accessibility
Curves with Exceptional L-polynomial Distributions
Genus 1 generic curve
y2 = x3 + 314159x2 + 271828
M[a1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...)
a1:
s2:
s3:
Genus 1 exceptional case
y2 + y = x3
M[a1] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, ...)
a1:
s2:
s3:
Genus 2 generic curve
#1) y2 = x5 + x + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, ...)
M[a2] = (1, 1, 2, 4, 10, 27, 82, 268, 940, ...)
Genus 2 exceptional cases
#2) y2 = x6 + x2 + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544, ...)
M[a2] = (1, 2, 5, 14, 44, 152, 569, 2270, 9524, ...)
#3) y2 = x6 + 3x4 - 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, ...)
M[a2] = (1, 2, 5, 14, 46, 172, 714, 3180, 14858, ...)
#4) y2 = x5 + x4 - 3x3 - 4x2 - x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 12, 0, 110, 0, 1204, 0, 14364, ...)
M[a2] = (1, 1, 4, 13, 52, 222, 1014, 4839, 23860, ...)
#5) y2 = x6 + x4 + x2 + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 4, 0, 32, 0, 320, 0, 3584, 0, 43008, ...)
M[a2] = (1, 3, 10, 37, 150, 654, 3012, 14445, 71398, ...)
#6) y2 = x5 + 2x4 - x3 - 3x2 - x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 12, 0, 100, 0, 980, 0, 10584, ...)
M[a2] = (1, 1, 4, 11, 44, 172, 754, 3397, 16020, 77516, ...)
#7) y2 = x5 + x4 + x2 - x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 12, 0, 100, 0, 1008, 0, 11424, ...)
M[a2] = (1, 1, 4, 11, 46, 182, 824, 3817, 18582, 92678, ...)
#8) y2 = x5 + 3x4 + x2 - 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 12, 0, 110, 0, 1260, 0, 16002, ...)
M[a2] = (1, 2, 5, 14, 49, 202, 944, 4720, 24553, 130658, ...)
#9) y2 = x6 + x5 + x - 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 5, 0, 35, 0, 294, 0, 2772, ...)
M[a2] = (1, 1, 3, 7, 23, 76, 287, 1135, 4769, 20788, ...)
#10) y2 = x6 + x3 + 4
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 6, 0, 55, 0, 602, 0, 7182, ...)
M[a2] = (1, 1, 3, 8, 29, 116, 517, 2437, 11965, 60326, ...)
#11) y2 = x5 + x3 + x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1 0 2 0 16 0 160 0 1792 0 21504 ...)
M[a2] = (1, 2, 6, 20, 78, 332, 1516, 7240, 35734, ...)
#11b) y2 = x5 + x4 + 2x3 - 2x2 -2x + 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 16, 0, 160, 0, 1792, 0, 21504, ...)
M[a2] = (1, 1, 6, 17, 78, 322, 1516, 7205, 35734, ...)
#12) y2 = x6 + 4
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 220, 0, 3010, 0, 43092, ...)
M[a2] = (1, 2, 6, 21, 90, 437, 2285, 12427, 69074, ...)
#12b) y2 = x6 + 3x5 - 25x3 +30x2 - 9x + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 220, 0, 3010, 0, 43092, ...)
M[a2] = (1, 1, 5, 16, 85, 416, 2264, 12342, 68989, ...)
#13) y2 = x6 + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 4, 0, 48, 0, 640, 0, 8960, 0, 129024, ...)
M[a2] = (1, 1, 11, 40, 235, 1196, 6650, 36632, 205859, ...)
#14) y2 = x6 + x3 - 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 6, 0, 50, 0, 490, 0, 5292, ...)
M[a2] = (1, 1, 3, 7, 25, 91, 387, 1716, 8045, 38821, ...)
#15) y2 = x6 + 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 200, 0, 2450, 0, 31752, ...)
M[a2] = (1, 2, 6, 20, 82, 372, 1825, 9326, 49026, ...)
#15b) y2 = x6 - 15x4 - 20x3 + 6x + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 200, 0, 2450, 0, 31752, ...)
M[a2] = (1, 1, 5, 16, 77, 356, 1804, 9262, 48941, ...)
#16) y2 = x5 + x3 + 2x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 6, 0, 50, 0, 504, 0, 5712, ...)
M[a2] = (1, 1, 3, 7, 26, 96, 422, 1926, 9326, 46402, ...)
#17) y2 = x6 + x5 + 10x3 + 5x2 + x - 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 200, 0, 2520, 0, 34272, ...)
M[a2] = (1, 2, 6, 20, 83, 382, 1920, 10096, 54787, ...)
#17b) y2 = x6 + x5 - 5x4 - 5x2 - x + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 18, 0, 200, 0, 2520, 0, 34272, ...)
M[a2] = (1, 1, 5, 16, 79, 366, 1904, 10032, 54723, ...)
#18) y2 = x5 + x3 - x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 8, 0, 80, 0, 896, 0, 10752, ...)
M[a2] = (1, 1, 4, 10, 42, 166, 768, 3620, 17902, 90310, ...)
#19) y2 = x5 + 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 9, 0, 100, 0, 1225, 0, 15876, ...)
M[a2] = (1, 1, 3, 10, 41, 186, 912, 4656, 24425, ...)
#20) y2 = x6 + 2x3 + 2
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 9, 0, 110, 0, 1505, 0, 21546, ...)
M[a2] = (1, 1, 4, 10, 48, 216, 1153, 6203, 34576, ...)
#20b) y2 = x6 + 6x5 - 30x4 - 40x3 + 60x2 +24x - 8
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 9, 0, 110, 0, 1505, 0, 21546, ...)
M[a2] = (1, 1, 4, 11, 48, 221, 1153, 6224, 34576,...)
#21) y2 = x5 + x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 24, 0, 320, 0, 4480, 0, 64512, ...)
M[a2] = (1, 2, 7, 26, 123, 622, 3346, 18412, 103011, ...)
#21b) y2 = x5 - x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 2, 0, 24, 0, 320, 0, 4480, 0, 64512, ...)
M[a2] = (1, 1, 7, 22, 123, 606, 3346, 18348, 103011, ...)
#22) y2 = x5 + 3x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 9, 0, 100, 0, 1260, 0, 17136, ...)
M[a2] = (1, 1, 4, 10, 45, 191, 973, 5048, 27443, ...)
#23) y2 = x5 + 2x
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 12, 0, 160, 0, 2240, 0, 32256, ...)
M[a2] = (1, 1, 4, 13, 63, 311, 1678, 9206, 51523, ...)
#23b) y2 = x5 + 9x;
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 12, 0, 160, 0, 2240, 0, 32256, ...)
M[a2] = (1, 1, 5, 13, 67, 311, 1694, 9206, 51587, ...)
#24) y2 = x6 + 3x5 + 10x3 - 15x2 + 15x - 6
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 9, 0, 100, 0, 1225, 0, 15876, ...)
M[a2] = (1, 1, 4, 10, 44, 186, 923, 4663, 24552, ...)
#25) y2 = x6 + 6x5 - 20x4 + 20x3 - 20x2 - 8x + 8
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 6, 0, 60, 0, 770, 0, 10836, ...)
M[a2] = (1, 1, 3, 7, 29, 121, 612, 3200, 17565, ...)
#25b) y2 = x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] =(1, 0, 1, 0, 6, 0, 60, 0, 770, 0, 10836, ...)
M[a2] = (1, 1, 3, 8, 30, 126, 617, 3221, 17586, ...)
#26) y2 = x6 - 5x4 + 10x3 - 5x2 + 2x - 1
a1:
a2:
s2:
s3:
s4:
s5:
M[a1] = (1, 0, 1, 0, 6, 0, 50, 0, 525, 0, 6426, ...)
M[a2] = (1, 1, 3, 7, 26, 96, 432, 2045, 10432, ...)