension 2 can be
realized by the Jacobian of a genus 2 curve X/Q.
One can now verify this using the algorithm of [CMSV19].

Andrew V. Sutherland (MIT) October 14, 2022

22/32



Maximal Sato-Tate groups of abelian surfaces

Gy G/G() X
USp(4) C V=x —x+1
SU(2) x SU(2) C, Y=x+x+x-1
U(1) x SU(2) C, Y =x0+3x-2
U(1) x U(1) D, YV =x0 3t -1
Cq4 V=x4+1
SU(2), Dy V2 =x +x3 42
D¢ V=x4+x -2
U(1), De x Co  y?> =x0+38° +10x° — 1582 + 15x — 6
Sy xCy Y =x0—5x*+10x° -5 +2x -1

Each of the 9 maximal Sato-Tate groups in dimension 2 can be
realized by the Jacobian of a genus 2 curve X/Q.
One can now verify this using the algorithm of [CMSV19].

There are 3 subgroups of N(U(1) x U(1)) that satisfy the Sato-Tate
axioms but do not occur as Sato-Tate groups of abelian surfaces.
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Sato-Tate a,-distribution of a typical genus 3 curve

al histogram of y*2 = xA7-x+1 for p <= 2410
168 data points in 13 buckets, z1 = 0,030

Moments: 1 0.167 0879 0552 2,166 2195 9.022 10.737 48.674 61.554 297.030
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Sato-Tate a,-distribution of a typical genus 3 curve

al histogram of y*2 = xA7-x+1 for p <= 2230
54400023 data points in 7375 buckets

Moments: 1 0.000 1.000 -0.000 3.000 -0.005 14.8%6 -0.093 103.263 -1.573 908.557

Andrew V. Sutherland (MIT) October 14, 2022
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Sato-Tate a,-distribution of a typical genus 3 curve

a2 histogram of y*2 = xA7-x+1 for p <= 2410
168 data pointsin 13 buckets

Moments: 1 0.887 1.661 3767 10.599 34.421 124.148 480.397 1947.535
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Sato-Tate a,-distribution of a typical genus 3 curve

a2 histogram of y*2 = xA7-x+1 for p <= 2230
54400023 data points in 7375 buckets

Moments: 1 1.000 2.000 4.998 15995 61.973 281.845 1457.892 8365.112
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Sato-Tate as-distribution of a typical genus 3 curve

a3 histogram of y*2 = xA7-x+1 for p <= 2410
168 data pointsin 13 buckets

Moments: 1 0.249 1.648 2164 12.036 34.226 186.537 736.915 3906.256
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Sato-Tate as-distribution of a typical genus 3 curve

a3 histogram of y*2 = xA7-x+1 for p <= 2230
54400023 data points in 7375 buckets

Moments: 1 0.000 2.000 -0.005 22988 -0.542 683.402 -57.456 34685.843
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Sato-Tate a,-distribution of an atypical genus 3 curve

al histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x72 + 8x for p <= 2710
168 data points in 13 buckets, z1 = 0.274

Moments: 1 0.180 1.787 1517 10.487 18.166 95714 248342 1133.880 3645317 15564.971
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Sato-Tate a,-distribution of an atypical genus 3 curve

al histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x72 + Bx for p <= 2430
54400024 data points in 7375 buckets, z1 = 0.250, out of range data has area 0.256

Moments: 1 0.000 2.000 0.002 13.997 0.039 164.995 0.786 2640.472 18388 50318.872
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Sato-Tate a,-distribution of an atypical genus 3 curve

a2 histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x"2 + 8x for p <= 2710
166 data points in 13 buckets, z2 = [0.000 0.000 0.000 0.000 0.000 0.000 0.036]

Moments: 1 1.865 6180 24999 122,705 697.662 4429.294 30391.457 220003581
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Sato-Tate a,-distribution of an atypical genus 3 curve

a2 histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x72 + Bx for p <= 2430
54400024 data points in 7375 buckets

Moments: 1 2.000 6.999 31.995 190,998 1402539 11916.253 111587.554 1116443514

Andrew V. Sutherland (MIT) October 14, 2022 27/32



Sato-Tate as-distribution of a typical genus 3 curve

a3 histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x"2 + 8x for p <= 2710
168 data points in 13 buckets, z3 = 0.274

Moments: 1 0.395 5.812 16.472 208554 1226780 13225147 105527.791 1072037628
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Sato-Tate as-distribution of a typical genus 3 curve

a3 histogram of y"2 = xA7 + 3xM6 + 25 + B4 + 43 + 12x"2 + Bx for p <= 2430
54400024 data points in 7375 buckets, z3 = 0.250, out of range data has area 0.249

Moments: 1 0.000 6.998 0033 389.044 5825 46574.838 1453.082 7858059.139
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Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for
g = 3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Andrew V. Sutherland (MIT)

October 14, 2022 29/32



Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for
g = 3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Theorem [FKS19]

Up to conjugacy in USp(6) there are 410 Sato-Tate groups of abelian
threefolds over number fields, of which 33 are maximal.

The 33 maximal groups all arise as the Sato-Tate group of an abelian
threefold defined over Q; the rest can be realized via base change.

There are 14 distinct identity components that arise, and the order of
every component group always divides one of the following integers:
192 =20.3, 336 =2%.3.7, 432 =2%.33,
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Real endomorphism algebras of abelian threefolds

abelian threefold End(Ag)g | ST(4)°

cube of a CM elliptic curve M;(C) U(1)3

cube of a non-CM elliptic curve M;(R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C x M,(C) U(1) x U(1),

product of non-CM elliptic curve and square of CM elliptic curve R x M,(C) SU(2) x U(1),

o product of CM elliptic curve and QM abelian surface C x Mp(R) U(1) x SU(2),

e product of CM elliptic curve and square of non-CM elliptic curve

o product of non-CM elliptic curve and QM abelian surface R x M (R) SU(2) x SU(2),

e product of non-CM elliptic curve and square of non-CM elliptic curve

e CM abelian threefold CxCxC U(1) x U(1) x U(1)
e product of CM elliptic curve and CM abelian surface

e product of three CM elliptic curves

e product of non-CM elliptic curve and CM abelian surface CxCxR U(1) x U(1) x SU(2)
e product of non-CM elliptic curve and two CM elliptic curves

e product of CM elliptic curve and RM abelian surface CxRxR U(1) x SU(2) x SU(2)
e product of CM elliptic curve and two non-CM elliptic curves

o RM abelian threefold RxRXR SU(2) x SU(3) x SU(3)
e product of non-CM elliptic curve and RM abelian surface

e product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface CxR U(1) x USp(4)
product of non-CM elliptic curve and abelian surface R xR SU(2) x USp(4)
quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)
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Connected Sato-Tate groups of abelian threefolds:

(1) x SU(),

A

U(1) % SU(2) x U(1)

Andrew V. Sutherland (MIT)

SUQ) x SU(2)s

SU(2) x SU(2) x SU(2)

U x U

i,

u() x U(1) x U(1)

U(1) x USp(4)

- us©)

SU2) x U(1),

}

U(l) x U(1) x SU2)

A

SU(2) x USp(4)



Maximal Sato-Tate groups of abelian threefolds

Go G/Gy |G/Go|
USp(6) C 1
U(3) C, 2
SU(2) x USp(4) C 1
U(1) x USp(4) Cy 2
SU(2)? S3 6
U(1) x SU(2)? D, 4
U(1)? x SU(2) C,, D, 4
u(1)? S3, Gy, Cy x Cy 6, 8
SU(Z) X SU(2)2 D4, D6 87 12
U(l) X SU(2)2 D4 X C2, D6 X C2 16, 24
SU(Z) X U(l)z D¢ x Cz, Sy x Cy 48
U(1) x U(1), Dg x Cy?, Sy4 x Cy? 48, 96
SU(2)5 Ds, S4 12, 24
U(1); see below 48496, 144%2

192%2, 336, 432%2

(48,15), (48,15), (48,38), (48,41), (96, 193), (144, 125),
(144,127, (192,988), (192, 956), (336, 208), (432, 523), (432, 734).
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