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Lattices are ubiquitous in number theory, both as mathematical objects of interest, and
as computational tools. I will focus almost exclusively on the latter, which is largely
about leveraging efficient methods for lattice reduction (LLL). Examples include:

• xgcd’s, matrix kernels, Hermite and Smith normal forms, algebraic relations

• polynomial and ideal reduction, class group and unit group computations

• Diophantine approximation (generalization of continued fractions)

• Baker’s method for solving Diophantine equations (linear forms in logarithms)

• Schnorr’s algorithm for factoring and discrete logs (finding smooth relations)

• finding rational points on or near an algebraic variety (Elkies’ algorithm)

• testing conjectures (ABC, Mertens’ conjecture, Hall’s conjecture, FLT)

• Coppersmith’s method for finding small solutions to polynomial equations

For surveys of these topics, I recommend The LLL Algorithm: Survey and Applications,
particularly the chapters by Hanrot, May, and Simon.

https://link.springer.com/book/10.1007/978-3-642-02295-1


Factoring integer polynomials in polynomial time
This was the first and most notable application of the LLL algorithm. The timeline:

1967 Berlekamp Factoring polynomials over finite fields
Factoring in Fp[x ] is easy for small p (and for large p, via randomization).

1969 Zassenhaus On Hensel factorization, I
Factoring in Zp[x ] is easy, which sometimes makes factoring in Z[x ] easy.

1982 Lenstra-Lenstra-Lovász Factoring polynomials with integer coefficients
Theorists celebrate (polynomial-time!), practitioners stick with Zassenhaus.

2002 van Hoeij Factoring polynomials and the knapsack problem
Practitioners celebrate, theorists scratch their heads (is it even polynomial-time?)

2009 Belebas-van Hoeij-Klüners-Steel Factoring polynomials over global fields
Everybody celebrates! (polynomial-time over any global field).

The key to van Hoeij’s success was using LLL exactly where it is needed.
We would like to do the same thing with a new algorithm for computing L-functions.

https://doi.org/10.1002/j.1538-7305.1967.tb03174.x
https://doi.org/10.1090/S0025-5718-1981-0606517-5
https://doi.org/10.1016/0022-314X(69)90047-X
https://doi.org/10.1007/BF01457454
https://doi.org/10.1006/jnth.2001.2763
https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.655/


A selective history of L-functions: the early years
1737 Euler proves his Euler product formula:

∑
n n−s =

∏
p(1 − p−s)−1.

1837 Dirichlet defines Dirichlet L-functions L(s, χ) :=
∑

χ(n)n−s =
∏

(1 − χ(p)p−s)−1

and uses them to prove his theorem on primes in arithmetic progressions.
1859 Riemann proves that ζ(s) :=

∑
n−s has an analytic continuation and

satisfies a functional equation, then formulates his Riemann hypothesis (open)
and the explicit formula relating zeros of ζ(s) to prime numbers (all in 8 pages!).

1877 Dedekind introduces Dedekind zeta function ζK (s) :=
∑

N(I)−s .
1916 Ramanujan makes his Ramanujan conjecture (now proved) that the coefficients

τ(n) of the modular form ∆(z) =
∑

τ(n)e2πinz satisfy |τ(p)| < 2p11/2.
1917 Hecke proves a functional equation for ζK (s) and defines Hecke L-functions.
1922 Mordell proves that for elliptic curves E/Q the group E (Q) is finitely generated.
1924 Artin introduces Artin L-functions associated to Galois representations, and arising

as factors of ζK (s), and conjectures that they are holomorphic (still open).
1933 Hasse proved the Hasse bound |ap| ≤ 2√p, where ap := p + 1 − #E (Fp).



A selective history of L-functions: the middle years

1937 Hecke introduces Hecke operators on spaces of modular forms and proves Euler
products and functional equations for their cuspidal eigenforms.

1939 Siegel introduces Siegel modular forms and their L-functions.
1939 Rankin and Selberg independently develop Rankin-Selberg L-functions.
1949 Weil formulates the Weil conjectures for smooth projective varieties X/Fp (now

proved) and proves them for curves, including the Weil bound |ap| ≤ 2g(X )√p.
1950 Hasse defines the zeta function ζX (s) =

∏
p ζXp (s) = ζ(s)ζ(s − 1)/L(X , s) of a

smooth projective curve X/Q and formulates the Hasse-Weil conjecture, that the
L(X , s) has an analytic continuation and functional equation (open for g(X ) > 1).

1954 Eichler introduces the Eichler–Shimura construction, associating an isogeny class
of elliptic curves E/Q to each weight-2 newform with integer coefficients.

1955 The modularity conjecture that the Eichler-Shimura construction accounts for all
isogeny classes of elliptic curves E/Q is formulated by Shimura, Taniyama, Weil.



A selective history of L-functions: the middle years
1963 Sato and Tate independently formulate the Sato–Tate conjecture regarding the

semi-circular distribution of ap(E )/√p for typical elliptic curves E/Q.
1960s Birch and Swinnerton-Dyer jointly formulate the BSD conjecture for elliptic curves

E/Q, that the rank of E (Q) is the order of vanishing of L(E , s) at s = 1
(assuming Hasse-Weil), and give an explicit formula for the value of L(r)(1).

1967 In a letter to Weil, Langlands sketches the outlines of the Langlands program, a
far-reaching framework of conjectures relating L-functions of automorphic objects
(such as modular forms) to those of motivic objects (such as elliptic curves).

1971 Deligne reduces the Ramanujan conjecture to the Weil conjectures (using the
Eichler–Shimura correspondence).

1972 Davenport, Swinnerton-Dyer, Tingley, and others tabulate elliptic curves E/Q of
conductor N ≤ 200, computed their ranks and ap values for small p, and matched
this data to corresponding weight-2 newforms of level N.

1970s Many mathematicians help build the foundations of the Langlands program.
1974 Deligne proves the Weil conjectures in full generality.



A selective history of L-functions: the modern era
1983 Faltings proves Shafarevich’s conjecture, implying, in particular, that there are

only finitely many abelian varieties A/Q of a given dimension and conductor.
1980s Frey, Ribet, Mazur, and Serre reduce Fermat’s conjecture about integer solutions

to xn + yn = zn to the modularity of E/Q with squarefree conductor.
1989 Kolyvagin proves BSD for modular elliptic curves with analytic rank r ≤ 1.
1990 Cremona tabulates modular E/Q up to conductor 1000 (reaches 500000 in 2019).
1995 Taylor and Wiles prove modularity for E/Q of squarefree conductor.
2000 Breuil, Conrad, Diamond, and Taylor prove modularity for all E/Q.
2011 Taylor and others prove potential modularity results yielding analytic continuation

for symmetric power L-functions of E/Q, implying the Sato–Tate conjecture.
2014 Brumer and Kramer formulate the paramodular conjecture, which relates

L-functions L(A, s) of typical abelian surfaces A/Q of conductor N to
those of paramodular Siegel newforms of degree 2, weight 2, and level N.

2021 Boxer, Calegari, Gee, Pilloni prove potential modularity for abelian surfaces A/Q.



View on the LMFDB

https://www.lmfdb.org/universe


Challenges in moving from dimension one to dimension two
We currently have nothing close to the abelian surface equivalent of the 1972 Antwerp
tables of elliptic curves. We know only the first 36 modular abelian surface L-functions
unconditionally, of which only 5 are typical (the 1972 Antwerp tables had 749).

• Enumerating paramodular forms of a given level is very difficult; even counting
them is hard, due to the absence of dimension formulas. We have provably
complete lists of paramodular forms only up to level 353 (all five of them).

• Computing the L-function of a given paramodular form is every difficult; it is
usually only feasible to compute a handful of Euler factors.

• There is no analog of the Eichler-Shimura construction for paramodular forms.
• Not all abelian surfaces over Q are Jacobians of genus 2 curves over Q.

One can generically represent an abelian surface as a projective variety in P15

defined by 72 quadratic forms, but this is not a very pleasant thing to do.
• There is no algorithm known to enumerate all genus 2 curves over Q of a given

conductor. Even computing the conductor of a single curve can be very hard.



An axiomatic approach to L-functions (of abelian varieties over Q)
Fix a positive integer g . We shall consider rational L-functions of the form

L(s) :=
∑

n
ann−s =

∏
p

Lp(p−s)−1

where
• the an are integers that satisfy |an| ≤ d2g(n)

√
n, where dr (n) =

∑
n1···nr =n 1.

• L(s) has an analytic continuation that is holomorphic on ℜ(s) > 0 for s ̸= 2.

• Λ(s) := ΓC(s)gL(s) (where ΓC(s) := 2(2π)−sΓ(s)) satisfies a functional equation

Λ(s) = εN1−sΛ(2 − s)

with conductor N ∈ Z>0 and root number ε = ±1.

• Each Lp ∈ Z[T ] has deg(Lp) ≤ 2g , with equality iff p ∤ N.

Under the Hasse–Weil conjecture, every A/Q of dimension g has such an L-function.



A finite problem
Let S(g , N, ε) denote the set of L-functions L(s) that satisfy our axioms for a
particular choice of g , N ∈ Z>0 and ε ∈ ±1.

We expect every L ∈ S(g , N, ε) to be the L-function of a g-dimensional A/Q
(this is far beyond anything we can currently hope to prove, but we don’t need to).

Shafarevich’s conjecture (proved by Faltings), then implies that S(g , N, ε) is finite.
Moreover there is an effectively computable n0 = O(

√
N) for which the coefficients

a1, . . . , an0 uniquely determine each L ∈ S(g , N, ε) (and n0 = O(log2 N) under GRH).

We seek an algorithm that takes inputs g , N, ε, determines a suitable n0, and then
outputs a list of distinct tuples (a1, . . . , an0), one for each L ∈ S(g , N, ε).
See Booker and Farmer–Koutsoliotas–Lemurell for prior work in this direction.

Our plan: Compute S(g , N, ε) via linear algebra, then search for corresponding A/Q.

Our plan depends crucially on being able to compute S(g , N, ε) exactly.
This not only tells us when to stop searching, knowing a1, . . . , an0 helps us search.

https://people.maths.bris.ac.uk/~maarb/public/papers/modularity.pdf
https://doi.org/10.1016/j.jnt.2018.01.019


The approximate functional equation
Fix g , N, ε. For each nonnegative integer k we define Sk(x) :=

∑
n fk(n/x)an/n, where

fk(x) := 1
2πi

∫ c+i∞

c−i∞
(s − 1)kΓC(s)gx1−s ds.

The functional equation then implies the identity

Sk(x) = ε(−1)kSk(N/x),

valid for all x > 0; this is the approximate functional equation. If we choose k so that
(−1)k = −ε and put x =

√
N we obtain a nontrivial linear constraint on the an:∑

n
fk(n/

√
N)an/n = 0. (1)

The O(
√

n) bounds on an and rapid decay of fk(x) allows us to compute an interval
Ik,m containing the truncated sum in (1) for n ≤ m that does not depend on the an.



A system of linear constraints
For each k ≥ 0 of the correct parity (meaning (−1)k = −ε), we have linear constraints∑

n≤m
fk(n/

√
N)an/n ∈ Ik,m.

These become less useful as k grows, so we restrict to k = O(N1/4).
We also have the constraints |an| ≤ d2g(n)

√
n for n ≥ 1.

If we further assume that the L ∈ S(g , N, ε) are automorphic (which we do), we can
obtain additional constraints by twisting L(s) by a Dirichlet character χ : Z → C,
equivalently, taking the Rankin-Selberg convolution of L(s) with L(χ, s).

This generally increases the conductor and widens the corresponding interval Iχ,k,m,
but for χ of small conductor (relative to m) and small k we obtain useful constraints∑

n≤m
fk(n/

√
N)χ(n)an/n ∈ Iχ,k,m.



Solving the system rigorously using the simplex method

The Euler product for L(s) implies that the an are determined by the aq for prime
powers q = pe with e ≤ 2g . In order to take advantage of this, and to obtain rigorous
results using off-the-shelf simplex solvers with fixed precision, we proceed as follows.

Let q ≤ n0 < m be a prime power. Assume we have recursively fixed values for
a1, . . . , aq−1 that we cannot rule out this sequence as a prefix of a feasible solution.

We now apply the simplex method to a system of linear constraints on variables aq′ ,
with q′ ranging over prime powers q ≤ q′ ≤ m, using the objective functions ±aq.

The dual solution yields a linear combination of constraints we can compute using
interval arithmetic. Plugging in bounds on aq′ yields an interval Iq containing aq.

If Iq ∩ Z is empty, then a1, . . . , aq−1 is not the prefix of any L ∈ S(g , N, ε). Otherwise,
for each a ∈ Iq we add the tuple (a1, . . . , aq−1, a) to our list of feasible tuples.

We continue in this fashion until we run out of feasible prefixes or reach q = n0.



A small example
A short proof that the set S(1, 13, 1) is empty, which implies that there are no elliptic
curves E/Q of conductor 13 (this only requires Hasse-Weil, not modularity).



Timings



Proving completeness
If our algorithm outputs a nonempty list of feasible tuples (a1, . . . , an0),
the next step is to show there is at most one L-function in S(g , N, ε) for each prefix.

For this step, if we suppose that (a1, . . . , an0) is the prefix of two distinct L-functions
L(s, π1) and L(s, π2) of isobaric cuspidal automorphic representations of GL2g(AQ)
whose L-functions lie in S(g , N, ε). Using the Rankin–Selberg convolution L-function
L(s, π1 ⊠π2) we construct an inequality which will be violated if n0 is sufficiently large.

If it is not violated, we increase n0, extend our tuples, and try again.

Eventually we obtain a list of distinct tuples (a1, . . . , an0), each of which is provably
the prefix of at most one automorphic L-function in S(g , N, ε).

This gives us an upper bound for our search that we expect to be tight.
Finding an abelian variety for each prefix proves completeness subject to modularity.

We can then attempt to use Faltings-Serre or other methods to prove modularity for
each abelian variety. Either our list is complete or we find an explicit nonmodular A/Q.



Searching for genus 2 curves
Over the past several years we have conducted several searches for genus 2 curves of
small conductor (we expect to run one more this year). Below is CPU histogram from
a computation we ran in 2022 that enumerated more than 1019 genus 2 curves using a
large parallel computation running on Google cloud platform.

We used a total of 4,034,560 Intel/AMD vCPUs in 73 data centers across the globe.



Searching for genus 2 curves
We found millions of genus 2 curves of small conductor, including the curve

C903 : y2 + (x2 + 1)y = x5 + 3x4 − 13x3 − 25x2 + 61x − 28

of conductor 903 and whose L-function coefficients match those of the paramodular
form of level 903 computed by Poor–Yuen that had not previously been matched.
We also found curves of conductor 657, 760, 775, 924 not previously known to occur,
and many new genus 2 L-functions of small conductor:

conductor bound 1000 10000 100000 1000000
curves in LMFDB 159 3069 20265 66158
curves found 807 25438 447507 5151208

L-functions in LMFDB 109 2807 19775 65534
L-functions found 200 9409 212890 2426708



A provisional result

Theorem (not yet proved)
Assume the paramodular conjecture.
There are 456 L-functions of abelian surfaces A/Q with conductor N ≤ 1000, of which

• 360 arise from products of elliptic curves over Q;

• 17 arise from weight-2 newforms with quadratic coefficients;

• 2 arise from the Weil restriction of an elliptic curve over a quadratic field;

• 77 arise from generic abelian surfaces, of which at least 67 are Jacobians.

It may be feasible to remove the paramodular hypothesis, but that will depend largely
on work by others and it almost certainly won’t be feasible much past N ≤ 1000.

In addition to proving this theorem, we hope to extend it well past N ≤ 1000.
But this requires algorithmic improvements.



Opportunities for improvement?

Our current approach uses the simplex method in a rather simple-minded way that
does not let us exploit integrality to the extent we might like, and uses an objective
function that may be suboptimal.

The algorithm often has trouble handling clusters of primes that are close together
(e.g. twin primes). Using an objective function that involves more than just the first
unknown variable may help, but one would like to optimize the choice systematically.

One possible approach would be to find a small linear combination of constraints
whose sum yields a constraint whose coefficients are all close to integers (possibly
obtained via LLL). Rounding would yield an integer linear combination of unknown aq
that we could use as an objective function, in the hope of obtaining an interval that
contains no integers. This would allow that branch of the computation to terminate.

But there are surely many other ideas worth trying. Please suggest some!
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