A database of modular curves

Andrew V. Sutherland
Massachusetts Institute of Technology

June 14, 2023

Background and context

Last year the Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation launched a project to create a database of modular curves to become part of the L-functions and Modular Forms Database. Contributors include:

Nikola Adžaga, Eran Assaf, Jennifer Balakrishnan, Barinder Banwait, Shiva Chidambaram, Garen Chiloyan, Edgar Costa, Juanita Duque-Rosero, Noam Elkies, Sachi Hashimoto, Daniel Hast, Aashraya Jha, Timo Keller, Jean Kieffer, David Lowry-Duda, Alvaro Lozano-Robledo, Kimball Martin, Pietro Mercuri, Philippe Michaud-Jacobs, Grant MoInar, Steffen Müller, Filip Najman, Ekin Ozman, Oana Padurariu, Bjorn Poonen, David Roe, Rakvi, Jeremy Rouse, Ciaran Schembri, Padmavathi Srinivasan, Sam Schiavone, Bianca Viray, John Voight, Borna Vukorepa, and David Zywina.

This project has several components. Today I will talk about just one of them, which is inspired by Mazur's Program B.

Mazur's 1976 lectures on Rational points on modular curves

In the course of preparing my lectures for this conference, I found a proof of the following theorem, conjectured by Ogg (conjecture 1 [17b]):

THEOREM 1. Let Φ be the torsion subgroup of the Mordell-Weil group of an elliptic curve E, over Q. Then Φ is isomorphic to one of the following 15 groups:

$$
\begin{aligned}
\mathfrak{Z} / \mathrm{m} \cdot \mathbb{Z} & \text { for } \mathrm{m} \leq 10 \text { or } \mathrm{m}=12 \\
\mathbb{Z} / 2 \cdot \mathbb{Z} \times \mathbb{Z} / 2 \nu \cdot \mathbb{Z} & \text { for } \nu \leq 4 .
\end{aligned}
$$

Theorem 1 also fits into a general program:
B. Given a number field K and a subgroup H of $G L_{2} \widehat{\mathbb{Z}}=\prod_{p} G L_{2} \mathbb{Z}_{p}$ classify all elliptic curves $\mathrm{E}_{/ \mathrm{K}}$ Whose associated Galois representation on torsion points maps $\operatorname{Gal}(\bar{K} / K)$ into $H \subset \mathrm{GL}_{2} \widehat{\mathbf{Z}}$.

Galois representations attached to elliptic curves

Let E be an elliptic curve over a number field k. The action of Gal_{k} on $E[N]$ yields

$$
\rho_{E, N}: \operatorname{Gal}_{k} \rightarrow \operatorname{Aut}(E[N]) \simeq \operatorname{GL}_{2}(\mathbb{Z} / N \mathbb{Z})=: \mathrm{GL}_{2}(N)
$$

Choosing a compatible system of bases and taking the inverse limit yields

$$
\rho_{E}: \operatorname{Gal}_{k} \rightarrow \lim _{\leftarrow} \mathrm{GL}_{2}(N) \simeq \mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \simeq \prod \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)
$$

Note that ρ_{E} and its image are defined only up to GL_{2}-conjugacy. In this talk we will always work up to GL_{2}-conjugacy.

Theorem (Serre 1972)

If E / k is a non-CM elliptic curve then $\rho_{E}\left(\mathrm{Gal}_{k}\right)$ is an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$. When $k=\mathbb{Q}$ the index $\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): \rho_{E}\left(\mathrm{Gal}_{k}\right)\right]$ is divisible by 2.

For any fixed k one expects the index $\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): \rho_{E}\left(\mathrm{Gal}_{k}\right)\right]$ to be bounded for non-CM E / k. For $k=\mathbb{Q}$ the bound 2736 has been conjectured (see Zywina 2022).

The modular curve X_{H}

Definition (Deligne, Rapoport 1973)
For each open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$. The modular curves X_{H} and Y_{H} are coarse spaces for the stacks \mathcal{M}_{H} and \mathcal{M}_{H}^{0} parametrizing elliptic curves E with H-level structure: equivalence classes $[\iota]_{H}$ of isomorphisms $\iota: E[N] \xrightarrow{\sim} \mathbb{Z}(N)^{2}$, where $\iota \sim \iota^{\prime}$ if $\iota=h \circ \iota^{\prime}$ for some $h \in H$.

The modular curve X_{H}

Definition (Deligne, Rapoport 1973)

For each open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$. The modular curves X_{H} and Y_{H} are coarse spaces for the stacks \mathcal{M}_{H} and \mathcal{M}_{H}^{0} parametrizing elliptic curves E with H-level structure: equivalence classes $[\iota]_{H}$ of isomorphisms $\iota: E[N] \xrightarrow{\sim} \mathbb{Z}(N)^{2}$, where $\iota \sim \iota^{\prime}$ if $\iota=h \circ \iota^{\prime}$ for some $h \in H$.

- X_{H} is a smooth proper $\mathbb{Z}\left[\frac{1}{N}\right]$-scheme with open subscheme Y_{H}. The complement X_{H}^{∞} of Y_{H} in X_{H} (the cusps) is finite étale over $\mathbb{Z}\left[\frac{1}{N}\right]$.
- If $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$the generic fiber of X_{H} is a nice curve X_{H} / \mathbb{Q}, and $X_{H}(\mathbb{C})$ is the Riemann surface $X_{\Gamma_{H}}:=\Gamma_{H} \backslash \mathcal{H}$, with $\Gamma_{H} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ the preimage of $\pi_{N}(H) \cap \mathrm{SL}_{2}(N)$. If $\operatorname{det}(H) \neq \widehat{\mathbb{Z}}^{\times}$then X_{H} is not geometrically connected, but it is a curve over \mathbb{Q}.
- For E / k with $j(E) \neq 0,1728$ we have $\rho_{E, N}\left(\operatorname{Gal}_{k}\right) \leq H \Longleftrightarrow\left(E,[\iota]_{H}\right) \in Y_{H}(k)$.

Subgroup inclusions $H \leq H^{\prime}$ induce morphisms $X_{H} \rightarrow X_{H^{\prime}}$. In particular, every X_{H} is equipped with a $\operatorname{map} j: X_{H} \rightarrow X(1)$ to the j-line $X(1) \simeq \mathbb{P}^{1}$.

Three fundamental invariants: level, index, genus

For each (conjugacy class of) open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ we define the following invariants.

- the level $n(H)$ is the least N for which H contains the kernel of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(N)$.
- the index $i(H)$ is the positive integer $\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): H\right]=\left[\mathrm{GL}_{2}(N): H(N)\right]$.
- the genus $g(H)$ is the nonnegative integer

$$
g(H):=g(\Gamma):=1+\frac{i(\Gamma)}{12}-\frac{e_{2}(\Gamma)}{4}-\frac{e_{3}(\Gamma)}{3}-\frac{e_{\infty}(\Gamma)}{2} \quad\left(\Gamma:= \pm H(N) \cap \mathrm{SL}_{2}(N)\right)
$$

where $i(\Gamma):=\left[\operatorname{SL}_{2}(N): \Gamma\right]$ counts right Γ-cosets in $\mathrm{SL}_{2}(N), e_{2}$ and e_{3} count cosets fixed by $\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, respectively, and $e_{\infty}(\Gamma)$ counts $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$-orbits of $\Gamma \backslash \mathrm{SL}_{2}(N)$.

When $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$and $-I \in H$, the level $n(H)$ controls the bad primes of X_{H}, the index $i(H)$ is the degree of the $\operatorname{map} X_{H} \rightarrow X(1)$, and $g(H)$ is the genus of of X_{H} / \mathbb{Q}.

If $H^{\prime} \leq H$ then $n(H) \mid n\left(H^{\prime}\right)$ and $i(H) \mid i\left(H^{\prime}\right)$ and $g(H) \leq g\left(H^{\prime}\right)$.

Coarse and fine subgroups

Definition

Open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ that contain $-I$ are coarse groups; those that do not are fine groups. A quadratic refinement of a coarse group H is a fine group H^{\prime} for which $H= \pm H^{\prime}$.

A typical coarse H has infinitely many quadratic refinements H^{\prime}, all of which satisfy:

- $n(H) \mid n\left(H^{\prime}\right), i\left(H^{\prime}\right)=2 i(H), g\left(H^{\prime}\right)=g(H)$.
- $X_{H^{\prime}} \simeq X_{H}$ (as curves); in particular $L\left(X_{H^{\prime}}, s\right)=L\left(X_{H}, s\right)$ and $X_{H^{\prime}}(k) \leftrightarrow X_{H}(k)$.
- $j\left(X_{H^{\prime}}(k)\right)=j\left(X_{H}(k)\right)$ for every k / \mathbb{Q}.

Coarse and fine subgroups

Definition

Open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ that contain $-I$ are coarse groups; those that do not are fine groups. A quadratic refinement of a coarse group H is a fine group H^{\prime} for which $H= \pm H^{\prime}$.

A typical coarse H has infinitely many quadratic refinements H^{\prime}, all of which satisfy:

- $n(H) \mid n\left(H^{\prime}\right), i\left(H^{\prime}\right)=2 i(H), g\left(H^{\prime}\right)=g(H)$.
- $X_{H^{\prime}} \simeq X_{H}$ (as curves); in particular $L\left(X_{H^{\prime}}, s\right)=L\left(X_{H}, s\right)$ and $X_{H^{\prime}}(k) \leftrightarrow X_{H}(k)$.
- $j\left(X_{H^{\prime}}(k)\right)=j\left(X_{H}(k)\right)$ for every k / \mathbb{Q}.

If H^{\prime} is a quadratic refinement of H and E / k has Galois image $\rho_{E}\left(\operatorname{Gal}_{k}\right)=H$, the quadratic twist \tilde{E} / k by the fixed field of $\rho_{E}^{-1}\left(H^{\prime}\right)$ has Galois image $\rho_{\tilde{E}}\left(\operatorname{Gal}_{k}\right)=H^{\prime}$.

Example

The elliptic curve 14. a 4 corresponds to a point on $X_{1}(3)$, a quadratic refinement of $X_{0}(3)$. Every twist has a rational 3-isogeny, but only 14. a 4 has a rational 3-torsion point.

The determinant map

For E / k the composition det $\circ \rho_{E}: \operatorname{Gal}_{k} \rightarrow \widehat{\mathbb{Z}}^{\times}$factors through $\operatorname{Gal}\left(k^{\text {cyc }} / k\right)$. For E / \mathbb{Q} we have det $\circ \rho_{E}=\chi_{\mathrm{cyc}}$, where $\chi_{\mathrm{cyc}}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times}$is the cyclotomic character.

The determinant map

For E / k the composition det $\circ \rho_{E}: \operatorname{Gal}_{k} \rightarrow \widehat{\mathbb{Z}}^{\times}$factors through $\operatorname{Gal}\left(k^{\mathrm{cyc}} / k\right)$.
For E / \mathbb{Q} we have det $\circ \rho_{E}=\chi_{\mathrm{cyc}}$, where $\chi_{\mathrm{cyc}}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times}$is the cyclotomic character.
For E / k the image $\rho_{E}\left(\operatorname{Gal}_{k}\right)$ lies in the subgroup $\operatorname{det}^{-1}\left(\chi_{\mathrm{cyc}}\left(\operatorname{Gal}_{k}\right)\right)$ of index $\left[k \cap \mathbb{Q}^{\text {cyc }}: \mathbb{Q}\right]$. For E / \mathbb{Q} the Kronecker-Weber theorem implies that if $H_{E}:=\rho_{E}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ then

$$
\left[H_{E}, H_{E}\right]=H_{E} \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})
$$

which is a non-trivial constraint: for most $H \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ we have $[H, H]<H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.

The determinant map

For E / k the composition det $\circ \rho_{E}: \operatorname{Gal}_{k} \rightarrow \widehat{\mathbb{Z}}^{\times}$factors through $\operatorname{Gal}\left(k^{\text {cyc }} / k\right)$.
For E / \mathbb{Q} we have det $\circ \rho_{E}=\chi_{\mathrm{cyc}}$, where $\chi_{\mathrm{cyc}}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times}$is the cyclotomic character.
For E / k the image $\rho_{E}\left(\operatorname{Gal}_{k}\right)$ lies in the subgroup $\operatorname{det}^{-1}\left(\chi_{\mathrm{cyc}}\left(\operatorname{Gal}_{k}\right)\right)$ of index $\left[k \cap \mathbb{Q}^{\text {cyc }}: \mathbb{Q}\right]$. For E / \mathbb{Q} the Kronecker-Weber theorem implies that if $H_{E}:=\rho_{E}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ then

$$
\left[H_{E}, H_{E}\right]=H_{E} \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})
$$

which is a non-trivial constraint: for most $H \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ we have $[H, H]<H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.
If E / k has image $H_{E}:=\rho_{E}\left(\operatorname{Gal}_{k}\right)$ then its base change to $k^{\text {cyc }}$ has image $H_{E} \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.
If $\Gamma_{H}:=H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})=H^{\prime} \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})=: \Gamma_{H^{\prime}}$ then $X_{H} / \mathbb{Q}^{\text {cyc }} \simeq X_{H^{\prime}} / \mathbb{Q}^{\text {cyc }}$.
If $H(N) \cap \mathrm{SL}_{2}(N)=H^{\prime}(N) \cap \mathrm{SL}_{2}(N)$ with $n(H), n\left(H^{\prime}\right) \mid N$ then $X_{H} / \mathbb{Q}\left(\zeta_{N}\right) \simeq X_{H^{\prime}} / \mathbb{Q}\left(\zeta_{N}\right)$.

Subgroups of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ vs subgroups of $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$

For any fixed g there are only finitely many open $\Gamma \leq \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ containing $-I$ with $g(\Gamma)=g$. You can find complete lists for $g \leq 24$ in the Cummins-Pauli database. ${ }^{1}$
By contrast, $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ contains infinitely many coarse subgroups of every genus.
For open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$, the index and genus of H depend only on $\Gamma:=H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$, but the levels of H and Γ may differ.

[^0]
Subgroups of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ vs subgroups of $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$

For any fixed g there are only finitely many open $\Gamma \leq \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ containing $-I$ with $g(\Gamma)=g$. You can find complete lists for $g \leq 24$ in the Cummins-Pauli database. ${ }^{1}$
By contrast, $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ contains infinitely many coarse subgroups of every genus.
For open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$, the index and genus of H depend only on $\Gamma:=H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$, but the levels of H and Γ may differ.

For distinct H, H^{\prime} of the same level N with common intersection in $\mathrm{SL}_{2}(N)$, the curves $X_{H}, X_{H^{\prime}}$ are not isomorphic. They typically have non-isgoenous Jacobians and different sets of rational points (in particular, one may be empty when the other is not!).

Example

For the groups $H=15.60 .2$ c. .1 and 15.60 .2. d.1, $H \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ has CP label $15 \mathrm{D}^{2}$.
The first X_{H} has no \mathbb{Q}-points and rank $1 \mathrm{Jac}\left(X_{H}\right) \sim 75 . \mathrm{c} \times 225$. c.
The second $X_{H}=X_{n s}^{+}(15)$ has 6 rational \mathbb{Q}-points and rank $2 \mathrm{Jac}\left(X_{H}\right) \sim 225$. a $\times 225$. c.

[^1]
Counting points on modular curves

For any field k of characteristic coprime to N, the noncuspidal k-rational points on $X_{1}(N)$ correspond to elliptic curves E / k with a rational point of order N.

Example

Over \mathbb{F}_{37} there are 4 elliptic curves with a rational point of order 13:

$$
\begin{array}{ll}
y^{2}=x^{3}+4, & y^{2}=x^{3}+33 x+33 \\
y^{2}=x^{3}+8 x, & y^{2}=x^{3}+24 x+22
\end{array}
$$

What is $\# X_{1}(13)\left(\mathbb{F}_{37}\right)$?

Counting points on modular curves

For any field k of characteristic coprime to N, the noncuspidal k-rational points on $X_{1}(N)$ correspond to elliptic curves E / k with a rational point of order N.

Example

Over \mathbb{F}_{37} there are 4 elliptic curves with a rational point of order 13:

$$
\begin{array}{ll}
y^{2}=x^{3}+4, & y^{2}=x^{3}+33 x+33 \\
y^{2}=x^{3}+8 x, & y^{2}=x^{3}+24 x+22
\end{array}
$$

What is $\# X_{1}(13)\left(\mathbb{F}_{37}\right)$?
The genus 2 curve 169.1.169.1 is a smooth model for $X_{1}(13)$:

$$
y^{2}+\left(x^{3}+x+1\right) y=x^{5}+x^{4}
$$

It has 23 rational points over \mathbb{F}_{37}. Precisely where do these 23 points come from?

Rational points on X_{H}

Let H be an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N (which we may view as $H \leq \mathrm{GL}_{2}(N)$).

Definition

The set $Y_{H}(\bar{k})$ consists of equivalence classes $\left(E,[\iota]_{H}\right)$, where $\left(E,[\iota]_{H}\right) \sim\left(E^{\prime},\left[\iota^{\prime}\right]_{H}\right)$ if there is an isomorphism $\phi: E \rightarrow E^{\prime}$ for which $\phi_{N}: E[N] \rightarrow E^{\prime}[N]$ satisfies $\iota \sim \iota^{\prime} \circ \phi_{N}$.
Each $\sigma \in \mathrm{Gal}_{K}$ induces $\sigma^{-1}: E^{\sigma}[N] \xrightarrow{\sim} E[N]$ via $(x: y: z) \mapsto\left(\sigma^{-1}(x): \sigma^{-1}(y): \sigma^{-1}(z)\right)$. We have a Gal ${ }_{k}$-action on $Y_{H}(\bar{k}):\left(E,[\iota]_{H} \mapsto\left(E^{\sigma},\left[\iota \circ \sigma^{-1}\right]_{H}\right)\right.$, and define $Y_{H}(k):=Y_{H}(\bar{k})^{\operatorname{Gal}_{k}}$.

Rational points on X_{H}

Let H be an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N (which we may view as $H \leq \mathrm{GL}_{2}(N)$).

Definition

The set $Y_{H}(\bar{k})$ consists of equivalence classes $\left(E,[\iota]_{H}\right)$, where $\left(E,[\iota]_{H}\right) \sim\left(E^{\prime},\left[\iota^{\prime}\right]_{H}\right)$ if there is an isomorphism $\phi: E \rightarrow E^{\prime}$ for which $\phi_{N}: E[N] \rightarrow E^{\prime}[N]$ satisfies $\iota \sim \iota^{\prime} \circ \phi_{N}$.

Each $\sigma \in \mathrm{Gal}_{K}$ induces $\sigma^{-1}: E^{\sigma}[N] \xrightarrow{\sim} E[N]$ via $(x: y: z) \mapsto\left(\sigma^{-1}(x): \sigma^{-1}(y): \sigma^{-1}(z)\right)$. We have a Gal ${ }_{k}$-action on $Y_{H}(\bar{k}):\left(E,[\iota]_{H} \mapsto\left(E^{\sigma},\left[\iota \circ \sigma^{-1}\right]_{H}\right)\right.$, and define $Y_{H}(k):=Y_{H}(\bar{k})^{\operatorname{Gal}_{k}}$.

Equivalently, $Y_{H}(\bar{k})$ is the set of pairs $(j(E), \alpha)$, with $\alpha=H g \operatorname{Aut}\left(E_{\bar{k}}\right) \in H \backslash \mathrm{GL}_{2} / \operatorname{Aut}\left(E_{\bar{k}}\right)$, on which Gal_{k} acts via $(j(E), \alpha) \mapsto\left(j(E)^{\sigma}, \alpha^{\sigma}\right)$, where $\alpha^{\sigma}=H g \rho_{E}(\sigma) \operatorname{Aut}\left(E_{\bar{k}}\right)$.
Gal_{k} acts on $X_{H}^{\infty}(\bar{k}):= \pm H \backslash \mathrm{GL}_{2} /\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ via $\left(\begin{array}{cc}\chi_{\text {cyc }}(\sigma) & 0 \\ 0 & 1\end{array}\right)$, and $X_{H}^{\infty}(k):=X_{H}^{\infty}(\bar{k})^{\mathrm{Gal}_{k}}$. We now define $X_{H}(\bar{k}):=Y_{H}(\bar{k}) \sqcup X_{H}^{\infty}(\bar{k})$, and $X_{H}(k):=X_{H}(\bar{k})^{\mathrm{Gal}_{k}}=Y_{H}(k) \sqcup X_{H}^{\infty}(k)$.

The $23 \mathbb{F}_{37}$-rational points on $X_{1}(13)$

For $X_{1}(13)$ we have $H=\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)\right\}$. Let $U:=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.

Example

The four elliptic curves E / \mathbb{F}_{37} with rational points of order 13 have j-invariants $0,16,26,35$ (note that $1728 \equiv 26 \bmod 37$), and $\operatorname{Aut}\left(E_{\bar{k}}\right)$ is cyclic of order $6,2,4,2$.

The 168 right $\mathrm{GL}_{2}(13)$-cosets of $H(13)$ correspond to the 168 points of order 13 in $E[13]$; For each E, exactly 12 are fixed by π_{E}, as are the corresponding double cosets. No other double cosets are fixed, so we get $12 / 6+12 / 2+12 / 4+12 / 2=17$ non-cuspidal rational points.

The double coset space $\pm H(13) \backslash \mathrm{GL}_{2}(13) / U(13)$ partitions $\pm H(13) \backslash \mathrm{GL}_{2}(13)$ as $1^{6} 13^{6}$. The partitions of size 13 are fixed by $\chi_{13}\left(\sigma_{37}\right)=\left(\begin{array}{cc}11 & 0 \\ 0 & 1\end{array}\right)$, so we have 6 rational cusps.

We thus have $\# X_{1}(13)\left(\mathbb{F}_{37}\right)=17+6=23$.

Counting \mathbb{F}_{q}-points on X_{H}

Theorem (Duke, Tóth 2002)

Let E / \mathbb{F}_{q} be an elliptic curve, and let π_{E} denote its Frobenius endomorphism. Define $a:=\operatorname{tr} \pi_{E}=q+1-\# E\left(\mathbb{F}_{q}\right)$ and $R:=\operatorname{End}(E) \cap \mathbb{Q}\left(\pi_{E}\right)$, let $\Delta:=\operatorname{disc}(R)$ and $\delta:=\Delta \bmod 4$, and let $b:=\sqrt{\left(a^{2}-4 q\right) / \Delta}$ if $\Delta \neq 1$ and $b:=0$ otherwise. The integer matrix

$$
A_{E}:=\left(\begin{array}{cc}
(a+b \delta) / 2 & b \\
b(\Delta-\delta) / 4 & (a-b \delta) / 2
\end{array}\right)
$$

gives the action of π_{E} on $E[N]$ for all $N \geq 1$.

Counting \mathbb{F}_{q}-points on X_{H}

Theorem (Duke, Tóth 2002)

Let E / \mathbb{F}_{q} be an elliptic curve, and let π_{E} denote its Frobenius endomorphism. Define $a:=\operatorname{tr} \pi_{E}=q+1-\# E\left(\mathbb{F}_{q}\right)$ and $R:=\operatorname{End}(E) \cap \mathbb{Q}\left(\pi_{E}\right)$, let $\Delta:=\operatorname{disc}(R)$ and $\delta:=\Delta \bmod 4$, and let $b:=\sqrt{\left(a^{2}-4 q\right) / \Delta}$ if $\Delta \neq 1$ and $b:=0$ otherwise. The integer matrix

$$
A_{E}:=\left(\begin{array}{cc}
(a+b \delta) / 2 & b \\
b(\Delta-\delta) / 4 & (a-b \delta) / 2
\end{array}\right)
$$

gives the action of π_{E} on $E[N]$ for all $N \geq 1$.
We can compute $A_{E}=A(t, v, d)$ for all E / \mathbb{F}_{q} by enumerating solutions (t, v, D) to the norm equation

$$
4 q=t^{2}-v^{2} D
$$

and making appropriate adjustments for $j(E)=0,1728$ and supersingular E / \mathbb{F}_{q}. We then count the double cosets fixed by $A(t, v, d)$ with multiplicity $h(D)$.

The algorithm

Given $H \leq \mathrm{GL}_{2}(N)$ containing $-I$ and a prime power q, compute $X_{H}\left(\mathbb{F}_{q}\right)$ as follows:
(1) Compute the permutation character $\chi_{H}: \mathrm{GL}_{2}(N) \rightarrow \mathbb{Z}$ counting H-cosets fixed by g. which is equal to $\left[\mathrm{GL}_{2}(N): H\right] \#(H \cap[g]) / \#[g]$ where $[g]$ is the conjugacy class of g.
(2) Compute $n_{\infty}:=\# X_{H}^{\infty}\left(\mathbb{F}_{q}\right)$ by counting elements of $H \backslash \mathrm{GL}_{2}(N) /\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ fixed by $\left(\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right)$.
(3) Compute $n_{0}:=\# j_{H}^{-1}(0)$ and $n_{1728}:=\# j_{H}^{-1}(1728)$ by computing A_{π} for each twist, summing $\chi_{H}\left(A_{\pi}\right)$ values, and dividing by $\# \operatorname{Aut}\left(E_{\bar{k}}\right)$.
(4. Compute $n_{\text {ord }}:=\sum_{t, v, D} \chi_{H}(A(t, v, D)) h(D)$ with (t, v, D) varying over solutions to $4 q=t^{2}-v^{2} D$ with $t \perp q$ and $D<-4$.
(5) Similarly compute $n_{\text {ss }}$ similarly (omitting $j(E)=0,1728$; see [RSZB22] for details).
(6) Output $\# X_{H}\left(\mathbb{F}_{q}\right)=n_{\infty}+n_{0}+n_{1728}+n_{\text {ord }}+n_{\text {ss }}$.

As written the running time of this algorithm is $\tilde{O}\left(N^{3}\right)+\tilde{O}(\sqrt{q})$. The $\tilde{O}\left(N^{3}\right)$ term is independent of q and can be improved.

Performance comparison

Time to compute $\# X_{0}(N)\left(\mathbb{F}_{p}\right)$ for all primes $p \leq B$ in seconds.

	trace formula in Pari/GP v2.11					point-counting via moduli			
B	$N=41$	42	209	210		$N=41$	42	209	210
2^{12}	0.1	0.4	0.2	0.7		0.0	0.0	0.0	0.0
2^{13}	0.3	1.0	0.5	1.8		0.0	0.0	0.1	0.0
2^{14}	0.6	2.5	1.1	4.8		0.1	0.1	0.1	0.1
2^{15}	1.7	7.1	3.1	12.8		0.2	0.2	0.2	0.2
2^{16}	4.8	19.6	8.9	35.4		0.4	0.4	0.6	0.5
2^{17}	14.4	55.1	25.7	97.8		1.1	0.9	1.5	1.2
2^{18}	43.5	156	74.3	274		2.8	2.6	4.0	3.3
2^{19}	128	442	214	769		7.8	7.0	11.0	9.1
2^{20}	374	1260	610	2169		22.2	19.8	31.1	26.2
2^{21}	1100	3610	1760	6100		69.0	61.3	91.8	77.9
2^{22}	$?$	$?$	$?$	$?$		213	187	263	228
2^{23}	$?$	$?$	$?$	$?$		665	579	762	678
2^{24}	$?$	$?$	$?$	$?$	2060	1790	2220	1990	

(? = did not complete within one day; the genus of $X_{0}(N)$ is $3,5,19,41$ for $\left.N=41,42,209,210\right)$

Decomposing the Jacobian of X_{H}

Let H be an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N and let J_{H} denote the Jacobian of X_{H}.

Theorem (Rouse, S, Voight, Zureick-Brown 2021)

Each simple factor of J_{H} is isogenous to A_{f} for a weight-2 eigenform f on $\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)$.
If we know the q-expansions of the eigenforms in $S_{2}\left(\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)\right)$ we can uniquely determine the decomposition of J_{H} up to isogeny using linear algebra and point-counting.

Decomposing the Jacobian of X_{H}

Let H be an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N and let J_{H} denote the Jacobian of X_{H}.

Theorem (Rouse, S, Voight, Zureick-Brown 2021)

Each simple factor of J_{H} is isogenous to A_{f} for a weight-2 eigenform f on $\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)$.
If we know the q-expansions of the eigenforms in $S_{2}\left(\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)\right)$ we can uniquely determine the decomposition of J_{H} up to isogeny using linear algebra and point-counting.

It suffices to work with trace forms $\operatorname{Tr}(f)$ (the sum of the Galois conjugates of f)

$$
\operatorname{Tr}(f)(q):=\sum_{n=1}^{\infty} \operatorname{Tr}_{\mathbb{Q}(f) / \mathbb{Q}}\left(a_{n}(f)\right) q^{n},
$$

since the integers $a_{n}(\operatorname{Tr}(f))$ uniquely determine $L\left(A_{f}, s\right)$ and the isogeny class of A_{f}. By strong multiplicity one (Soundararajan 2004), the $a_{p}(\operatorname{Tr}(f))$ for enough $p \nmid N$ suffice.

Decomposing the Jacobian of X_{H}

Let $\left\{\left[f_{1}\right], \ldots,\left[f_{m}\right]\right\}$ be the Galois orbits of the weight-2 eigenforms for $\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)$. Then

$$
L\left(J_{H}, s\right)=\prod_{i=1}^{m} L\left(A_{f_{i}}, s\right)^{e_{i}}
$$

for some unique vector of nonnegative integers $e(H):=\left(e_{1}, \ldots, e_{i}\right)$.
Let $T(B) \in \mathbb{Z}^{n \times m}$ have columns $\left[a_{1}\left(\operatorname{Tr}\left(f_{i}\right)\right), a_{2}\left(\operatorname{Tr}\left(f_{i}\right)\right), \ldots, a_{p}\left(\operatorname{Tr}\left(f_{i}\right)\right), \ldots\right]$ for good $p \leq B$. Let $a(H ; B):=\left[g(H), a_{2}(H), \ldots, a_{p}(H), \ldots\right]$, where $a_{p}(H) p+1-\# X_{H}\left(\mathbb{F}_{p}\right)$, for good $p \leq B$.

Decomposing the Jacobian of X_{H}

Let $\left\{\left[f_{1}\right], \ldots,\left[f_{m}\right]\right\}$ be the Galois orbits of the weight-2 eigenforms for $\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)$. Then

$$
L\left(J_{H}, s\right)=\prod_{i=1}^{m} L\left(A_{f_{i}}, s\right)^{e_{i}}
$$

for some unique vector of nonnegative integers $e(H):=\left(e_{1}, \ldots, e_{i}\right)$.
Let $T(B) \in \mathbb{Z}^{n \times m}$ have columns $\left[a_{1}\left(\operatorname{Tr}\left(f_{i}\right)\right), a_{2}\left(\operatorname{Tr}\left(f_{i}\right)\right), \ldots, a_{p}\left(\operatorname{Tr}\left(f_{i}\right)\right), \ldots\right]$ for good $p \leq B$.
Let $a(H ; B):=\left[g(H), a_{2}(H), \ldots, a_{p}(H), \ldots\right]$, where $a_{p}(H) p+1-\# X_{H}\left(\mathbb{F}_{p}\right)$, for good $p \leq B$.
For all sufficiently large B the \mathbb{Q}-linear system

$$
T(B) x=a(H ; B),
$$

has the unique solution $x=e(H)$.
We can then compute the analytic rank of J_{H} as $\operatorname{rk}\left(J_{H}\right)=\sum e_{i} \operatorname{rk}\left(f_{i}\right)$ using the LMFDB.

Gassmann classes

For subgroups H_{1} and H_{2} of a finite group G the following are equivalent:

- \# $\left(H_{1} \cap C\right)=\#\left(H_{2} \cap C\right)$ for every conjugacy class $C \subseteq G$.
- There is a conjugacy-class-preserving bijection of sets $H_{1} \leftrightarrow H_{2}$.
- The permutation characters $\chi_{H_{1}}: G \rightarrow \mathbb{Z}$ and $\chi_{H_{2}}: G \rightarrow \mathbb{Z}$ coincide.
- The G-sets $\left[H_{1} \backslash G\right]$ and $\left[H_{2} \backslash G\right]$ are isomorphic as K-sets for every cyclic $K \leq G$.
- The permutation modules $\mathbb{Q}\left[H_{1} \backslash G\right]$ and $\mathbb{Q}\left[H_{2} \backslash G\right]$ are isomorphic as $\mathbb{Q}[G]$-modules. Subgroups that satisfy any of these equivalent conditions are Gassmann equivalent. ${ }^{2}$
Open $H_{1}, H_{2} \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ are Gassmann equivalent if $H_{1}(N), H_{2}(N) \leq \mathrm{GL}_{2}(N)$ are Gassmann equivalent for any N divisible by the levels of H_{1} and H_{2}.

Proposition

For Gassmann equivalent $H_{1}, H_{2} \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ we have $\operatorname{Jac}\left(X_{H_{1}}\right) \sim \operatorname{Jac}\left(X_{H_{2}}\right)$.

[^2]
Labels

Coarse groups $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$have labels of the form N.i.g.c.n:

- N, i, g are the level, index, genus of H, respectively;
- c identifies the Gassmann class of H among those with label prefix N.i.g;
- n identifies the conjugacy class of H for those with label prefix $\mathrm{N} . \mathrm{i}$.g.c.

Labels

Coarse groups $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{\times}$have labels of the form $\mathrm{N} . \mathrm{i} . \mathrm{g} \cdot \mathrm{c} \cdot \mathrm{n}$:

- N, i, g are the level, index, genus of H, respectively;
- c identifies the Gassmann class of H among those with label prefix N.i.g;
- n identifies the conjugacy class of H for those with label prefix N.i.g.c.

Fine groups $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with $\operatorname{det}(H)=\widehat{\mathbb{Z}} \times$ have labels of the form N.i.g-M.c.m.n:

- N, i, g are the level, index, genus of H, respectively;
- M, c, m are components of the label m.j.g.c.m of $\pm H$;
- n identifies the conjugacy class of H for those with label prefix N.i.g-M.c.m.

Gassmann classes are ordered by lexicographically sorting characters via their values on conjugacy classes of elements ordered by similarity invariant.

Conjugacy classes of subgroups are ordered by their canonical generators. These also play a key role in our algorithm for enumerating open subgroups of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$.

Similarity invariants

Let p^{e} be prime power. Each $A \in \mathrm{M}_{2}\left(p^{e}\right)$ is similar ${ }^{3}$ to a matrix of the form

$$
z I+p^{j}\left(\begin{array}{cc}
0 & 1 \\
-d & t
\end{array}\right),
$$

where the tuple of integers $\operatorname{inv}(A):=(j, z, d, t)$ is uniquely determined by

- $j \leq e$ is the largest integer such that $A \bmod p^{j}$ is a scalar matrix;
- $z \in\left[0, p^{j}-1\right]$ satisfies $z I=A \bmod p^{j}$.
- $d, t \in\left[0, p^{e-j}-1\right]$ satisfy $d=\operatorname{det} p^{-j}(A-z I)$ and $t=\operatorname{tr} p^{-j}(A-z I)$.

[^3]
Similarity invariants

Let p^{e} be prime power. Each $A \in \mathrm{M}_{2}\left(p^{e}\right)$ is similar ${ }^{3}$ to a matrix of the form

$$
z I+p^{j}\left(\begin{array}{cc}
0 & 1 \\
-d & t
\end{array}\right),
$$

where the tuple of integers $\operatorname{inv}(A):=(j, z, d, t)$ is uniquely determined by

- $j \leq e$ is the largest integer such that $A \bmod p^{j}$ is a scalar matrix;
- $z \in\left[0, p^{j}-1\right]$ satisfies $z I=A \bmod p^{j}$.
- $d, t \in\left[0, p^{e-j}-1\right]$ satisfy $d=\operatorname{det} p^{-j}(A-z I)$ and $t=\operatorname{tr} p^{-j}(A-z I)$.

We extend this to general moduli $N=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ with $p_{1}<\cdots<p_{n}$ prime via

$$
\operatorname{inv}(A):=\left(\operatorname{inv}\left(A \bmod p_{1}^{e_{1}}\right), \ldots, \operatorname{inv}\left(A \bmod p_{n}^{e_{n}}\right)\right)
$$

Lemma

Matrices $A, B \in \mathrm{GL}_{2}(N)$ are conjugate if and only if $\operatorname{inv}(A)=\operatorname{inv}(B)$.

[^4]
Canonical generators

Given an open $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ we wish to choose a representative of the conjugacy class $[H]$ that H represents, and generators for it in a way the depends only on $[H]$.

Fix an ordering of $\mathrm{GL}_{2}(N)$ that keeps elements in the same conjugacy class together and has $\mathrm{SL}_{2}(N)$ as a prefix (we sort by increasing det g, decreasing $|g|$, decreasing $\#[g]$, then by similarity invariant, then lexicographically by (a, b, c, d) for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Definition

The canonical generators for a coarse subgroup $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N are the lexicographically minimal sequence $h_{1}, \ldots, h_{n} \in \mathrm{GL}_{2}(N)$ for which $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ is $\mathrm{GL}_{2}(N)$-conjugate to $H(N)$ and $\left\langle h_{1}, \ldots, h_{i}\right\rangle<\left\langle h_{1}, \ldots, h_{i+1}\right\rangle$ holds for $1 \leq i<n$.

The canonical generators for fine $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ are the sequence $\varepsilon_{1} h_{1}, \ldots, \varepsilon_{n} h_{n}$ where h_{1}, \ldots, h_{n} are canonical generators for $\pm H$ and $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}^{n}$ minimize $\sum_{\varepsilon_{i}=1} 2^{i-1}$.

Subgroup enumeration

(1) Compute canonical generators for $\mathrm{GL}_{2}(N)$, let $V_{0}^{\mathrm{c}}=\left(\mathrm{GL}_{2}(N)\right), V_{0}^{\mathrm{f}}=\emptyset$, and $i=0$.
(2) Compute $V_{i+1}^{\mathrm{c}}, V_{i+1}^{\mathrm{f}}$, and E_{i+1}^{c} as follows:
(a) For each $H \in V_{i}^{c}$ compute the maximal subgroups $H^{\prime}<H$ with $\operatorname{det}(K)=\widehat{\mathbb{Z}}^{\times}$.
(1) Compute signs ε_{i} for each fine maximal $F<H$ and compute canonical generators.
(0) Add distinct F to V_{i+1}^{f} along with generators for $F \cap K$ for each coarse maximal $K<H$.
(c) Add coarse maximal $K<H$ to V_{i+1}^{c} and coarse edges (K, H) to V_{i+1}^{c}.
(3) Compute canonical generators for $H \in V_{i+1}^{\mathrm{c}}$, remove duplicates, update E_{i+1}^{c}.
(4) Increment i and return to step 2 if V_{i}^{c} is nonempty.
(5) Compute E^{f} using signs from 2 b and intersections from 2 c , group by coarse parent.
(6) Output $V^{\mathrm{c}}:=\bigcup_{i} V_{i}^{\mathrm{c}}, V^{\mathrm{f}}:=\bigcup_{i} V_{i}^{\mathrm{f}}, E^{\mathrm{c}}:=\bigcup_{i} E_{i}^{\mathrm{c}}$, and E^{f}.

Steps 2, 3, 5 are designed to be highly parallelizable.
This description omits many details (conjugators, level-lifting, hashing, etc...).

Lattice enumeration timings

coarse					fine				
N	groups	edges	groups	edges	Magma	1	2	4	8
2	4	4	0	0	0.0	0.0	0.5	0.5	0.5
3	6	6	3	2	0.0	0.1	1.0	1.0	1.0
4	22	41	21	30	0.2	0.2	1.5	1.5	1.6
5	13	19	6	4	0.1	0.2	1.3	1.3	1.3
6	44	104	26	56	0.4	0.3	1.9	1.9	2.0
7	14	20	13	18	0.1	0.1	1.3	1.3	1.4
8	285	964	981	4764	939.6	3.4	4.6	4.0	3.9
9	48	97	52	104	6.5	0.5	2.1	2.0	2.1
10	98	280	48	104	1.8	0.8	2.4	2.4	2.4
11	21	34	20	29	0.3	0.2	1.4	1.4	1.5
12	767	3030	2064	9710	4066.1	13.2	9.6	6.6	5.3
13	30	58	24	34	0.9	0.4	1.9	2.0	2.1
14	117	326	127	375	11.0	1.7	3.0	2.6	2.7
15	235	649	360	910	211.3	5.4	5.3	4.1	3.7
16	1737	7000	8317	46944	256112.2	60.8	36.4	21.0	13.9

Modular curves X_{H} / \mathbb{Q} of level $N \leq 400$ and genus $g \leq 24$

level	coarse X_{H} / \mathbb{Q}	fine X_{H} / \mathbb{Q}	X_{H} / \mathbb{Q}
240	275184	5113941	5389125
120	251423	2938971	3190394
336	233684	4367741	4601425
168	161247	2499153	2660400
312	157819	2188045	2345864
264	148031	2140707	2288738
280	82433	947340	1029773
48	43910	486297	50207
360	28184	455652	483836
24	23102	210057	233159
\vdots	\vdots	\vdots	\vdots
	≈ 2 million	≈ 23 million	≈ 25 million

Coarse modular curves X_{H} / \mathbb{Q} of level $N \leq 70$ and genus $g \leq 24$

[^0]: ${ }^{1}$ Cummins and Pauli consider Γ up to $\mathrm{GL}_{2}(\mathbb{Z})$-conjugacy, not $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$-conjugacy.

[^1]: ${ }^{1}$ Cummins and Pauli consider Γ up to $\mathrm{GL}_{2}(\mathbb{Z})$-conjugacy, not $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$-conjugacy.

[^2]: ${ }^{2}$ I'm grateful to Alex Bartel for introducing me to this term. See [S21] for more on arithmetic equivalence.

[^3]: ${ }^{3} A$ and B are similar if $E A=B E$ for some $E \in \mathrm{GL}_{2}\left(p^{e}\right)$. See [AOPV09] for a proof of the claims above.

[^4]: ${ }^{3} A$ and B are similar if $E A=B E$ for some $E \in \mathrm{GL}_{2}\left(p^{e}\right)$. See [AOPV09] for a proof of the claims above.

