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Sato-Tate in dimension 1

Let £/Q be an elliptic curve, which we can write in the form
y? =23 +azx +0b,
and let p be a prime of good reduction (4a® + 276 # 0 mod p).
The number of [F,-points on the reduction E, of £ modulo p is
#Ep(Fp) =p+1—1p,
where the trace of Frobenius ¢, € Z lies in the interval [-2,/p, 2,/p].

We are interested in the limiting distribution of z, = —t,/\/p € [-2,2],
as p varies over primes of good reduction up to N, as N — oo.



Example: 4> =23 4+ 2+ 1
p tp Lp p tp Lp p tp Lp
3 0 0.000000 71 13 —1.542816 | 157 —13 1.037513
5 -3 1.341641 73 2 —0.234082 | 163 —25 1.958151
7 3 —1.133893 79 —6 0.675053 | 167 24 —1.857176
11 -2 0.603023 83 —6 0.658586 | 173 2 —0.152057
13 —4 1.109400 89 -—-10 1.059998 | 179 0 0.000000
17 0 0.000000 97 1 —0.101535 | 181 -8 0.594635
19 -1 0.229416 | 101 -3 0.298511 | 191 —25 1.808937
23 —4 0.834058 | 103 17  —1.675060 | 193 -7 0.503871
29 —6 1.114172 | 107 3 —0.290021 | 197 —-24 1.709929
37 -10 1.643990 | 109 -—13 1.245174 | 199 -18 1.275986
41 7 —1.093216 | 113 11 1.034793 | 211 —11 0.757271
43 10 —1.524986 | 127 2  —0.177471 | 223 -20 1.339299
47 —12 1.750380 | 131 4  —0.349482 | 227 0 0.000000
53 —4 0.549442 | 137 12 —1.025229 | 229 -2 0.132164
59 -3 0.390567 | 139 14 —1.187465 | 233 -3 0.196537
61 12 —1.536443 | 149 14 —1.146925 | 239 —22 1.423062
67 12 —1.466033 | 151 -2 0.162758 | 241 22 —1.417145

http://math.mit.edu/~drew/glSatoTateDistributions.html


http://math.mit.edu/~drew/g1SatoTateDistributions.html

al histogram of y"2 = x"3 + x + 1 for p <= 2710
170 data points in 13 buckets, z1 = 0.029, out of range data has area 0.018

Moments: 1 0.051 1033 0.081 2.060 0.284 4971 1134 13.278 4,308 37.954

click histogram to animate (requires adobe reader)



al histogram of y™2 + xy +y = x™3 - "2 - 20067762415575526585033208209338542750930230312178956502x%
+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 forp <=2"10
172 data points in 13 bucdkets, z1 = 0.023, out of range data has area 0.250

Moments: 1 1.034 1716 2.532 4.446 7.203 13.024 22.220 40854 72,100 133961

click histogram to animate (requires adobe reader)



al histogram of y"2 = x"3+1 for p <= 2710
170 data points in 13 buckets, z1 = 0.518, out of range data has area 0.418

Moments: 1 -0.044 0934 -0160 2754 -0.660 9.051 -2.655 31.232 -10.427 110.831

click histogram to animate (requires adobe reader)



al histogram of y#2 = x*3+1 over Q(sgrt(-3)) for split p <= 2410
164 data points in 13 buckets, out of range data has area 0.122

Moments: 1 -0.082 1.935 -0.331 5710 -1.368 18.765 -5.504 64.750 -21.616 229.771

click histogram to animate (requires adobe reader)



Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/Q without CM have the semicircular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E//k with CM have one of two distinct trace distributions,
depending on whether k£ contains the CM field or not.

[classical (Hecke, Deuring)]




Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the /-adic Galois representation attached to F.

The refined Sato-Tate conjecture implies that the distribution of
normalized traces of E),, converges to the distribution of traces in
the Sato-Tate group of (&, under the Haar measure.

G G/G° E k E[aY], E[a?],E[ai]. ..
U(1) Cy =23 +1 Q(v-3) 1,2,6,20,70,252,...
N(U(1)) Cq P =x3+1 Q 1,1,3,10,35,126, ...
SU(2) Cq v=234+2z+1 Q 1,1,2,5,14,42, . ..

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.



Zeta functions and L-polynomials

Let C'/Q be a nice curve of genus g and p a prime of good reduction.
Define the zeta function

Zp(T) = exp (Z NTTT/T> ,
r=1

where N, = #C)(F,-). This is a rational function of the form

Ly(T)
(1-T7)1—pT)’

Zp(T) =

where L,(T') is an integer polynomial of degree 2g.
For g =1 we have L,(t) = pT? + 1T + 1, and for g = 2,

Ly(T) = p*T* + c1pT? + caT? + T + 1.



Normalized L-polynomials

The normalized L-polynomial

2g

Ly(T) == L(T/\/p) = 3 aiT' € R[T]

1=0

is monic, reciprocal (a; = azg—;), and unitary (roots on the unit circle).
The coefficients a; satisfy the Weil bounds |a;| < (Qf).

We now consider the limiting distribution of ag, as, ..., a4 over all
primes p < N of good reduction, as N — oc.

http://math.mit.edu/~drew/g2SatoTateDistributions.html


http://math.mit.edu/~drew/g2SatoTateDistributions.html

al histogram of yA2 = x5 - x + 1 for p == 2*10
167 data points in 13 buckets, z1 = 0.030

Moments: 1 0.098 1.031 -0.011 3.041 -0.725 13944 -3.026 81644 4.428 547.633

click histogram to animate (requires adobe reader)



a2 histogram of yA2 = x5 - x + 1 for p == 210
167 data points in 13 buckets

Moments: 1 0.996 2058 4129 10,085 26.401 75.879 231.863 746,430 2496195 8595192

click histogram to animate (requires adobe reader)



al histogram of yA2 = x5 + 2xM - xA3 - 3x2 - x for p == 2710
168 data points in 13 buckets, z1 = 0.196

Moments: 1 0.034 1.822 0.225 9.587 4.08l 71210 €8.942 658625 1080.045 7157.897

click histogram to animate (requires adobe reader)




a2 histogram of y»2 = x5 + 2xM - xA3 - 3x2 - x for p == 2710
168 data points in 13 buckets, z2 = [0.006 0.000 0.000 0.000 0.012]

Moments: 1 0.814 2679 8930 33.618 120.114 506.202 2236335 10692989 53523301 278878.343

click histogram to animate (requires adobe reader)




Exceptional distributions for abelian surfaces over Q:
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L-polynomials of Abelian varieties

Let A be an abelian variety of dimension g > 1 over a number field &,
and let us fix a prime £.

Let po: G — Autg,(Vi(A)) ~ GSp,,(Qy) be the Galois representation
arising from the action of G}, := Gal(k/k) on the f-adic Tate module

Vi(A) = lim A" © Q.
For each prime p of good reduction for A we have the L-polynomial
Ly(T) := det(1 - py(Froby)T),
Ly(T) := Ly(T/V/Tpll) = > aiT".

When A is the Jacobian of a genus g curve C, this agrees with our earlier
definition of L,(T") as the numerator of the zeta function Z,(T').



The Sato-Tate problem for an abelian variety

The Ep € R[T] are monic, symmetric, unitary polynomials of degree 2g.

Every such polynomial arises as the characteristic polynomial of
a conjugacy class in the unitary symplectic group USp(2g).

Each probability measure on USp(2g) determines a distribution of
conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which
these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact
subgroup ST 4 of USp(2g).



The Sato-Tate group

Recall that the action of Gy, on V;(A) induces the representation
pe: Gy — Autg, (Vi(A)) ~ GSpyy(Qy).

Let ;" denote the kernel of the similitude character of GSpa, (Q¢) on

the Zariski closure of py(Gy). Now fix ¢: Qy — C, and define ST 4 to be a
. . 1,zar

maximal compact subgroup of the image G, under

Sp2g (QZ) ®—LC> Sp2g((c)'

Conjecturally, ST 4 does not depend on £ or ¢; this is known for g < 3.

Definition [Serre]
ST 4 C USp(2g) is the Sato-Tate group of A.




The refined Sato-Tate conjecture

Let s(p) denote the conjugacy class of the image of Frob, in ST 4.

Let ust, denote the image of the Haar measure on Conj(ST4),
which does not depend on the choice of £ or ¢.

Conjecture

The conjugacy classes s(p) are equidistributed with respect to psr, .

In particular, the distribution of L,(T) matches the distribution of
characteristic polynomials of random matrices in ST 4.

We can test this numerically by comparing statistics of the coefficients
ai,...,aqg of Ly(T) over [|p|| < N to the predictions given by usr,.

https://hensel.mit.edu:8000/home/pub/6


https://hensel.mit.edu:8000/home/pub/6

The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

Q G is closed subgroup of USp(2g).

@ Hodge condition: G contains a Hodge circle! whose conjugates
generate a dense subset of G.

© Rationality condition: for each component H of GG and each
irreducible character x of GLy4(C) we have E[x(vy) : v € H] € Z.

For any fixed g, the set of subgroups G C USp(2g) that satisfy the
Sato-Tate axioms is finite up to conjugacy (3 for g = 1, 55 for g = 2).

'An embedding #: U(1) — G° where 6(u) has eigenvalues u,u ™! with multiplicity g.



The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

Q G is closed subgroup of USp(2g).

@ Hodge condition: G contains a Hodge circle! whose conjugates
generate a dense subset of G.

© Rationality condition: for each component H of GG and each
irreducible character x of GLy4(C) we have E[x(vy) : v € H] € Z.

For any fixed g, the set of subgroups G C USp(2g) that satisfy the
Sato-Tate axioms is finite up to conjugacy (3 for g = 1, 55 for g = 2).

Theorem
For g < 3, the group ST 4 satisfies the Sato-Tate axioms.

This is expected to hold for all g.

'An embedding 0: U(1) — G° where 6(u) has eigenvalues u, v~ with multiplicity g.



Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k in k for which End(Ax) = End(Ay).
Gal(K/k) acts on the R-algebra End(Ag)r := End(Ag) ®z R.

Definition

The Galois (endomorphism module) type of A is the isomorphism class of
[Gal(K/k), End(Ak)r], where [G, E] ~ [G’, '] iff there are isomorphisms
G ~ G’ and E ~ FE’ that are compatible with the Galois action.




Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k in k for which End(Ax) = End(Ay).
Gal(K/k) acts on the R-algebra End(Ag)r := End(Ag) ®z R.

Definition

The Galois (endomorphism module) type of A is the isomorphism class of
[Gal(K/k), End(Ak)r], where [G, E] ~ [G’, '] iff there are isomorphisms
G ~ G'" and E ~ E’ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A/k of dimension g < 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component STY is determined by End(Ag ),
and there is a natural isomorphism ST 4/STY ~ Gal(K/k).




Real endomorphism algebras of abelian surfaces

abelian surface End(Ag)r | ST

square of CM elliptic curve M, (C) U(1)2

e QM abelian surface M (R) SU(2),

e square of non-CM elliptic curve

e CM abelian surface CxC U(1) x U(1)

e product of CM elliptic curves

product of CM and non-CM elliptic curves | C x R U(1) x SU(2)
e RM abelian surface R xR SU(2) x SU(2)
e product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)




Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1)2 5

C1,C2,C3,C4, Cg, D2, D3, Dy, Dg, T, O,

J(C1), J(C2), J(C3), J(Cy), J(C),

J(D2), J(D3), J(D4), J(Dg), J(T), J(O),
Co,1,C4,1,C6,1, D21, D32, Dy 1, Dy 2, Dg 1, Dg 2, O1
Ey, Es, Es, Es, Eg, J(E1), J(E2), J(E3), J(Es), J(Eg)
F, Fy, Fe, Fa,ba Fap, Fac, Fab,cv Fa,b,c

U(1) x SU(2), N(U(1) x SU(2))

SU(2) x SU(2), N(SU(2) x SU(2))

USp(4)




Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1)2:

C1,Cs,C5,C4,Cg, Dy, D3, Dy, Dg, T, O,

J(C1), J(C2), J(Cs), J(Cy), J(Cs),

J(DZ)v J(DB)a J(D4)7 J(DG)a J(T)’ J(O)v
C2,1,C41,C6,1,D2.1,D32,D41, D42, De 1, Dg 2,01

E\,E5, E3,Ey, Eg, J(E1), J(E2), J(E3), J(E4), J(Es)

F,Fy, Fe, Fa,ba Fap, Fac, Fab,cv Fa,b7c
U(1) x SU(2), N(U(1) x SU(2))
SU(2) x SU(2), N(SU(2) x SU(2))
USp(4)

Of these, exactly 52 arise as ST 4 for an abelian surface A (34 over Q).

v




Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:
U(l)g: Cl,CQ,03,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C3), J(Cs), J(Cy), J(Cs),
J(DZ)v J(Dd)a J(D4)7 J(Db)a J(T)’ J(O)v
C2,1,C41,C6,1, D21, D32, Dy 1, Da2, De 1, De 2, O1

SU(2)2:  En, By, Es, Ey, Es, J(En), J(E2), J(E3), J(E4), J(E6)
(1) X U(l): F: FaaFc;Fa7baFavaac>Fab7cha,b7c
U(1) x SU(2):  U(1) x SU(2), N(U(1) x SU(2))
SU(2) x SU(2):  SU(2) x SU(2), N(SU(2) x SU(2))

USp(4):  USp(4)
Of these, exactly 52 arise as ST 4 for an abelian surface A (34 over Q).

This theorem says nothing about equidistribution, however this is now
known in many special cases [FS 2012, Johansson 2013].




Sato-Tate groups in dimension 2 with G° = U(1)s.

d c G cjcv 21 2 Mla?] Mlaz]

1 1T O C1 0 0,0,0,0,0 8,96,1280,17920 4, 18, 88, 454
1 2 Cs Ca 1 0,0,0,0,0 4,48,640, 8960 2,10, 44, 230
1 3 Cs Cs 0 0,0,0,0,0 4,36,440, 6020 2,8, 34,164

1 4 Cy Cy 1 0,0,0,0,0 4,36,400,5040 2,8, 32,150

1 6 Cg Ce 1 0,0,0,0,0 4,36,400,4900 2,8, 32,148

1 4 Dy Do 3 0,0,0,0,0  2,24,320,4480 1,6,22,118

1 6 Ds D3 3 0,0,0,0,0 2,18,220,3010 1,5,17,85

1 8 Dy Dy 5 0,0,0,0,0 2,18,200,2520 1,5,16,78

1 12 Dg Dg 7 0,0,0,0,0 2,18,200,2450 1,5,16, 77

1 2 J(C1) Ca 1 1,0,0,0,0 4,48,640,8960 1,11, 40,235
1 4 J(C3) Do 3 1,0,0,0,1  2,24,320,4480 1,7,22,123

1 6 J(C3) Cg 3 1,0,0,2,0 2,18,220,3010 1,5,16,85

1 8 J(C4) Cy4xCo 5 1,0,2,0,1 2,18,200,2520 1,5,16,79

1 2 J(Cg) Cg x Ca 7  1,2,0,2,1  2,18,200,2450 1,5,16,77

1 8 J(D3) Dy xCs 7 1,0,0,0,3 1,12, 160, 2240 1,5,13, 67

1 J(D3) Dg 9 1,0,0,2,3 1,9,110,1505 1,4, 10,48

1 J(Dy) DgxCp 13 1,0,2,0,5 1,9,100,1260 1,4,10,45

1 J(Dg) DgxCp 19 1,2,0,2,7 1,9,100,1225 1,4, 10,44

1 Ca,1 Ca 1 0,0,0,0,1 4,48, 640, 8960 3,11, 48, 235
1 Cun Cy 3 0,0,2,0,0 2,24,320,4480 1,5,22,115

1 Ce.1 Ce 3 0,2,0,0,1 2,18,220,3010 1,5,18,85

1 Doy Dy 3 0,0,0,0,2  2,24,320,4480 2,7,26,123

1 Dy Dy 7 0,0,2,0,2 1,12,160,2240 1,4,13,63

1 D¢ 1 Dg 9 0,2,0,0,4 1,9,110,1505 1,4,11,48

1 D32 D3 3 0,0,0,0,3 2,18,220,3010 2,6,21,90

1 D42 Dy 5 0,0,0,0,4 2,18,200,2520 2, 6,20, 83

1 Dg 2 Dg 7  0,0,0,0,6 2,18,200,2450 2,6, 20, 82

1 o Ay 3 0,0,0,0,0 2,12,120,1540 1,4,12,52

1 o Sy 9 0,0,0,0,0 2,12,100,1050 1,4,11,45

1 0, Sy 15  0,0,6,0,6 1,6,60,770 1,3,8,30

1 J(T) A4 xCy 15 1,0,0,8,3 1,6,60,770 1,3,7,29

1 J(0) Sy xCy 33 1,0,6,8,9 1,6,50,525 1,3,7,26



Sato-Tate groups in dimension 2 with G° # U(1)s.

d @ G G/G° z1 z2 M[a;‘l’] Mlas]

3 1 B, C1 0 0,0,0,0,0 4,32,320,3584  3,10,37,150
3 2 B Co 1 0,0,0,0,0 2 16,160,1792 1,6,17,78
3 3 E, Cs 0 0,0,0,0,0 212,110,1204 1,4,13,52
3 4 By Cy 1 0,0,0,0,0 2,12,100,1008 1,4,11,46
3 6 Eg Ce 1 0,0,0,0,0 2,12,100,980  1,4,11,44
3 2 J(E71) Cy 1 0,0,0,0,0 2,16,160,1792  2,6,20,78
3 4 J(E2) Do 3 0,0,0,0,0 1, 8,80, 896 1,4,10,42
3 6 J(E3) D3 3 0,0,0,0,0 1,6,55,602 1,3,8,29
3 8 J(E4) Dy 5 0,0,0,0,0 1,6,50,504 1,3,7,26
B 12 J(Es) Dg 7 0,0,0,0,0 1,6,50,490 1,3,7,25
2 1 F ©h 0 0,0,0,0,0 4,36,400,4900 2,8,32,148
2 2 R, Co 0 0,0,0,0,1 3,21,210,2485 2,6, 20, 82
2 2 F, o5 1 0,0,0,0,0 218,200,245 1,5,16,77
2 2 Fa Cs 1 0,0,0,0,1 2, 18,200,2450 2,6,20,82
2 4 o Ca 3 0,0,2,0,1 1,9,100,1225 1,3,10,41
2 4 F,, Do 1 0,0,0,0,3 2,12,110,1260 2,5, 14,49
2 4 Fa. Do 3 0,0,0,0,1 1,9, 1001225 1,4,10, 44
2 8 Fap,e Dy 5 0,0,2,0,3 1,6,55,630 1,3,7,26
4 1 4 Cq 0 0,00,0,0 3,20,175,1764  2,6,20,76
4 2 N(G4) Ca 0 0,0,0,0,1 2,11, 90, 889 2,5,14,46
6 1 Gs C1 0 0,0,0,0,0 2,10,70,588 2.5, 14, 44
6 2  N(Gg) ©C» 1 0,0,0,0,0 1,535,294 1,3,7,23
10 1 USp(4) ©C; 0 0,0,0,00 1,3, 14,84 1,2,4,10



Genus 2 curves realizing Sato-Tate groups with G0 = U(1)3

Group Curve y2 = i) k K
Ccy 26 11 ov=3) o(v=3)
Cy 25 — = ov/=2)  Q, V2)
C3 z6 + 4 o(v/=3) o(v/=3, ¥2)
Cy 26 + 25 — 5zd — 522 —z 4+ 1 (v=2) Q(v/=2,a)at+17a2 +68=0
Ce 26 42 ov=3) (=3, ¥2)
Dy 25 + 9z ov=2) Qi V2, V3)
Ds 26 + 1023 — 2 ev=2) /=3, ¥=2)
Dy 25 4 3z ov=2) Q@ V2, ¥3)
Dg 26 4+ 325 41023 — 1522 + 150 — 6 o(v/=3) (i, v2,V3,a);a% +3a—2=0
T 26 + 62° — 2024 + 2023 — 2002 — 8z + 8 o+v/=2) Q(v/=2,a,b);
a® —7a+7=0%+4b2 18 +8=0
o 26 — 524 4+ 1023 — 522 4 20 — 1 ov=2) Q(v=2,v/—11,a,b);
a3 —da+4=0*+226422=0
J(C1) = - Q(3) (i, vV2)
J(Cg) 25 — Q(%, V2)
J(C3) 28+ 1023 —2 ov=3) o(v/-3, ¥-32)
J(Cy) 26 4 2% — 522 — 522 — x4 1 Q see entry for C'y
J(Cg) 26 — 1524 — 2023 + 6z + 1 Q Q(i, v3,a); a3 +3a2 —1=0
J(D3) @+ 9z Q Q(i, V2, V3)
J(Dg) 28+ 1023 — 2 Q o(v=3, ¥=2)
J(Dy) @5 43z Q QGi, V2, ¥3)
J(Dg) 0 4325 + 1023 — 1522 4+ 152 — 6 Q see entry for Dg
J(T) 26 + 625 — 2024 + 2023 — 2022 — 8z + 8 Q see entry for T'
J(0) 26 — 524 4+ 1023 — 522 + 2z — 1 Q see entry for O
Ca1 2% +1 Q o(v=3)
C4n 25 4 22 Q(3) o(i, ¥2)
C6.1 26 + 62 — 3024 + 2023 + 1522 — 122 +1 @ Q(v/=3,a);a® —8a+1=0
D3 1 2% + o Q Q(, V2)
Dy 2% 4 2z Q o, ¥3)
Dg,1 26 + 62° — 3024 — 4023 + 6022 + 242 — 8 @ Q(v/=2,v=3,a);a® —9a + 6 =0
D35 26 44 Q o(v/=3, ¥2)
Dy 20 4+ 2% + 1023 + 522 4o — 2 Q Q(v/=2,a); a* — 1442 4+ 284 — 14 =0
Dg,2 «0 4 2 Q ov=3, ¥2)
04 20 4+ 725 4 1024 + 1023 + 1522 + 172 +4 @ Q(v/=2, a, b);

a3 +5a+10=0b%+4b2+8+2=0




Genus 2 curves realizing Sato-Tate groups with G° # U(1),

Group Curve y2 = f(x) k K

F 26 + 32t + 22 — 1 Q(i,vV2)  Q(i, V2)

Fq 26 4+ 32% + 22 — 1 Q(4) Q(4, v2)

Fap 26 +32% + 22 — 1 Q(V2) Q(i, V2)

Fac x5 4+ 1 Q Q(a); a* +5a% +5=0
Fap 26 + 32* + 22 -1 Q Q(i, V2)

Ey 26 + 2t 22 41 Q Q

Eo zs+15+314+3z2—z+1 Q @(\/ﬁ)

E3 15+z4731374127r Q Q(a);a373a+1:0
Ey m5+w4+22—z Q Q(a);a4—5a2+520
Eg Z5+2Z471373Z27:ﬂ Q Q(ﬁ,a);a377a77:0
J(B1) 22+ 2% 4o Q Q(2)

J(B2) z° + 1% — =z Q Q(i, V2)

J(E3) 28+ 2% 44 Q Qv=3, ¥2)

J(E4) z® 4+ 2% + 22 Q Qi, ¥2)

J(E¢) 28 + a3 -2 Q Q(v=3, ¥=2)

Gi,3 26 + 324 — 2 Q) Q)

N(G13) a%+43z%—2 Q Q@)

G3.3 26 + 22 41 Q Q

N(G3,3) wf’ +a® +ax—1 Q Q(z)

USp(4) z° —z+1 Q Q



Part Two



Searching for curves

We surveyed the L-polynomial distributions of genus 2 curves

2 4 2
Y :x5+64x —|—03:E3—i—02m + c1x + o,

y2 =25+ 652135 + C4m4 + 633:3 + 621:2 + c1x + ¢,
with integer coefficients |c;| < 128. More than 2*® curves.
We found over 10 million non-isomorphic curves with exceptional

distributions, including at least 3 apparent matches for each of the
34 Sato-Tate groups that can occur over Q.

Representative examples were computed to high precision N = 230

For each example, the field K was then determined, allowing the
Galois type, and hence the Sato-Tate group, to be provably identified.



Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over Q are
all realized by Jacobians of genus 2 curves.

By extending the base field from Q to a suitable subfield k of K,
we can restrict G/G° ~ Gal(K/k) to any normal subgroup of Gal(K/k)
(base extension does not change the identity component G°).

This allows us to realize all 52 Sato-Tate groups using base extensions of
34 curves defined over Q (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k7



Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over QQ are
all realized by Jacobians of genus 2 curves.

By extending the base field from Q to a suitable subfield k of K,
we can restrict G/G° ~ Gal(K/k) to any normal subgroup of Gal(K/k)
(base extension does not change the identity component G°).

This allows us to realize all 52 Sato-Tate groups using base extensions of
34 curves defined over Q (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k7
Theorem (Fité-Guitart 2015)

All 52 possible Sato-Tate groups arise for abelian surfaces defined over

k= Q(v/—10,v/—=51,v/—163,v/—67,V/817,/—57).




Computing zeta functions

Algorithms to compute L, (T") for low genus hyperelliptic curves

complexity
(ignoring factors of O(loglogp))

algorithm g=1 g=2 g=3

point enumeration plogp p?logp p3logp
group computation p/tlogp  p¥tlogp  pPtlogp
p-adic cohomology p2log?p pY%log?p  p'/2log?p
CRT (Schoof-Pila) log® p log® p log!? p




Computing zeta functions

Algorithms to compute L, (T") for low genus hyperelliptic curves

complexity
(ignoring factors of O(loglogp))

algorithm g=1 g=2 g=3

point enumeration plogp p?logp p3logp
group computation pY4logp  pMtlogp  p/tlogp
p-adic cohomology p2log?p pY%log?p  p'/2log?p
CRT (Schoof-Pila) log® p log® p log!? p

(see [Kedlaya-S 2008]).



An average polynomial-time algorithm

All of these methods perform separate computations for each p.
But we want to compute L, (T") for all good p < N using reductions
of the same curve in each case. Can we take advantage of this?



An average polynomial-time algorithm

All of these methods perform separate computations for each p.
But we want to compute L, (T") for all good p < N using reductions
of the same curve in each case. Can we take advantage of this?

Theorem (Harvey 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve
y? = f(x) of genus g with a rational Weierstrass point and an integer N,
computes Ly,(T) for all good primes p < N in time

0(98+6N 10g3+e ]\7)7

assuming the coefficients of f € Z[x] have size bounded by O(log N).

Average time is O(g8Jr€ log*te N) per prime, polynomial in g and logp.
Recently generalized to arithmetic schemes.




An average polynomial-time algorithm

complexity
(ignoring factors of O(loglogp))

algorithm g=1 g=2 g=3
point enumeration plogp p?logp p3logp
group computation p/tlogp  p¥tlogp  p*tlogp
p-adic cohomology p2log?p pY%log?p  p'/2log?p
CRT (Schoof-Pila) log® p log® p log!? p
Average polytime log? p log? p log* p

But is it practical?



The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve 2 = f(z) over IF,, of genus
g is the g x g matrix W), = [w;;] with entries

f(p D/ modp (1<i,j<g).

The w;; can each be computed using recurrence relations between
the coefficients of f™ and those of f*~1.

The congruence
Lp(T) =det(I — TW),) mod p

allows us to determine the coefficients a1, ..., a4 of L,(T") modulo p.
This is enough to compute #C,(F,) for p > 1692



The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve 2 = f(z) over IF,, of genus
g is the g x g matrix W), = [w;;] with entries

f(p D/ modp (1<i,j<g).

The w;; can each be computed using recurrence relations between
the coefficients of f™ and those of f*~1.

The congruence
Lp(T) =det(I — TW),) mod p

allows us to determine the coefficients a1, ..., a4 of L,(T") modulo p.
This is enough to compute #C,(F,) for p > 1692

The algorithm can be extended to compute L,(7") modulo higher powers
of p (and thereby obtain L, € Z[T7), but for g < 3 it's easier to derive
L,(T) from L,(T) mod p using computations in Jac(C).



Complexity

Theorem (Harvey-S 2014)

Given a hyperelliptic curve y> = f(x) of genus g, and an integer N, one
can compute the Hasse-Witt matrices W, for all good primes p < N in

O(g°Nlog® N loglog N) time and O(g*N) space,

assuming g and the bit-size of each coefficient of f are O(log N).

The complexity is close to optimal (nearly quasi-linear in output size).
Extends to computing L, € Z[T] in O(g***N log®™ N) time.

In progress: smooth plane quartics.



genus 2 genus 3

N smalljac hwlpoly hypellfrob hwlpoly
214 0.2 0.1 7.2 0.4
218 0.6 0.3 16.3 1.0
216 1.7 0.9 39.1 2.9
217 5.5 2.2 08.3 7.8
218 19.2 53 255 18.3
219 78.4 12.5 695 43.2
220 271 27.8 1950 98.8
221 1120 64.5 5600 229
222 2820 155 16700 537
2% 9840 357 51200 1240
2% 31900 823 158000 2800
2% 105000 1890 501000 6280
%6 349000 4250 1480000 13900
227 1210000 9590 4360000 31100
228 4010000 21200 12500000 69700
2% 13200000 48300 39500000 155000
230 45500000 108000 120000000 344000

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).



Naive approach

For each good prime p < N we want to compute the entries

f(P—l)/

Wij = Jpi—j

‘modp  (1<i, j<g)

of the Hasse-Witt matrix W, = [w;;].

So we could iteratively compute f, f2, f3,..., fN=D/2in Z[z] and just
reduce the zP~7 coefficients of f(z)®~1)/2 mod p for each prime p < N.



Naive approach

For each good prime p < N we want to compute the entries

f(P—l)/

2 . .
wzj = piej modp (1 S (23] g g)

of the Hasse-Witt matrix W, = [w;;].

So we could iteratively compute f, f2, f3,..., fN=D/2in Z[z] and just
reduce the zP~7 coefficients of f(z)®~1)/2 mod p for each prime p < N.

But the polynomials f™ are huge, each has Q(n?) bits.
It would take Q(N?3) time to compute f,..., fN=D/2in Z[z].

So this is a terrible idea...



Naive approach

For each good prime p < N we want to compute the entries

P modp  (1<i, j<g).

Wij = Jpi—j

of the Hasse-Witt matrix W, = [w;;].

So we could iteratively compute f, f2, f3,..., fN=D/2in Z[z] and just
reduce the zP~7 coefficients of f(z)®~1)/2 mod p for each prime p < N.

But the polynomials f™ are huge, each has Q(n?) bits.
It would take Q(N?3) time to compute f,..., fN=D/2in Z[z].

So this is a terrible idea...

But we don’t need all the coefficients of f™, we only need one,
and we only need to know its value modulo p = 2n + 1.



A better approach
For any integer n > 0 the equations
[ =g and (Y = (kDS

yield the relations

el — ijf,” and  kfit! = n+1zjfjfk],

7=0

where f[' denotes the coefficient of x in f™. Subtracting k times the first
from the second and solving for f;' yields the identity

d

fr= klfo S (nj + i — W, (1)

j=1

which is valid for all positive integers k and n (assuming fo # 0).



If we now define
v = [flg—d—&—lﬁ il € Zd’

then the last g entries of vz()p__ll)/Q mod p form the first row of W), and

=g Qkf Z k)fjfiij mod p,

holds for k£ < p — 1 = 2n. Starting from vy = [0,...,0, f}'], we compute

n

vy = T Y T H My, = —vf Zl_Ile mod p,
where the d X d matrices
0 - 0 (d — 2k) f4
M, = Qk:fo 0 (d—1 _:Qk)fdl
0 h o (1-2W)f

do not depend on p!



Computing a sequence of reduced partial products

Computing the first row of W, for all p < N reduces to compute the
sequence of reduced partial products

MMy mod 3
M1M2M3M4 mod 5
M1M2M3M4M5M6 mod 7

M1M2M3M4M5M6 s MN,Q mod N —1
Doing this naively would take time quasi-quadratic in V.

But quasi-linear time is achieved with an accumulating remainder tree.



Accumulating remainder trees
Input: integer matrices My, ..., Mny_1 and moduli mq,...,my_1.
Output: Ay, A1,...,AN_1, where A; := Hj<i Mj mod m;.

Algorithm:
Q@ If N =1 then output Ay := 1 and terminate (base case).
@ Use M/ := My; Ms;11 and m} := mg;ma;+1 to recursively
compute Af, ... 7A/N/2'
© Output
Ao {A;/z mod m; i even;
e A/(i_l)/gMi—l mod m; ¢ odd.

Using FFT-multiplication, this runs in quasi-linear time.

The space complexity can be improved using a remainder forest.



al histogram of yA2 = x"7-x+1 for p <= 2410
168 data points in 13 buckets, z1 = 0.030

Moments: 1 0.167 0878 0552 2.166 2195 9.022 10.737 48.674 61.554 297.030

click histogram to animate (requires adobe reader)



a2 histogram of yA2 = x"7-x+1 for p <= 2410
168 data points in 13 buckets

Moments: 1 0.887 1661 3767 10599 34.421 124148 480,397 1947.535

click histogram to animate (requires adobe reader)



a3 histogram of yA2 = x"7-x+1 for p <= 2410
168 data points in 13 buckets

Moments: 1 0.243 1643 2164 12,036 34.226 186537 736.915 3906.256

click histogram to animate (requires adobe reader)



al histogram of y"2 = ¥A7 + 3x"6 + 2x°5 + 6xM + 4"3 + 12x"2 + 8x for p == 2710
168 data points in 13 buckets, z1 = 0.274

Moments:1 0.180 1787 1517 10.487 18.166 95714 248342 1133.880 3645317 15564971

click histogram to animate (requires adobe reader)



a2 histogram of y"2 = ¥A7 + 3x"6 + 2x°5 + 6xM + 4"3 + 12x"2 + 8x for p == 2710
168 data points in 13 buckets, z2 = [0.000 0.000 0.000 0.000 0.000 0.000 0.036]

Moments: 1 1.865 6180 24999 122,705 697.662 4429.294 30391.457 220003.581

click histogram to animate (requires adobe reader)



a3 histogram of y"2 = ¥A7 + 3x"6 + 2x°5 + 6xM + 4"3 + 12x"2 + 8x for p == 2710
168 data points in 13 buckets, z3 = 0.274

Moments: 1 0.395 5812 16.472 208554 1226780 13225147 105527.791 1072037628

click histogram to animate (requires adobe reader)



Real endomorphism algebras of abelian threefolds

abelian threefold End(Ag)r | STY

cube of a CM elliptic curve M3 (C) U(1)s

cube of a non-CM elliptic curve M3 (R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C x Mo (C) U(1) x U(1)2

® product of CM elliptic curve and QM abelian surface C x M2 (R) U(1) x SU(2)2

e product of CM elliptic curve and square of non-CM elliptic curve

product of non-CM elliptic curve and square of CM elliptic curve R X M3(C) SU(2) x U(1)2

e product of non-CM elliptic curve and QM abelian surface R X M2 (R) SU(2) x SU(2)2

e product of non-CM elliptic curve and square of non-CM elliptic curve

e CM abelian threefold CxCxC U(1) x U(1) x U(1)

e product of CM elliptic curve and CM abelian surface

e product of three CM elliptic curves

e product of non-CM elliptic curve and CM abelian surface CxCxR U(1) x U(1) x SU(2)
e product of non-CM elliptic curve and two CM elliptic curves

® product of CM elliptic curve and RM abelian surface CxRxR U(1) x SU(2) x SU(2)
e product of CM elliptic curve and two non-CM elliptic curves

e RM abelian threefold RxRXR SU(2) x SU(2) x SU(2)
e product of non-CM elliptic curve and RM abelian surface

e product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface C xR U(1) x USp(4)
product of non-CM elliptic curve and abelian surface R x R SU(2) x USp(4)
quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)




Connected Sato-Tate groups of abelian threefolds:

U(1)s SU@2)s U(1) x U(1)a U(1) x SU(2)s

SU(2) x U(1)a SU(2) x SU(2)2 U(1) x U(1) x U(1) U(1) x U(1) x SU(2)

U(1) x SU(2) x U(1) SU(2) x SU(2) x SU(2) U(1) x USp(4) SU(2) x USp(4)

A A

U(3) USp(6)



Partial classification of component groups

GO G/GO — |G/G0| divides
USp(G) Cl 1
SU(2) x USp(4) C 1
U(1) x USp(4) C, 2
SU(2) x SU(2) x SU(2) Ss 6
U(1) x SU(2) x SU(2) D, 4
U(1) x U(1) x SU(2) Dy 8
U(1) x U(1) x U(1) C21Ss 48
SU(?) X SU(2)2 D4, D6 8, 12
SU(Q) X U(l)g DG X Cg, S4 X Cg 48
U(l) X SU(2)2 D4 X CQ, D6 X Cz 16, 24
U(l) X U(l)g D6 X CQ X CQ, S4 X CQ X CQ 96
SU(2); Do, S 24
U(1); e 336, 1728

(disclaimer: this is work in progress subject to verification)
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