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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, which we can write in the form

y2 = x3 + ax+ b,

and let p be a prime of good reduction (4a3 + 27b2 6≡ 0 mod p).

The number of Fp-points on the reduction Ep of E modulo p is

#Ep(Fp) = p+ 1− tp,

where the trace of Frobenius tp ∈ Z lies in the interval [−2
√
p, 2
√
p].

We are interested in the limiting distribution of xp = −tp/
√
p ∈ [−2, 2],

as p varies over primes of good reduction up to N , as N →∞.



Example: y2 = x3 + x+ 1

p tp xp p tp xp p tp xp
3 0 0.000000 71 13 −1.542816 157 −13 1.037513
5 −3 1.341641 73 2 −0.234082 163 −25 1.958151
7 3 −1.133893 79 −6 0.675053 167 24 −1.857176

11 −2 0.603023 83 −6 0.658586 173 2 −0.152057
13 −4 1.109400 89 −10 1.059998 179 0 0.000000
17 0 0.000000 97 1 −0.101535 181 −8 0.594635
19 −1 0.229416 101 −3 0.298511 191 −25 1.808937
23 −4 0.834058 103 17 −1.675060 193 −7 0.503871
29 −6 1.114172 107 3 −0.290021 197 −24 1.709929
37 −10 1.643990 109 −13 1.245174 199 −18 1.275986
41 7 −1.093216 113 −11 1.034793 211 −11 0.757271
43 10 −1.524986 127 2 −0.177471 223 −20 1.339299
47 −12 1.750380 131 4 −0.349482 227 0 0.000000
53 −4 0.549442 137 12 −1.025229 229 −2 0.132164
59 −3 0.390567 139 14 −1.187465 233 −3 0.196537
61 12 −1.536443 149 14 −1.146925 239 −22 1.423062
67 12 −1.466033 151 −2 0.162758 241 22 −1.417145
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/Q without CM have the semicircular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical (Hecke, Deuring)]



Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the `-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the distribution of
normalized traces of Ep converges to the distribution of traces in
the Sato-Tate group of G, under the Haar measure.

G G/G0 E k E[a0
1],E[a2

1],E[a4
1] . . .

U(1) C1 y2 = x3 + 1 Q(
√
−3) 1, 2, 6, 20, 70, 252, . . .

N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
SU(2) C1 y2 = x3 + x+ 1 Q 1, 1, 2, 5, 14, 42, . . .

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.



Zeta functions and L-polynomials

Let C/Q be a nice curve of genus g and p a prime of good reduction.
Define the zeta function

Zp(T ) := exp

( ∞∑
r=1

NrT
r/r

)
,

where Nr = #Cp(Fpr). This is a rational function of the form

Zp(T ) =
Lp(T )

(1− T )(1− pT )
,

where Lp(T ) is an integer polynomial of degree 2g.

For g = 1 we have Lp(t) = pT 2 + c1T + 1, and for g = 2,

Lp(T ) = p2T 4 + c1pT
3 + c2T

2 + c1T + 1.



Normalized L-polynomials

The normalized L-polynomial

L̄p(T ) := Lp(T/
√
p) =

2g∑
i=0

aiT
i ∈ R[T ]

is monic, reciprocal (ai = a2g−i), and unitary (roots on the unit circle).
The coefficients ai satisfy the Weil bounds |ai| ≤

(
2g
i

)
.

We now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N →∞.

http://math.mit.edu/~drew/g2SatoTateDistributions.html
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Exceptional distributions for abelian surfaces over Q:





L-polynomials of Abelian varieties

Let A be an abelian variety of dimension g ≥ 1 over a number field k,
and let us fix a prime `.

Let ρ` : Gk → AutQ`(V`(A)) ' GSp2g(Q`) be the Galois representation
arising from the action of Gk := Gal(k̄/k) on the `-adic Tate module

V`(A) := lim
←−

A[`n]⊗Q.

For each prime p of good reduction for A we have the L-polynomial

Lp(T ) := det(1− ρ`(Frobp)T ),

L̄p(T ) := Lp(T/
√
‖p‖) =

∑
aiT

i.

When A is the Jacobian of a genus g curve C, this agrees with our earlier
definition of Lp(T ) as the numerator of the zeta function Zp(T ).



The Sato-Tate problem for an abelian variety

The L̄p ∈ R[T ] are monic, symmetric, unitary polynomials of degree 2g.

Every such polynomial arises as the characteristic polynomial of
a conjugacy class in the unitary symplectic group USp(2g).

Each probability measure on USp(2g) determines a distribution of
conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which
these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact
subgroup STA of USp(2g).



The Sato-Tate group

Recall that the action of Gk on V`(A) induces the representation

ρ` : Gk → AutQ`(V`(A)) ' GSp2g(Q`).

Let G1,zar
` denote the kernel of the similitude character of GSp2g(Q`) on

the Zariski closure of ρ`(Gk). Now fix ι : Q` ↪→ C, and define STA to be a
maximal compact subgroup of the image G1,zar

` under

Sp2g(Q`)
⊗ιC−→ Sp2g(C).

Conjecturally, STA does not depend on ` or ι; this is known for g ≤ 3.

Definition [Serre]

STA ⊆ USp(2g) is the Sato-Tate group of A.



The refined Sato-Tate conjecture

Let s(p) denote the conjugacy class of the image of Frobp in STA.

Let µSTA denote the image of the Haar measure on Conj(STA),
which does not depend on the choice of ` or ι.

Conjecture

The conjugacy classes s(p) are equidistributed with respect to µSTA .

In particular, the distribution of L̄p(T ) matches the distribution of
characteristic polynomials of random matrices in STA.

We can test this numerically by comparing statistics of the coefficients
a1, . . . , ag of L̄p(T ) over ‖p‖ ≤ N to the predictions given by µSTA .

https://hensel.mit.edu:8000/home/pub/6

https://hensel.mit.edu:8000/home/pub/6


The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

1 G is closed subgroup of USp(2g).

2 Hodge condition: G contains a Hodge circle1 whose conjugates
generate a dense subset of G.

3 Rationality condition: for each component H of G and each
irreducible character χ of GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z.

For any fixed g, the set of subgroups G ⊆ USp(2g) that satisfy the
Sato-Tate axioms is finite up to conjugacy (3 for g = 1, 55 for g = 2).

Theorem

For g ≤ 3, the group STA satisfies the Sato-Tate axioms.

This is expected to hold for all g.

1An embedding θ : U(1)→ G0 where θ(u) has eigenvalues u, u−1 with multiplicity g.
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Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k in k̄ for which End(AK) = End(Ak̄).
Gal(K/k) acts on the R-algebra End(AK)R := End(AK)⊗Z R.

Definition

The Galois (endomorphism module) type of A is the isomorphism class of
[Gal(K/k),End(AK)R], where [G,E] ' [G′, E′] iff there are isomorphisms
G ' G′ and E ' E′ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A/k of dimension g ≤ 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component ST0
A is determined by End(AK)R,

and there is a natural isomorphism STA/ST0
A ' Gal(K/k).
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Real endomorphism algebras of abelian surfaces

abelian surface End(AK)R ST0
A

square of CM elliptic curve M2(C) U(1)2

• QM abelian surface M2(R) SU(2)2

• square of non-CM elliptic curve

• CM abelian surface C× C U(1)×U(1)

• product of CM elliptic curves

product of CM and non-CM elliptic curves C× R U(1)× SU(2)

• RM abelian surface R× R SU(2)× SU(2)

• product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)



Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1)2 : C1, C2, C3, C4, C6, D2, D3, D4, D6, T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T ), J(O),
C2,1, C4,1, C6,1, D2,1, D3,2, D4,1, D4,2, D6,1, D6,2, O1

SU(2)2 : E1, E2, E3, E4, E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)×U(1) : F, Fa, Fc, Fa,b, Fab, Fac, Fab,c, Fa,b,c

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

Of these, exactly 52 arise as STA for an abelian surface A (34 over Q).

This theorem says nothing about equidistribution, however this is now
known in many special cases [FS 2012, Johansson 2013].
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Sato-Tate groups in dimension 2 with G0 = U(1)2.

d c G G/G0 z1 z2 M [a21] M [a2]
1 1 C1 C1 0 0, 0, 0, 0, 0 8, 96, 1280, 17920 4, 18, 88, 454
1 2 C2 C2 1 0, 0, 0, 0, 0 4, 48, 640, 8960 2, 10, 44, 230
1 3 C3 C3 0 0, 0, 0, 0, 0 4, 36, 440, 6020 2, 8, 34, 164
1 4 C4 C4 1 0, 0, 0, 0, 0 4, 36, 400, 5040 2, 8, 32, 150
1 6 C6 C6 1 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
1 4 D2 D2 3 0, 0, 0, 0, 0 2, 24, 320, 4480 1, 6, 22, 118
1 6 D3 D3 3 0, 0, 0, 0, 0 2, 18, 220, 3010 1, 5, 17, 85
1 8 D4 D4 5 0, 0, 0, 0, 0 2, 18, 200, 2520 1, 5, 16, 78
1 12 D6 D6 7 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
1 2 J(C1) C2 1 1, 0, 0, 0, 0 4, 48, 640, 8960 1, 11, 40, 235
1 4 J(C2) D2 3 1, 0, 0, 0, 1 2, 24, 320, 4480 1, 7, 22, 123
1 6 J(C3) C6 3 1, 0, 0, 2, 0 2, 18, 220, 3010 1, 5, 16, 85
1 8 J(C4) C4 × C2 5 1, 0, 2, 0, 1 2, 18, 200, 2520 1, 5, 16, 79
1 12 J(C6) C6 × C2 7 1, 2, 0, 2, 1 2, 18, 200, 2450 1, 5, 16, 77
1 8 J(D2) D2 × C2 7 1, 0, 0, 0, 3 1, 12, 160, 2240 1, 5, 13, 67
1 12 J(D3) D6 9 1, 0, 0, 2, 3 1, 9, 110, 1505 1, 4, 10, 48
1 16 J(D4) D4 × C2 13 1, 0, 2, 0, 5 1, 9, 100, 1260 1, 4, 10, 45
1 24 J(D6) D6 × C2 19 1, 2, 0, 2, 7 1, 9, 100, 1225 1, 4, 10, 44
1 2 C2,1 C2 1 0, 0, 0, 0, 1 4, 48, 640, 8960 3, 11, 48, 235
1 4 C4,1 C4 3 0, 0, 2, 0, 0 2, 24, 320, 4480 1, 5, 22, 115
1 6 C6,1 C6 3 0, 2, 0, 0, 1 2, 18, 220, 3010 1, 5, 18, 85
1 4 D2,1 D2 3 0, 0, 0, 0, 2 2, 24, 320, 4480 2, 7, 26, 123
1 8 D4,1 D4 7 0, 0, 2, 0, 2 1, 12, 160, 2240 1, 4, 13, 63
1 12 D6,1 D6 9 0, 2, 0, 0, 4 1, 9, 110, 1505 1, 4, 11, 48
1 6 D3,2 D3 3 0, 0, 0, 0, 3 2, 18, 220, 3010 2, 6, 21, 90
1 8 D4,2 D4 5 0, 0, 0, 0, 4 2, 18, 200, 2520 2, 6, 20, 83
1 12 D6,2 D6 7 0, 0, 0, 0, 6 2, 18, 200, 2450 2, 6, 20, 82
1 12 T A4 3 0, 0, 0, 0, 0 2, 12, 120, 1540 1, 4, 12, 52
1 24 O S4 9 0, 0, 0, 0, 0 2, 12, 100, 1050 1, 4, 11, 45
1 24 O1 S4 15 0, 0, 6, 0, 6 1, 6, 60, 770 1, 3, 8, 30
1 24 J(T ) A4 × C2 15 1, 0, 0, 8, 3 1, 6, 60, 770 1, 3, 7, 29
1 48 J(O) S4 × C2 33 1, 0, 6, 8, 9 1, 6, 50, 525 1, 3, 7, 26



Sato-Tate groups in dimension 2 with G0 6= U(1)2.

d c G G/G0 z1 z2 M [a21] M [a2]
3 1 E1 C1 0 0, 0, 0, 0, 0 4, 32, 320, 3584 3, 10, 37, 150
3 2 E2 C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 1, 6, 17, 78
3 3 E3 C3 0 0, 0, 0, 0, 0 2, 12, 110, 1204 1, 4, 13, 52
3 4 E4 C4 1 0, 0, 0, 0, 0 2, 12, 100, 1008 1, 4, 11, 46
3 6 E6 C6 1 0, 0, 0, 0, 0 2, 12, 100, 980 1, 4, 11, 44
3 2 J(E1) C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 2, 6, 20, 78
3 4 J(E2) D2 3 0, 0, 0, 0, 0 1, 8, 80, 896 1, 4, 10, 42
3 6 J(E3) D3 3 0, 0, 0, 0, 0 1, 6, 55, 602 1, 3, 8, 29
3 8 J(E4) D4 5 0, 0, 0, 0, 0 1, 6, 50, 504 1, 3, 7, 26
3 12 J(E6) D6 7 0, 0, 0, 0, 0 1, 6, 50, 490 1, 3, 7, 25
2 1 F C1 0 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
2 2 Fa C2 0 0, 0, 0, 0, 1 3, 21, 210, 2485 2, 6, 20, 82
2 2 Fc C2 1 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
2 2 Fab C2 1 0, 0, 0, 0, 1 2, 18, 200, 2450 2, 6, 20, 82
2 4 Fac C4 3 0, 0, 2, 0, 1 1, 9, 100, 1225 1, 3, 10, 41
2 4 Fa,b D2 1 0, 0, 0, 0, 3 2, 12, 110, 1260 2, 5, 14, 49
2 4 Fab,c D2 3 0, 0, 0, 0, 1 1, 9, 100, 1225 1, 4, 10, 44
2 8 Fa,b,c D4 5 0, 0, 2, 0, 3 1, 6, 55, 630 1, 3, 7, 26
4 1 G4 C1 0 0, 0, 0, 0, 0 3, 20, 175, 1764 2, 6, 20, 76
4 2 N(G4) C2 0 0, 0, 0, 0, 1 2, 11, 90, 889 2, 5, 14, 46
6 1 G6 C1 0 0, 0, 0, 0, 0 2, 10, 70, 588 2, 5, 14, 44
6 2 N(G6) C2 1 0, 0, 0, 0, 0 1, 5, 35, 294 1, 3, 7, 23

10 1 USp(4) C1 0 0, 0, 0, 0, 0 1, 3, 14, 84 1, 2, 4, 10



Genus 2 curves realizing Sato-Tate groups with G0 = U(1)2

Group Curve y2 = f(x) k K

C1 x6 + 1 Q(
√
−3) Q(

√
−3)

C2 x5 − x Q(
√
−2) Q(i,

√
2)

C3 x6 + 4 Q(
√
−3) Q(

√
−3, 3√2)

C4 x6 + x5 − 5x4 − 5x2 − x + 1 Q(
√
−2) Q(

√
−2, a); a4 + 17a2 + 68 = 0

C6 x6 + 2 Q(
√
−3) Q(

√
−3, 6√2)

D2 x5 + 9x Q(
√
−2) Q(i,

√
2,
√

3)

D3 x6 + 10x3 − 2 Q(
√
−2) Q(

√
−3, 6√−2)

D4 x5 + 3x Q(
√
−2) Q(i,

√
2, 4√3)

D6 x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q(
√
−3) Q(i,

√
2,
√

3, a); a3 + 3a − 2 = 0

T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q(
√
−2) Q(

√
−2, a, b);

a3 − 7a + 7 = b4 + 4b2 + 8b + 8 = 0

O x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q(
√
−2) Q(

√
−2,
√
−11, a, b);

a3 − 4a + 4 = b4 + 22b + 22 = 0

J(C1) x5 − x Q(i) Q(i,
√

2)

J(C2) x5 − x Q Q(i,
√

2)

J(C3) x6 + 10x3 − 2 Q(
√
−3) Q(

√
−3, 6√−2)

J(C4) x6 + x5 − 5x4 − 5x2 − x + 1 Q see entry for C4
J(C6) x6 − 15x4 − 20x3 + 6x + 1 Q Q(i,

√
3, a); a3 + 3a2 − 1 = 0

J(D2) x5 + 9x Q Q(i,
√

2,
√

3)

J(D3) x6 + 10x3 − 2 Q Q(
√
−3, 6√−2)

J(D4) x5 + 3x Q Q(i,
√

2, 4√3)

J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q see entry for D6
J(T ) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q see entry for T

J(O) x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q see entry for O

C2,1 x6 + 1 Q Q(
√
−3)

C4.1 x5 + 2x Q(i) Q(i, 4√2)

C6,1 x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x + 1 Q Q(
√
−3, a); a3 − 3a + 1 = 0

D2,1 x5 + x Q Q(i,
√

2)

D4,1 x5 + 2x Q Q(i, 4√2)

D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x − 8 Q Q(
√
−2,
√
−3, a); a3 − 9a + 6 = 0

D3,2 x6 + 4 Q Q(
√
−3, 3√2)

D4,2 x6 + x5 + 10x3 + 5x2 + x − 2 Q Q(
√
−2, a); a4 − 14a2 + 28a − 14 = 0

D6,2 x6 + 2 Q Q(
√
−3, 6√2)

O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4 Q Q(
√
−2, a, b);

a3 + 5a + 10 = b4 + 4b2 + 8b + 2 = 0



Genus 2 curves realizing Sato-Tate groups with G0 6= U(1)2
Group Curve y2 = f(x) k K

F x6 + 3x4 + x2 − 1 Q(i,
√
2) Q(i,

√
2)

Fa x6 + 3x4 + x2 − 1 Q(i) Q(i,
√
2)

Fab x6 + 3x4 + x2 − 1 Q(
√
2) Q(i,

√
2)

Fac x5 + 1 Q Q(a); a4 + 5a2 + 5 = 0

Fa,b x6 + 3x4 + x2 − 1 Q Q(i,
√
2)

E1 x6 + x4 + x2 + 1 Q Q
E2 x6 + x5 + 3x4 + 3x2 − x + 1 Q Q(

√
2)

E3 x5 + x4 − 3x3 − 4x2 − x Q Q(a); a3 − 3a + 1 = 0

E4 x5 + x4 + x2 − x Q Q(a); a4 − 5a2 + 5 = 0

E6 x5 + 2x4 − x3 − 3x2 − x Q Q(
√
7, a); a3 − 7a− 7 = 0

J(E1) x5 + x3 + x Q Q(i)

J(E2) x5 + x3 − x Q Q(i,
√
2)

J(E3) x6 + x3 + 4 Q Q(
√
−3, 3√2)

J(E4) x5 + x3 + 2x Q Q(i, 4√2)

J(E6) x6 + x3 − 2 Q Q(
√
−3, 6√−2)

G1,3 x6 + 3x4 − 2 Q(i) Q(i)

N(G1,3) x6 + 3x4 − 2 Q Q(i)

G3,3 x6 + x2 + 1 Q Q
N(G3,3) x6 + x5 + x− 1 Q Q(i)

USp(4) x5 − x + 1 Q Q



Part Two



Searching for curves

We surveyed the L̄-polynomial distributions of genus 2 curves

y2 = x5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0,

y2 = x6 + c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x+ c0,

with integer coefficients |ci| ≤ 128. More than 248 curves.

We found over 10 million non-isomorphic curves with exceptional
distributions, including at least 3 apparent matches for each of the
34 Sato-Tate groups that can occur over Q.

Representative examples were computed to high precision N = 230.

For each example, the field K was then determined, allowing the
Galois type, and hence the Sato-Tate group, to be provably identified.



Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over Q are
all realized by Jacobians of genus 2 curves.

By extending the base field from Q to a suitable subfield k of K,
we can restrict G/G0 ' Gal(K/k) to any normal subgroup of Gal(K/k)
(base extension does not change the identity component G0).

This allows us to realize all 52 Sato-Tate groups using base extensions of
34 curves defined over Q (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k?

Theorem (Fité-Guitart 2015)

All 52 possible Sato-Tate groups arise for abelian surfaces defined over

k := Q(
√
−10,

√
−51,

√
−163,

√
−67,

√
817,
√
−57).
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Computing zeta functions

Algorithms to compute Lp(T ) for low genus hyperelliptic curves

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p

group computation p1/4 log p p3/4 log p p5/4 log p

p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p

(see [Kedlaya-S 2008).
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An average polynomial-time algorithm

All of these methods perform separate computations for each p.
But we want to compute Lp(T ) for all good p ≤ N using reductions
of the same curve in each case. Can we take advantage of this?

Theorem (Harvey 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f(x) of genus g with a rational Weierstrass point and an integer N ,
computes Lp(T ) for all good primes p ≤ N in time

O
(
g8+εN log3+εN

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(logN).

Average time is O
(
g8+ε log4+εN

)
per prime, polynomial in g and log p.

Recently generalized to arithmetic schemes.
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An average polynomial-time algorithm

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p

group computation p1/4 log p p3/4 log p p5/4 log p

p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p
Average polytime log4 p log4 p log4 p

But is it practical?



The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve y2 = f(x) over Fp of genus
g is the g × g matrix Wp = [wij ] with entries

wij = f
(p−1)/2
pi−j mod p (1 ≤ i, j ≤ g).

The wij can each be computed using recurrence relations between
the coefficients of fn and those of fn−1.

The congruence
LP (T ) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T ) modulo p.
This is enough to compute #Cp(Fp) for p > 16g2.

The algorithm can be extended to compute Lp(T ) modulo higher powers
of p (and thereby obtain Lp ∈ Z[T ]), but for g ≤ 3 it’s easier to derive
Lp(T ) from Lp(T ) mod p using computations in Jac(C).



The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve y2 = f(x) over Fp of genus
g is the g × g matrix Wp = [wij ] with entries

wij = f
(p−1)/2
pi−j mod p (1 ≤ i, j ≤ g).

The wij can each be computed using recurrence relations between
the coefficients of fn and those of fn−1.

The congruence
LP (T ) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T ) modulo p.
This is enough to compute #Cp(Fp) for p > 16g2.

The algorithm can be extended to compute Lp(T ) modulo higher powers
of p (and thereby obtain Lp ∈ Z[T ]), but for g ≤ 3 it’s easier to derive
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Complexity

Theorem (Harvey-S 2014)

Given a hyperelliptic curve y2 = f(x) of genus g, and an integer N , one
can compute the Hasse-Witt matrices Wp for all good primes p ≤ N in

O
(
g3N log3N log logN

)
time and O(g2N) space,

assuming g and the bit-size of each coefficient of f are O(logN).

The complexity is close to optimal (nearly quasi-linear in output size).

Extends to computing Lp ∈ Z[T ] in O(g4+εN log3+εN) time.

In progress: smooth plane quartics.



genus 2 genus 3

N smalljac hwlpoly hypellfrob hwlpoly

214 0.2 0.1 7.2 0.4
215 0.6 0.3 16.3 1.0
216 1.7 0.9 39.1 2.9
217 5.5 2.2 98.3 7.8
218 19.2 5.3 255 18.3
219 78.4 12.5 695 43.2
220 271 27.8 1950 98.8
221 1120 64.5 5600 229
222 2820 155 16700 537
223 9840 357 51200 1240
224 31900 823 158000 2800
225 105000 1890 501000 6280
226 349000 4250 1480000 13900
227 1210000 9590 4360000 31100
228 4010000 21200 12500000 69700
229 13200000 48300 39500000 155000
230 45500000 108000 120000000 344000

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).



Näıve approach

For each good prime p < N we want to compute the entries

wij = f
(p−1)/2
pi−j mod p (1 ≤ i, j ≤ g).

of the Hasse-Witt matrix Wp = [wij ].

So we could iteratively compute f, f2, f3, . . . , f (N−1)/2 in Z[x] and just
reduce the xpi−j coefficients of f(x)(p−1)/2 mod p for each prime p ≤ N .

But the polynomials fn are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f, . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of fn, we only need one,
and we only need to know its value modulo p = 2n+ 1.
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A better approach

For any integer n ≥ 0 the equations

fn+1 = f · fn and (fn+1)′ = (n+ 1)f ′fn

yield the relations

fn+1
k =

d∑
j=0

fjf
n
k−j and kfn+1

k = (n+ 1)

d∑
j=0

jfjf
n
k−j ,

where fnk denotes the coefficient of xk in fn. Subtracting k times the first
from the second and solving for fnk yields the identity

fnk =
1

kf0

d∑
j=1

(nj + j − k)fjf
n
k−j , (1)

which is valid for all positive integers k and n (assuming f0 6= 0).



If we now define
vnk := [fnk−d+1, . . . , f

n
k ] ∈ Zd,

then the last g entries of v
(p−1)/2
p−1 mod p form the first row of Wp, and

fnk ≡
1

2kf0

d∑
j=1

(j − 2k)fjf
n
k−j mod p,

holds for k ≤ p− 1 = 2n. Starting from vn0 = [0, . . . , 0, fn0 ], we compute

vnp−1 ≡
vn0

2p−1(p− 1)!fp−1
0

p−1∏
k=1

Mk ≡ −vn0
p−1∏
i=1

Mk mod p,

where the d× d matrices

Mk :=


0 · · · 0 (d− 2k)fd

2kf0 · · · 0 (d− 1− 2k)fd−1
...

. . .
...

...
0 · · · 2kf0 (1− 2k)f1


do not depend on p!



Computing a sequence of reduced partial products

Computing the first row of Wp for all p < N reduces to compute the
sequence of reduced partial products

M1M2 mod 3

M1M2M3M4 mod 5

M1M2M3M4M5M6 mod 7

...

M1M2M3M4M5M6 · · ·MN−2 mod N − 1

Doing this näıvely would take time quasi-quadratic in N .

But quasi-linear time is achieved with an accumulating remainder tree.



Accumulating remainder trees

Input: integer matrices M0, . . . ,MN−1 and moduli m0, . . . ,mN−1.

Output: A0, A1, . . . , AN−1, where Ai :=
∏
j<iMj mod mi.

Algorithm:

1 If N = 1 then output A0 := 1 and terminate (base case).

2 Use M ′i := M2iM2i+1 and m′i := m2im2i+1 to recursively
compute A′1, . . . , A

′
N/2.

3 Output

Ai :=

{
A′i/2 mod mi i even;

A′(i−1)/2Mi−1 mod mi i odd.

Using FFT-multiplication, this runs in quasi-linear time.

The space complexity can be improved using a remainder forest.
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Real endomorphism algebras of abelian threefolds

abelian threefold End(AK)R ST0
A

cube of a CM elliptic curve M3(C) U(1)3

cube of a non-CM elliptic curve M3(R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C×M2(C) U(1)× U(1)2

• product of CM elliptic curve and QM abelian surface C×M2(R) U(1)× SU(2)2

• product of CM elliptic curve and square of non-CM elliptic curve

product of non-CM elliptic curve and square of CM elliptic curve R×M2(C) SU(2)× U(1)2

• product of non-CM elliptic curve and QM abelian surface R×M2(R) SU(2)× SU(2)2

• product of non-CM elliptic curve and square of non-CM elliptic curve

• CM abelian threefold C× C× C U(1)× U(1)× U(1)

• product of CM elliptic curve and CM abelian surface

• product of three CM elliptic curves

• product of non-CM elliptic curve and CM abelian surface C× C× R U(1)× U(1)× SU(2)

• product of non-CM elliptic curve and two CM elliptic curves

• product of CM elliptic curve and RM abelian surface C× R× R U(1)× SU(2)× SU(2)

• product of CM elliptic curve and two non-CM elliptic curves

• RM abelian threefold R× R× R SU(2)× SU(2)× SU(2)

• product of non-CM elliptic curve and RM abelian surface

• product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface C× R U(1)× USp(4)

product of non-CM elliptic curve and abelian surface R× R SU(2)× USp(4)

quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)



Connected Sato-Tate groups of abelian threefolds:

U(1)3 SU(2)3 U(1)× U(1)2 U(1)× SU(2)2

SU(2)× U(1)2 SU(2)× SU(2)2 U(1)× U(1)× U(1) U(1)× U(1)× SU(2)

U(1)× SU(2)× U(1) SU(2)× SU(2)× SU(2) U(1)× USp(4) SU(2)× USp(4)

U(3) USp(6)



Partial classification of component groups

G0 G/G0 ↪→ |G/G0| divides
USp(6) C1 1
U(3) C2 2
SU(2)×USp(4) C1 1
U(1)×USp(4) C2 2
SU(2)× SU(2)× SU(2) S3 6
U(1)× SU(2)× SU(2) D2 4
U(1)×U(1)× SU(2) D4 8
U(1)×U(1)×U(1) C2 o S3 48
SU(2)× SU(2)2 D4, D6 8, 12
SU(2)×U(1)2 D6 × C2, S4 × C2 48
U(1)× SU(2)2 D4 × C2, D6 × C2 16, 24
U(1)×U(1)2 D6 × C2 × C2, S4 × C2 × C2 96
SU(2)3 D6, S4 24
U(1)3 · · · 336, 1728

(disclaimer: this is work in progress subject to verification)
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