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Why care about L-functions?
Many of the most important questions in number theory involve L-functions:

• Riemann hypothesis
• Artin conjecture
• Birch and Swinnerton-Dyer conjecture
• Sato–Tate conjecture
• Lang–Trotter conjecture
• Brumer–Stark conjecture
• Hodge conjecture
• Tate conjecture
• Modularity
• The Langlands program
• Murmurations!



Murmurations



Elliptic curves and their L-functions

Theorem (Eichler-Shimura, Langlands-Tunnel, Serre, Ribet, Wiles, Taylor-Wiles,
Breuil-Conrad-Diamond-Taylor)
For each positive integer N, the set of L-functions L(E , s) of elliptic curves E/Q of
conductor N is equal to the set of L-functions L(f , s) of newforms f ∈ Snew

2 (Γ0(N)) of
weight 2 and level N with rational q-expansions.



Enumerating elliptic curves by conductor
To enumerate abelian varieties of dimension g = 1 over Q we may proceed as follows:

1. Prove the modularity theorem.
2. Enumerate rational modular forms f ∈ Snew

2 (Γ0(N)) for N = 1, 2, 3, . . .
3. Use Eichler-Shimura to get an isogeny class representative Ef for each f .
4. Fill out isogeny classes by finding all the elliptic curves E/Q isogenous to Ef .

For N ≤ 500000 this yields 3064705 elliptic curves with 2164260 distinct L-functions
that have been computed to high precision.

Each one of these steps is substantially more difficult for g > 1, even for g = 2.

There is recent progress on step 1 [Boxer-Calegari-Gee-Pilloni 2021],
and on step 4 [van Bommel-Chidambaram-Costa-Kieffer 2023].

But step 2 may never be practical, and step 3 is not possible, not even in principle.

https://arxiv.org/abs/1812.09269
https://arxiv.org/abs/2301.10118


Challenges in dimension two
We currently have nothing close to the abelian surface equivalent of even the 1972
Antwerp tables of elliptic curves. We know only the first 36 modular abelian surface
L-functions unconditionally, of which 5 are typical (the 1972 Antwerp tables had 749).

• Enumerating paramodular forms of a given level is very difficult; even counting
them is hard, due to the absence of dimension formulas. We have provably
complete lists of paramodular forms only up to level 353 (all five of them).

• Computing the L-function of a given paramodular form is very difficult; it is
usually only feasible to compute a handful of Euler factors.

• There is no analog of the Eichler-Shimura construction for paramodular forms.
• Not all abelian surfaces over Q are Jacobians of genus 2 curves over Q.

One can generically represent an abelian surface as a projective variety in P15

defined by 72 quadratic forms, but this is not a very pleasant thing to do.
• There is no algorithm known to enumerate all genus 2 curves over Q of a given

conductor. Even computing the conductor of a single curve can be very hard.



Automorphic forms associated to abelian surfaces
Type Conductor Curve Equation Motive Modular form

A[C1 ](s) 277 = 2771 y2 +(x3 +x2 +x +1)y = −x2 −x typical surface paramodular form
B[C1 ]s 529 = 232 y2 +(x3 +x +1)y = −x5 surface with RM by Q(

√
5) over Q CMF 23.2.1.a

B[C1 ]ns 294 = 213172 y2 +(x3 +1) = x4 +x2 product of ECs 14a4 and 21a4 over Q CMFs 14.2.1.a and 21.2.1.a
B[C2 ]s 10368 = 2734 y2 +x2y = 3x5 −4x4 +6x3 −3x2 +1 surface with RM by Q(

√
2) over Q(

√
2) HMF 162.1-a over Q(

√
2)

B[C2 ]ngs 1088 = 26171 y2 +(x3 +x2 +x +1)y = x4 +x3 +2x2 +x +1 Weil restriction of 17.1-a1 over Q(
√

2) HMF 17.1-a over Q(
√

2)
C[C2 ](ns) 448 = 2671 y2 +(x3 +x)y = x4 −7 product of PCM EC 32a3 and EC 14a6 over Q CMFs 32.2.1.a and 14.2.1.a
D[C4 ](s) 3125 = 55 y2 +y = x5 surface with CM by Q(ζ5) over Q(ζ5) CM HMF 125.1-a over Q(

√
5)

D[D2 ](ns) 8192 = 213 y2 = x6 −9x4 +16x2 −8 product of PCM ECs 32a3 and 256d1 over Q CMFs 32.2.1.a and 256.2.1.d
E[C1 ](ns) 196 = 2272 y2 +(x2 +x)y = x6 +3x5 +6x4 +7x3 +6x2 +3x +1 square of EC 14a1 over Q CMF 14.2.1.a
E[C2, C](ngs) 576 = 2632 y2 +(x3 +x2 +x +1)y = −x3 −x square of EC 9.1-a3 over Q(

√
2) CMF 24.2.13.a

E[C3 ](ngs) 324 = 2234 y2 +(x3 +x +1)y = x5 +2x4 +2x3 +x2 square of EC 8.1-a1 over 3.3.81.1 CMF 18.2.13.a
E[C4 ](ngs) 256 = 28 y2 +y = 2x5 −3x4 +x3 +x2 −x square of EC 1.1-a5 over 4.4.2048.1 CMF 16.2.5.a
E[C6 ](ngs) 169 = 132 y2 +(x3 +x +1)y = x5 +x4 square of EC 1.1-a3 over 6.6.371293.1 CMF 13.2.4.a
E[C2, R × R]s 455625 = 3654 y2 +(x3 +x2 +x +1)y = x5 − 3x4 −2x −1 surface with QM (D = 6) over 2.0.3.1 BMF over 2.0.3.1 of level 50625
E[C2, R × R]ngs 3969 = 3472 y2 +(x2 +x +1)y = −3x5 +5x4 −4x3 +x Weil restriction of 441.2-a over 2.0.3.1 BMF 2.0.3.1-441.2-a
E[C2, R × R]ns 675 = 3352 y2 = −x6 −14x5 −44x4 +28x3 −44x2 −14x −1 product of ECs 15a2 and 45a2 over Q CMFs 15.2.1.a and 45.2.1.a
E[D2 ]s 20736 = 2834 y2 = −27x6 −54x5 −27x4 +18x3 +18x2 −2 surface with QM (D = 6) over 4.0.576.2 HMF 324.1-b over Q(

√
2)

E[D3 ]s 34992 = 2437 y2 = −2x6 −6x5 +10x3 +9x2 −18x +6 surface with QM (D = 6) over 6.0.2834352.2 BMF over 2.0.3.1 of level 3888
E[D4 ]s 20736 = 2834 y2 +y = 6x5 +9x4 −x3 −3x2 surface with QM (D = 6) over 8.0.339738624.10 BMF over 2.0.3.1 of level 2304
E[D6 ]s 8100 = 223452 y2 +x3y = x6 +3x5 −42x4 +43x3 +21x2 −60x −28 surface with QM (D = 6) over degree 12 field BMF over 2.0.3.1 of level 900
E[D2 ]ngs 6400 = 2852 y2 = 2x5 +5x4 +8x3 +7x2 +6x +2 square of EC 256.1-a1 over Q(

√
5) HMF 2.2.5.1-256.1-a

E[D3 ]ngs 2187 = 37 y2 +(x3 +1)y = −1 square of EC over 6.0.177147.2 BMF over 2..0.3.1 of level 243
E[D4 ]ngs 3600 = 243252 y2 +x2y = x5 −3x4 +11x2 −16x square of EC over 4.0.13500.2 BMF over Q(i) of level 225
E[D6 ]ngs 3600 = 243252 y2 +x3y = 14x3 − 20 square of EC over 6.0.7200000.1 BMF over 2.0.3.1 of level 400
F[D2,C2,H]ngs 576 = 2632 y2 +x3y = 5x3 −2 square of PCM EC 1.1-a2 over Q(

√
6) CM HMF 1.1-a over Q(

√
6)

F[C2,C1,M2(R)]ns 729 = 36 y2 +y = −48x6 +15x3 −1 square of PCM EC 27.a4 over Q CM CMF 27.2.1.a

One page of the “giant table” [Booker-Sijsling-S-Voight-Yasaki 2024?]
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An axiomatic approach to arithmetic L-functions [FPRS]
An arithmetic L-function of motivic weight w ∈ Z≥0 with field of coefficients K is a
Dirichlet series L(s) =

∑
n≥1 ann−s with a1 = 1, an ∈ OK , Q(an) = K such that:

• Analytic continuation: Lan(s) := L(s + w/2) converges absolutely on Re(s) > 1
and has a meromorphic continuation with finitely many poles, all on Re(s) = 1.

• Functional equation: For some N ∈ Z<0, ε ∈ C and µi , νj ∈ Z or µi , νj ∈ 1
2 + Z,

Λan(s) := ΓR(s + µ1) · · · ΓR(s + µd1)ΓC(s + ν1) · · · ΓC(s + νd2)Lan(s)

is bounded in vertical strips away from Re(s) = 1 with Λ(s) = εN1−s Λ̄(1 − s).
Here ε is the root number, N is the conductor, and d = d1 + 2d2 is the degree.

• Euler product: Lan(s) =
∏

p Fp(p−s)−1 where Fp(z) = (1 − α1,pz) · · · (1 − αdp ,pz)
with dp ≤ d (dp = p if p ∤ N) and |αj,p| = p−mj /2 with mj ∈ Z≥0,

∑
mj ≤ d − dp.

• Central character: There is a Dirichlet character χ of modulus N for which
Fp(z) = 1 − apZ + · · · + (−1)dχ(p)zd and χ(−1) = (−1)

∑
µj +
∑

(2νk+1).

https://arxiv.org/abs/1711.10375


An axiomatic approach to L-functions of abelian varieties over Q

Fix a positive integer g . We shall consider arithmetic L-functions of degree 2g , motivic
weight 1, field of coefficients Q, defined by an Euler product

L(s) :=
∑

n
ann−s =

∏
p

Lp(p−s)−1,

with Lp ∈ Z[T ]. We further assume that
• Λ(s) := ΓC(s)gL(s) is holomorphic on C and satisfies the functional equation

Λ(s) = εN1−sΛ(2 − s)

with root number ε = ±1 and conductor N.

• the an are integers that satisfy |an| ≤ d2g(n)
√

n, where dr (n) =
∑

n1···nr =n 1.

Under the Hasse–Weil conjecture, every A/Q of dimension g has such an L-function.



Conductor bounds for abelian varieties over Q

The formula of [Brumer–Kramer 94] gives explicit bounds on the p-adic valuation of
the conductor N of an abelian variety A/Q of dimension g :

vp(N) ≤ 2g + pd + (p − 1)λp(d),

where d = ⌊ 2g
p−1⌋ and λp(d) =

∑
idipi , with d =

∑
dipi with 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7
1 8 5 2 2 2
2 20 10 9 4 4
3 28 21 11 13 6

For g ≤ 2 these bounds are tight (see www.lmfdb.org for examples).

http://www.numdam.org/item/CM_1994__92_2_227_0/
www.lmfdb.org


An integral converse theorem for GL2

Theorem (Dimitrov 2023)
Let K be a number field, k, q ∈ Z>0, L(s) =

∑
n≥1 ann−s be an L-function with a1 = 1,

qan ∈ Z for n ≥ 1, an = O(nk−1), and L̃(s) any L-function. Suppose L(s) and L̃(s)
admit a holomorphic continuation to C that is bounded on vertical strips such that

Λ(s) = ikNk/2−s Λ̃(k − s)

for some N ∈ Z>0, with Λ(s) := ΓC(s)L(s) and Λ̃(s) := ΓC(s)L̃(s).
Then L(s) = L(f , s) and L̃(s) = L(f |WN , s) for some f ∈ Sk(Γ0(N)).

Corollary
Every rational L-function of degree 2, conductor N, and motivic weight w with
L∞(s) = ΓC(s) is the L-function of a newform in Snew

k (Γ0(N)) with k = w + 1.
If w = 1, it is also the L-function of an elliptic curve of conductor N.

Builds on Calegari-Dimitrov-Tang proof of the unbounded denominators conjecture.



A finite problem
Let S(g ,N, ε) denote the set of L-functions L(s) that satisfy our axioms for a
particular choice of g ,N ∈ Z>0 and ε = ±1.

We expect every L ∈ S(g ,N, ε) to be the L-function of a g-dimensional A/Q
(this is far beyond anything we can currently hope to prove, but we don’t need to).

Shafarevich’s conjecture (proved by Faltings), then implies that S(g ,N, ε) is finite.
Moreover there is an effectively computable n0 = O(

√
N) for which the coefficients

a1, . . . , an0 uniquely determine each L ∈ S(g ,N, ε) (and n0 = O(log2 N) under GRH).

We seek an algorithm that takes inputs g , N, ε, determines a suitable n0, and then
outputs a list of distinct tuples (a1, . . . , an0), one for each L ∈ S(g ,N, ε).
See Booker and Farmer–Koutsoliotas–Lemurell for prior work in this direction.

Our plan: Compute S(g ,N, ε) via linear algebra, then search for corresponding A/Q.

Our plan depends crucially on being able to compute S(g ,N, ε) exactly.
This not only tells us when to stop searching, knowing a1, . . . , an0 helps us search.

https://people.maths.bris.ac.uk/~maarb/public/papers/modularity.pdf
https://doi.org/10.1016/j.jnt.2018.01.019


The approximate functional equation
Fix g ,N, ε. For each nonnegative integer k we define Sk(x) :=

∑
n fk(n/x)an/n, where

fk(x) := 1
2πi

∫ c+i∞

c−i∞
(s − 1)kΓC(s)gx1−s ds.

The functional equation then implies the identity

Sk(x) = ε(−1)kSk(N/x),

valid for all x > 0; this is the approximate functional equation.If we choose k so that
(−1)k = −ε and put x =

√
N we obtain a nontrivial linear constraint on the an:∑

n

an
n fk(n/

√
N) = 0. (1)

The O(
√

n) bounds on an and rapid decay of fk(x) allows us to compute an interval
Ik,m containing the truncated sum in (1) for n ≤ m that does not depend on the an.



A system of linear constraints
For each k ≥ 0 of the correct parity (meaning (−1)k = −ε), we have linear constraints∑

n≤m
fk(n/

√
N)an/n ∈ Ik,m.

These become less useful as k grows, so we restrict to k = O(N1/4).
We also have the constraints |an| ≤ d2g(n)

√
n for n ≥ 1.

If we further assume that the L ∈ S(g ,N, ε) are automorphic (which we do), we can
obtain additional constraints by twisting L(s) by a Dirichlet character χ : Z → C,
equivalently, taking the Rankin-Selberg convolution of L(s) with L(χ, s).

This generally increases the conductor and widens the corresponding interval Iχ,k,m,
but for χ of small conductor q and small k we obtain useful constraints∑

n≤m
fk(n/

√
q4N)χ(n)an/n ∈ Iχ,k,m.



Solving the system rigorously using the simplex method

The Euler product for L(s) implies that the an are determined by the aq for prime
powers q = pe with e ≤ 2g . In order to take advantage of this, and to obtain rigorous
results using off-the-shelf simplex solvers with fixed precision, we proceed as follows.

Let q ≤ n0 < m be a prime power. Assume we have recursively fixed values for
a1, . . . , aq−1 that we cannot rule out this sequence as a prefix of a feasible solution.

We now apply the simplex method to a system of linear constraints on variables aq′ ,
with q′ ranging over prime powers q ≤ q′ ≤ m, using the objective functions ±aq.

The dual solution yields a linear combination of constraints we can compute using
interval arithmetic. Plugging in bounds on aq′ yields an interval Iq containing aq.

If Iq ∩ Z is empty, then a1, . . . , aq−1 is not the prefix of any L ∈ S(g ,N, ε). Otherwise,
for each a ∈ Iq we add the tuple (a1, . . . , aq−1, a) to our list of feasible tuples.

We continue in this fashion until we run out of feasible prefixes or reach q = n0.



A toy example
A short proof that the set S(1, 13, 1) is empty, which implies that there are no elliptic
curves E/Q of conductor 13 (this only requires Hasse-Weil, not modularity).



Timings



Proving completeness
If our algorithm outputs a nonempty list of feasible tuples (a1, . . . , an0),
the next step is to show there is at most one L-function in S(g ,N, ε) for each prefix.

For this step, if we suppose that (a1, . . . , an0) is the prefix of two distinct L-functions
L(s, π1) and L(s, π2) of isobaric cuspidal automorphic representations of GL2g(AQ)
whose L-functions lie in S(g ,N, ε). Using the Rankin–Selberg convolution L-function
L(s, π1 ⊠π2) we construct an inequality which will be violated if n0 is sufficiently large.

If it is not violated, we increase n0, extend our tuples, and try again.

Eventually we obtain a list of distinct tuples (a1, . . . , an0), each of which is provably
the prefix of at most one automorphic L-function in S(g ,N, ε).

This gives us an upper bound for our search that we expect to be tight.
Finding an abelian variety for each prefix proves completeness subject to modularity.

We can then attempt to use Faltings-Serre or other methods to prove modularity for
each abelian variety. Either our list is complete or we find an explicit nonmodular A/Q.



Proving completeness
Let A and B be automorphic abelian varieties of dimensions gA, gB, conductors
NA,NB, with corresponding automorphic representations πA, πB. We define

L(A ⊠ B, s) = L(s − 1, πA ⊠ πB),

where L(s, πA ⊠ πB) is the Rankin–Selberg L-function associated to the pair (πA, πB).

Lemma
Assume that L(A ⊠ B, s) is entire and has no zeros in the region {s ∈ C : Re(s) > σ}
for some σ ≥ 3

2 . Let g : [0,∞) → R be continuous of compact support, with a
non-negative cosine transform. Then

∞∑
n=1

Λ(n)c♮
n(A ⊠ B)g(log n)

nσ
≤ 1

2g(0)
∑

p
(sp(A ⊠ B) + 4gAgB − d ♮

p(A ⊠ B)) log p

+ gAgB

(
(ψ(σ − 1) + ψ(σ) − 2 log(2π))g(0) +

∫ ∞

0

e(1−σ)x (g(0) − g(x))
tanh(x/2) dx

)
.



Searching for genus 2 curves
Over the past several years we have conducted several searches for genus 2 curves of
small conductor (we expect to run one more this year). Below is CPU histogram from
a computation we ran in 2022 that enumerated more than 1019 genus 2 curves using a
large parallel computation running on Google cloud platform.

We used a total of 4,034,560 Intel/AMD vCPUs in 73 data centers across the globe.



Searching for genus 2 curves
We found millions of genus 2 curves of small conductor, including the curve

C903 : y2 + (x2 + 1)y = x5 + 3x4 − 13x3 − 25x2 + 61x − 28

of conductor 903 and whose L-function coefficients match those of the paramodular
form of level 903 computed by Poor–Yuen that had not previously been matched.
We also found curves of conductor 657, 760, 775, 924 not previously known to occur,
and many new genus 2 L-functions of small conductor:

conductor bound 1000 10000 100000 1000000
curves in LMFDB 159 3069 20265 66158
curves found 807 25438 447507 5151208

L-functions in LMFDB 109 2807 19775 65534
L-functions found 200 9409 212890 2426708



A provisional result

Provisional Theorem (proof in progress)
Assume the paramodular conjecture.
There are 456 L-functions of abelian surfaces A/Q with conductor N ≤ 1000, of which

• 360 arise from products of elliptic curves over Q;

• 17 arise from weight-2 newforms with quadratic coefficients;

• 2 arise from the Weil restriction of an elliptic curve over a quadratic field;

• 77 arise from generic abelian surfaces, of which at least 67 are Jacobians.

It may be feasible to remove the paramodular hypothesis, but that will depend largely
on work by others and it almost certainly won’t be feasible much past N ≤ 1000.

In addition to proving this theorem, we hope to extend it well past N ≤ 1000.
But this requires algorithmic improvements.



Exploiting Galois representations

Let A/Q be an abelian surface of conductor N. For each m ∈ Z>1 we have a mod-m
Galois representation

ρA,m : Gal(Q(A[m])/Q) → GSp4(Z/mZ).

For p ∤ mN the charpoly χp ∈ (Z/mZ)[T ] of ρA,m(Frobp) ∈ GSp4(Z/mZ) satisfies

χp(T ) ≡ T 2gLp(T −1) mod ℓ.

The m-torsion field Q(A[m]) is unramified away from p|mN and of degree at most
# GSp4(Z/mZ). For small m and N it is feasible to enumerate all such fields K and
their associated mod-m GSp4-representations, especially m = 2 and N a prime power.

Each representation yields a mod-m congruence constraints on Lp(T ) for primes
p ∤ mN. This dramatically reduces the amount of branching in our algorithm.



Other opportunities for improvement

• Modify our test functions fk to obtain linear systems that are better conditioned
by using a basis that is orthogonal with respect to dx/x .

• Exploit integrality by finding small linear combinations of constraints whose sum
has coefficients close to an integer (possibly using LLL) and use this to construct
a better objective function. This should help problems caused by twin primes.

• Write a custom simplex solver that is better suited to the shape of our systems
and that would allow us to better exploit integrality.

• Use ML methods or other heuristic algorithms to guess linear combinations of
constraints that we can then exploit rigorously.

• Consider non-linear approaches (quadratic programs).


