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Background and context

Last year the Simons Collaboration in Arithmetic Geometry, Number Theory, and
Computation launched a project to create a database of modular curves to become
part of the L-functions and Modular Forms Database. Contributors include:

Nikola Adžaga, Eran Assaf, Jennifer Balakrishnan, Barinder Banwait, Shiva Chi-
dambaram, Garen Chiloyan, Edgar Costa, Juanita Duque-Rosero, Noam Elkies,
Sachi Hashimoto, Daniel Hast, Aashraya Jha, Timo Keller, Jean Kieffer, David
Lowry-Duda, Alvaro Lozano-Robledo, Kimball Martin, Pietro Mercuri, Philippe
Michaud-Jacobs, Grant Molnar, Steffen Müller, Filip Najman, Ekin Ozman, Oana
Padurariu, Bjorn Poonen, David Roe, Rakvi, Jeremy Rouse, Ciaran Schembri,
Padmavathi Srinivasan, Sam Schiavone, Bianca Viray, John Voight, Borna Vuko-
repa, and David Zywina.

This project has several components. Today I will talk about just one of them, which is
inspired by Mazur’s Program B.

https://simonscollab.icerm.brown.edu/
https://simonscollab.icerm.brown.edu/
https://www.lmfdb.org


Mazur’s 1976 lectures on Rational points on modular curves

...



Galois representations attached to elliptic curves
Let E be an elliptic curve over a number field k. The action of Galk on E[N] yields

ρE,N : Galk → Aut(E[N]) ' GL2(Z/NZ) =: GL2(N).

Choosing a compatible system of bases and taking the inverse limit yields

ρE : Galk → lim←−GL2(N) ' GL2(Ẑ) '
∏

GL2(Z`).

Note that ρE and its image are defined only up to GL2-conjugacy.
In this talk we will always work up to GL2-conjugacy.

Theorem (Serre 1972)

If E/k is a non-CM elliptic curve then ρE(Galk) is an open subgroup of GL2(Ẑ).
When k = Q the index [GL2(Ẑ) : ρE(Galk)] is divisible by 2.

For any fixed k one expects the index [GL2(Ẑ) : ρE(Galk)] to be bounded for non-CM E/k.
For k = Q the bound 2736 has been conjectured (see Zywina 2022).

https://doi.org/10.1007/BF01405086
https://arxiv.org/abs/2206.14959


The modular curve XH

Definition (Deligne, Rapoport 1973)

For each open H ≤ GL2(Ẑ). The modular curves XH and YH are coarse spaces for the
stacksMH andM0

H parametrizing elliptic curves E with H-level structure: equivalence
classes [ι]H of isomorphisms ι : E[N]

∼−→ Z(N)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

• XH is a smooth proper Z[ 1
N ]-scheme with open subscheme YH.

The complement X∞H of YH in XH (the cusps) is finite étale over Z[ 1
N ].

• If det(H) = Ẑ× the generic fiber of XH is a nice curve XH/Q, and XH(C) is the
Riemann surface XΓH := ΓH\H, with ΓH ⊆ SL2(Z) the preimage of πN(H) ∩ SL2(N).
If det(H) 6= Ẑ× then XH is not geometrically connected, but it is a curve over Q.

• For E/k with j(E) 6= 0, 1728 we have ρE,N(Galk) ≤ H ⇐⇒ (E, [ι]H) ∈ YH(k).

Subgroup inclusions H ≤ H′ induce morphisms XH → XH′ .
In particular, every XH is equipped with a map j : XH → X(1) to the j-line X(1) ' P1.

https://doi.org/10.1007/978-3-540-37855-6_4
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For each open H ≤ GL2(Ẑ). The modular curves XH and YH are coarse spaces for the
stacksMH andM0

H parametrizing elliptic curves E with H-level structure: equivalence
classes [ι]H of isomorphisms ι : E[N]

∼−→ Z(N)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

• XH is a smooth proper Z[ 1
N ]-scheme with open subscheme YH.

The complement X∞H of YH in XH (the cusps) is finite étale over Z[ 1
N ].
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Three fundamental invariants: level, index, genus
For each (conjugacy class of) open H ≤ GL2(Ẑ) we define the following invariants.

• the level n(H) is the least N for which H contains the kernel of GL2(Ẑ) � GL2(N).

• the index i(H) is the positive integer [GL2(Ẑ) : H] = [GL2(N) : H(N)].

• the genus g(H) is the nonnegative integer

g(H) := g(Γ) := 1 +
i(Γ)

12
− e2(Γ)

4
− e3(Γ)

3
− e∞(Γ)

2
(
Γ := ±H(N) ∩ SL2(N)

)
,

where i(Γ) := [SL2(N) : Γ] counts right Γ-cosets in SL2(N), e2 and e3 count cosets
fixed by

(
0 1
−1 −1

)
and

(
0 1
−1 0

)
, respectively, and e∞(Γ) counts

(
1 1
0 1

)
-orbits of Γ\ SL2(N).

When det(H) = Ẑ× and −I ∈ H, the level n(H) controls the bad primes of XH, the index
i(H) is the degree of the map XH → X(1), and g(H) is the genus of of XH/Q.

If H′ ≤ H then n(H)|n(H′) and i(H)|i(H′) and g(H) ≤ g(H′).



Coarse and fine subgroups
Definition

Open H ≤ GL2(Ẑ) that contain −I are coarse groups; those that do not are fine groups.
A quadratic refinement of a coarse group H is a fine group H′ for which H = ±H′.

A typical coarse H has infinitely many quadratic refinements H′, all of which satisfy:

• n(H)|n(H′), i(H′) = 2i(H), g(H′) = g(H).

• XH′ ' XH (as curves); in particular L(XH′ , s) = L(XH, s) and XH′(k)↔ XH(k).

• j(XH′(k)) = j(XH(k)) for every k/Q.

If H′ is a quadratic refinement of H and E/k has Galois image ρE(Galk) = H,
the quadratic twist Ẽ/k by the fixed field of ρ−1

E (H′) has Galois image ρẼ(Galk) = H′.

Example
The elliptic curve 14.a4 corresponds to a point on X1(3), a quadratic refinement of X0(3).
Every twist has a rational 3-isogeny, but only 14.a4 has a rational 3-torsion point.

https://alpha.lmfdb.org/EllipticCurve/Q/14/a/4
https://alpha.lmfdb.org/ModularCurve/Q/3.8.0-3.a.1.2/
https://alpha.lmfdb.org/ModularCurve/Q/3.4.0.a.1/
https://alpha.lmfdb.org/EllipticCurve/Q/?hst=List&jinv=128787625%2F98&search_type=List&showcol=jinv.modell_images&hidecol=lmfdb_iso
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Open H ≤ GL2(Ẑ) that contain −I are coarse groups; those that do not are fine groups.
A quadratic refinement of a coarse group H is a fine group H′ for which H = ±H′.

A typical coarse H has infinitely many quadratic refinements H′, all of which satisfy:

• n(H)|n(H′), i(H′) = 2i(H), g(H′) = g(H).

• XH′ ' XH (as curves); in particular L(XH′ , s) = L(XH, s) and XH′(k)↔ XH(k).

• j(XH′(k)) = j(XH(k)) for every k/Q.

If H′ is a quadratic refinement of H and E/k has Galois image ρE(Galk) = H,
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The determinant map

For E/k the composition det ◦ρE : Galk → Ẑ× factors through Gal(kcyc/k).
For E/Q we have det ◦ρE = χcyc, where χcyc : GalQ → Ẑ× is the cyclotomic character.

For E/k the image ρE(Galk) lies in the subgroup det−1(χcyc(Galk)) of index [k ∩Qcyc : Q].
For E/Q the Kronecker-Weber theorem implies that if HE := ρE(GalQ) then

[HE,HE] = HE ∩ SL2(Ẑ)

which is a non-trivial constraint: for most H ∈ GL2(Ẑ) we have [H,H] < H ∩ SL2(Ẑ).

If E/k has image HE := ρE(Galk) then its base change to kcyc has image HE ∩ SL2(Ẑ).

If ΓH := H ∩ SL2(Ẑ) = H′ ∩ SL2(Ẑ) =: ΓH′ then XH/Qcyc ' XH′/Qcyc.
If H(N) ∩ SL2(N) = H′(N) ∩ SL2(N) with n(H), n(H′)|N then XH/Q(ζN) ' XH′/Q(ζN).
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Subgroups of GL2(Ẑ) vs subgroups of SL2(Ẑ)
For any fixed g there are only finitely many open Γ ≤ SL2(Ẑ) containing −I with g(Γ) = g.
You can find complete lists for g ≤ 24 in the Cummins–Pauli database.1

By contrast, GL2(Ẑ) contains infinitely many coarse subgroups of every genus.

For open H ≤ GL2(Ẑ) with det(H) = Ẑ×, the index and genus of H depend only on
Γ := H ∩ SL2(Ẑ), but the levels of H and Γ may differ.

For distinct H,H′ of the same level N with common intersection in SL2(N), the curves
XH, XH′ are not isomorphic. They typically have non-isgoenous Jacobians and different
sets of rational points (in particular, one may be empty when the other is not!).

Example

For the groups H = 15.60.2.c.1 and 15.60.2.d.1, H ∩ SL2(Ẑ) has CP label 15D2.
The first XH has no Q-points and rank 1 Jac(XH) ∼ 75.c × 225.c.
The second XH = X+

ns(15) has 6 rational Q-points and rank 2 Jac(XH) ∼ 225.a × 225.c.

1Cummins and Pauli consider Γ up to GL2(Z)-conjugacy, not GL2(Ẑ)-conjugacy.

https://mathstats.uncg.edu/sites/pauli/congruence/
https://alpha.lmfdb.org/ModularCurve/Q/15.60.2.c.1/
https://alpha.lmfdb.org/ModularCurve/Q/15.60.2.d.1/
https://mathstats.uncg.edu/sites/pauli/congruence/csg2.html#group15D2
https://alpha.lmfdb.org/EllipticCurve/Q/75/c/
https://alpha.lmfdb.org/EllipticCurve/Q/225/c/
https://alpha.lmfdb.org/EllipticCurve/Q/225/a/
https://alpha.lmfdb.org/EllipticCurve/Q/225/c/
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Counting points on modular curves

For any field k of characteristic coprime to N, the noncuspidal k-rational points on X1(N)
correspond to elliptic curves E/k with a rational point of order N.

Example
Over F37 there are 4 elliptic curves with a rational point of order 13:

y2 = x3 + 4, y2 = x3 + 33x + 33,
y2 = x3 + 8x, y2 = x3 + 24x + 22.

What is #X1(13)(F37)?

The genus 2 curve 169.1.169.1 is a smooth model for X1(13):

y2 + (x3 + x + 1)y = x5 + x4.

It has 23 rational points over F37. Precisely where do these 23 points come from?

http://www.lmfdb.org/Genus2Curve/Q/169/a/169/1
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Rational points on XH

Let H be an open subgroup of GL2(Ẑ) of level N (which we may view as H ≤ GL2(N)).

Definition
The set YH(k̄) consists of equivalence classes (E, [ι]H), where (E, [ι]H) ∼ (E′, [ι′]H)
if there is an isomorphism φ : E → E′ for which φN : E[N]→ E′[N] satisfies ι ∼ ι′ ◦ φN .

Each σ ∈ GalK induces σ−1 : Eσ[N]
∼→ E[N] via (x : y : z) 7→ (σ−1(x) : σ−1(y) : σ−1(z)).

We have a Galk-action on YH(k̄): (E, [ι]H 7→ (Eσ, [ι ◦ σ−1]H), and define YH(k) := YH(k̄)Galk .

Equivalently, YH(k̄) is the set of pairs (j(E), α), with α = Hg Aut(Ek̄) ∈ H\GL2 /Aut(Ek̄),
on which Galk acts via (j(E), α) 7→ (j(E)σ, ασ), where ασ = HgρE(σ) Aut(Ek̄).

Galk acts on X∞H (k̄) := ±H\GL2 /〈
(

1 1
0 1

)
〉 via

(
χcyc(σ) 0

0 1

)
, and X∞H (k) := X∞H (k̄)Galk .

We now define XH(k̄) := YH(k̄) t X∞H (k̄), and XH(k) := XH(k̄)Galk = YH(k) t X∞H (k).
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The 23 F37-rational points on X1(13)

For X1(13) we have H = {
(

1 ∗
0 ∗
)
}. Let U := 〈

(
1 1
0 1

)
〉.

Example
The four elliptic curves E/F37 with rational points of order 13 have j-invariants 0, 16, 26, 35
(note that 1728 ≡ 26 mod 37), and Aut(Ek̄) is cyclic of order 6, 2, 4, 2.

The 168 right GL2(13)-cosets of H(13) correspond to the 168 points of order 13 in E[13];
For each E, exactly 12 are fixed by πE, as are the corresponding double cosets. No other
double cosets are fixed, so we get 12/6 + 12/2 + 12/4 + 12/2 = 17 non-cuspidal rational points.

The double coset space ±H(13)\GL2(13)/U(13) partitions ±H(13)\GL2(13) as 16136.
The partitions of size 13 are fixed by χ13(σ37) =

(
11 0
0 1

)
, so we have 6 rational cusps.

We thus have #X1(13)(F37) = 17 + 6 = 23.



Counting Fq-points on XH

Theorem (Duke, Tóth 2002)
Let E/Fq be an elliptic curve, and let πE denote its Frobenius endomorphism. Define
a := trπE = q + 1−#E(Fq) and R := End(E) ∩Q(πE), let ∆ := disc(R) and δ := ∆ mod 4,
and let b :=

√
(a2 − 4q)/∆ if ∆ 6= 1 and b := 0 otherwise. The integer matrix

AE :=

(
(a + bδ)/2 b
b(∆− δ)/4 (a− bδ)/2

)
gives the action of πE on E[N] for all N ≥ 1.

We can compute AE = A(t, v, d) for all E/Fq by enumerating solutions (t, v,D) to the norm
equation

4q = t2 − v2D,

and making appropriate adjustments for j(E) = 0, 1728 and supersingular E/Fq.
We then count the double cosets fixed by A(t, v, d) with multiplicity h(D).

http://projecteuclid.org/euclid.em/1057864664
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The algorithm
Given H ≤ GL2(N) containing −I and a prime power q, compute XH(Fq) as follows:

1 Compute the permutation character χH : GL2(N)→ Z counting H-cosets fixed by g.
which is equal to [GL2(N) : H]#(H ∩ [g])/#[g] where [g] is the conjugacy class of g.

2 Compute n∞ := #X∞H (Fq) by counting elements of H\GL2(N)/〈
(

1 1
0 1

)
〉 fixed by

( q 0
0 1

)
.

3 Compute n0 := #j−1
H (0) and n1728 := #j−1

H (1728) by computing Aπ
for each twist, summing χH(Aπ) values, and dividing by # Aut(Ek̄).

4 Compute nord :=
∑

t,v,D χH(A(t, v,D))h(D) with (t, v,D) varying over solutions to
4q = t2 − v2D with t ⊥ q and D < −4.

5 Similarly compute nss similarly (omitting j(E) = 0, 1728; see [RSZB22] for details).

6 Output #XH(Fq) = n∞ + n0 + n1728 + nord + nss.

As written the running time of this algorithm is Õ(N3) + Õ(
√

q).
The Õ(N3) term is independent of q and can be improved.

https://arxiv.org/abs/2106.11141


Performance comparison
Time to compute #X0(N)(Fp) for all primes p ≤ B in seconds.

trace formula in Pari/GP v2.11 point-counting via moduli
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222 ?

.0

?

.0

?

.0

?

.0

213

.0

187

.0

263

.0

228

.0

223 ?

.0

?

.0

?

.0

?

.0

665

.0

579

.0

762

.0

678

.0

224 ?

.0

?

.0

?

.0

?

.0

2060

.0

1790

.0

2220

.0

1990

.0

(? = did not complete within one day; the genus of X0(N) is 3, 5, 19, 41 for N = 41, 42, 209, 210)



Decomposing the Jacobian of XH

Let H be an open subgroup of GL2(Ẑ) of level N and let JH denote the Jacobian of XH.

Theorem (Rouse, S, Voight, Zureick-Brown 2021)

Each simple factor of JH is isogenous to Af for a weight-2 eigenform f on Γ0(N2) ∩ Γ1(N).

If we know the q-expansions of the eigenforms in S2(Γ0(N2) ∩ Γ1(N)) we can uniquely
determine the decomposition of JH up to isogeny using linear algebra and point-counting.

It suffices to work with trace forms Tr(f ) (the sum of the Galois conjugates of f )

Tr(f )(q) :=

∞∑
n=1

TrQ(f )/Q(an(f ))qn,

since the integers an(Tr(f )) uniquely determine L(Af , s) and the isogeny class of Af .
By strong multiplicity one (Soundararajan 2004), the ap(Tr(f )) for enough p - N suffice.

https://doi.org/10.4153/CMB-2004-046-0
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Decomposing the Jacobian of XH

Let {[f1], . . . , [fm]} be the Galois orbits of the weight-2 eigenforms for Γ0(N2) ∩ Γ1(N). Then

L(JH, s) =

m∏
i=1

L(Afi , s)
ei

for some unique vector of nonnegative integers e(H) := (e1, . . . , ei).

Let T(B) ∈ Zn×m have columns [a1(Tr(fi)), a2(Tr(fi)), . . . , ap(Tr(fi)), . . .] for good p ≤ B.
Let a(H; B) := [g(H), a2(H), . . . , ap(H), . . .], where ap(H)p + 1−#XH(Fp), for good p ≤ B.

For all sufficiently large B the Q-linear system

T(B)x = a(H; B),

has the unique solution x = e(H).

We can then compute the analytic rank of JH as rk(JH) =
∑

ei rk(fi) using the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


Decomposing the Jacobian of XH

Let {[f1], . . . , [fm]} be the Galois orbits of the weight-2 eigenforms for Γ0(N2) ∩ Γ1(N). Then

L(JH, s) =

m∏
i=1

L(Afi , s)
ei

for some unique vector of nonnegative integers e(H) := (e1, . . . , ei).

Let T(B) ∈ Zn×m have columns [a1(Tr(fi)), a2(Tr(fi)), . . . , ap(Tr(fi)), . . .] for good p ≤ B.
Let a(H; B) := [g(H), a2(H), . . . , ap(H), . . .], where ap(H)p + 1−#XH(Fp), for good p ≤ B.

For all sufficiently large B the Q-linear system

T(B)x = a(H; B),

has the unique solution x = e(H).

We can then compute the analytic rank of JH as rk(JH) =
∑

ei rk(fi) using the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


Gassmann classes
For subgroups H1 and H2 of a finite group G the following are equivalent:

#(H1 ∩ C) = #(H2 ∩ C) for every conjugacy class C ⊆ G.

There is a conjugacy-class-preserving bijection of sets H1 ↔ H2.

The permutation characters χH1 : G→ Z and χH2 : G→ Z coincide.

The G-sets [H1\G] and [H2\G] are isomorphic as K-sets for every cyclic K ≤ G.

The permutation modules Q[H1\G] and Q[H2\G] are isomorphic as Q[G]-modules.
Subgroups that satisfy any of these equivalent conditions are Gassmann equivalent.2

Open H1,H2 ≤ GL2(Ẑ) are Gassmann equivalent if H1(N),H2(N) ≤ GL2(N) are
Gassmann equivalent for any N divisible by the levels of H1 and H2.

Proposition

For Gassmann equivalent H1,H2 ≤ GL2(Ẑ) we have Jac(XH1) ∼ Jac(XH2).

2I’m grateful to Alex Bartel for introducing me to this term. See [S21] for more on arithmetic equivalence.

https://arxiv.org/abs/2104.01956


Labels
Coarse groups H ≤ GL2(Ẑ) with det(H) = Ẑ× have labels of the form N.i.g.c.n:

N, i, g are the level, index, genus of H, respectively;

c identifies the Gassmann class of H among those with label prefix N.i.g;

n identifies the conjugacy class of H for those with label prefix N.i.g.c.

Fine groups H ≤ GL2(Ẑ) with det(H) = Ẑ× have labels of the form N.i.g-M.c.m.n:
N, i, g are the level, index, genus of H, respectively;

M, c,m are components of the label M.j.g.c.m of ±H;

n identifies the conjugacy class of H for those with label prefix N.i.g-M.c.m.

Gassmann classes are ordered by lexicographically sorting characters via their values on
conjugacy classes of elements ordered by similarity invariant.

Conjugacy classes of subgroups are ordered by their canonical generators.
These also play a key role in our algorithm for enumerating open subgroups of GL2(Ẑ).



Labels
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Similarity invariants
Let pe be prime power. Each A ∈ M2(pe) is similar3 to a matrix of the form

zI + pj ( 0 1
−d t

)
,

where the tuple of integers inv(A) := (j, z, d, t) is uniquely determined by
j ≤ e is the largest integer such that A mod pj is a scalar matrix;

z ∈ [0, pj − 1] satisfies zI = A mod pj.

d, t ∈ [0, pe−j − 1] satisfy d = det p−j(A− zI) and t = tr p−j(A− zI).

We extend this to general moduli N = pe1
1 · · · pen

n with p1 < · · · < pn prime via

inv(A) :=
(
inv(A mod pe1

1 ), . . . , inv(A mod pen
n )
)
.

Lemma
Matrices A,B ∈ GL2(N) are conjugate if and only if inv(A) = inv(B).

3A and B are similar if EA = BE for some E ∈ GL2(pe). See [AOPV09] for a proof of the claims above.

https://arxiv.org/abs/0708.1608
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Canonical generators
Given an open H ≤ GL2(Ẑ) we wish to choose a representative of the conjugacy class [H]
that H represents, and generators for it in a way the depends only on [H].

Fix an ordering of GL2(N) that keeps elements in the same conjugacy class together and
has SL2(N) as a prefix (we sort by increasing det g, decreasing |g|, decreasing #[g], then
by similarity invariant, then lexicographically by (a, b, c, d) for g =

(
a b
c d

)
.

Definition

The canonical generators for a coarse subgroup H ≤ GL2(Ẑ) of level N are the
lexicographically minimal sequence h1, . . . , hn ∈ GL2(N) for which 〈h1, . . . , hn〉 is
GL2(N)-conjugate to H(N) and 〈h1, . . . , hi〉 < 〈h1, . . . , hi+1〉 holds for 1 ≤ i < n.

The canonical generators for fine H ≤ GL2(Ẑ) are the sequence ε1h1, . . . , εnhn where
h1, . . . , hn are canonical generators for ±H and ε1, . . . , εn ∈ {±1}n minimize

∑
εi=1 2i−1.



Subgroup enumeration

1 Compute canonical generators for GL2(N), let Vc
0 = (GL2(N)), V f

0 = ∅, and i = 0.
2 Compute Vc

i+1, V f
i+1, and Ec

i+1 as follows:
a For each H ∈ Vc

i compute the maximal subgroups H′ < H with det(K) = Ẑ×.
b Compute signs εi for each fine maximal F < H and compute canonical generators.
c Add distinct F to V f

i+1 along with generators for F ∩ K for each coarse maximal K < H.
d Add coarse maximal K < H to Vc

i+1 and coarse edges (K,H) to Vc
i+1.

3 Compute canonical generators for H ∈ Vc
i+1, remove duplicates, update Ec

i+1.
4 Increment i and return to step 2 if Vc

i is nonempty.
5 Compute Ef using signs from 2b and intersections from 2c, group by coarse parent.
6 Output Vc :=

⋃
i Vc

i , V f :=
⋃

i V f
i , Ec :=

⋃
i Ec

i , and Ef.

Steps 2, 3, 5 are designed to be highly parallelizable.

This description omits many details (conjugators, level-lifting, hashing, etc...).



Lattice enumeration timings
coarse fine new algorithm (threads)

N groups edges groups edges Magma 1 2 4 8

2 4 4 0 0 0.0 0.0 0.5 0.5 0.5
3 6 6 3 2 0.0 0.1 1.0 1.0 1.0
4 22 41 21 30 0.2 0.2 1.5 1.5 1.6
5 13 19 6 4 0.1 0.2 1.3 1.3 1.3
6 44 104 26 56 0.4 0.3 1.9 1.9 2.0
7 14 20 13 18 0.1 0.1 1.3 1.3 1.4
8 285 964 981 4764 939.6 3.4 4.6 4.0 3.9
9 48 97 52 104 6.5 0.5 2.1 2.0 2.1

10 98 280 48 104 1.8 0.8 2.4 2.4 2.4
11 21 34 20 29 0.3 0.2 1.4 1.4 1.5
12 767 3030 2064 9710 4066.1 13.2 9.6 6.6 5.3
13 30 58 24 34 0.9 0.4 1.9 2.0 2.1
14 117 326 127 375 11.0 1.7 3.0 2.6 2.7
15 235 649 360 910 211.3 5.4 5.3 4.1 3.7
16 1737 7000 8317 46944 256112.2 60.8 36.4 21.0 13.9



Modular curves XH/Q of level N ≤ 400 and genus g ≤ 24

level coarse XH/Q fine XH/Q XH/Q
240 275 184 5 113 941 5 389 125
120 251 423 2 938 971 3 190 394
336 233 684 4 367 741 4 601 425
168 161 247 2 499 153 2 660 400
312 157 819 2 188 045 2 345 864
264 148 031 2 140 707 2 288 738
280 82 433 947 340 1 029 773

48 43 910 486 297 530 207
360 28 184 455 652 483 836

24 23 102 210 057 233 159
...

...
...

...
≈ 2 million ≈ 23 million ≈ 25 million



Coarse modular curves XH/Q of level N ≤ 70 and genus g ≤ 24
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