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So what exactly happened?
Over the weekend Wouter Castryck and Thomas Decru posted An efficient key
recovery attack on SIDH to the Cryptology ePrint archive which describes an attack on
the SIKE SIDH protocol that recently advanced to the fourth round of NIST’s ongoing
Post-Quantum Cryptography (PQC) standardization process.

This is not a theoretical attack. The authors provide Magma code that:
• solves Microsoft’s USD 50,000 $IKEp217 challenge in less than five minutes on a

single core (as I will demonstrate).
• breaks SIKEp434 (aimed at NIST quantum security level 1) in less than an hour.
• breaks SIKEp503 (level 2), SIKEp610 (level 3), and SIKEp751 (level 5) in about

2, 8, and 20 hours (respectively).
Modulo needing to factor fixed publicly known integers whose bit-size is about half the
size of p (where the public keys are elements of Fp2), the algorithm heuristically runs in
deterministic polynomial-time on a classical computer.

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://www.microsoft.com/en-us/msrc/sike-cryptographic-challenge


So what does this mean?

The SIKE SIDH protocol proposed to NIST is clearly no longer viable.

Beyond that it is surely too soon to say. To quote the excellent summary Steven
Galbraith posted on his Elliptic Curve Cryptography blog:

The correct response to this is not to attempt to minimise the impact, nor to
reflexively declare the subject dead. Instead, we should keep our minds open
and let the mathematicians work out the implications, wherever they lead.

My goal tonight is to give a high-level overview of the main ideas and to demonstrate
the attack, not to speculate on the future of isogeny-based cyptography.

From the perspective of number theorists seeking to be informed by computation,
this is an exciting and welcome result!

https://ellipticnews.wordpress.com/2022/07/31/breaking-supersingular-isogeny-diffie-hellman-sidh/


SIKE SIDH Setup

Let us begin by recalling the supersingular isogeny Diffie-Hellman protocol (SIDH),
as described in the Supersingular Isogeny Key Encapsulation (SIKE) proposal to NIST.
Fixed public parameters:

• A prime p = 2a3b − 1 with 2a ≈ 3b

• Supersingular Estart : y2 = x3 + 6x2 + x over Fp2 with E(Fp2) = E[2a3b].
Notice that Z[2i] ⊆ End(E). The attack exploits but it is not essential, any small
non-integer endomorphism would work, and it is not clear that even this is necessary.
See section 8.3 of the paper for further discussion.
Alice’s and Bob’s public parameters:

• Alice picks and publishes generators PA, QA for E[2a] = ⟨PA, QA⟩.
• Bob picks and publishes generators PB, QB for E[3b] = ⟨PB, QB⟩.

These play a crucial role in the attack (and have always been a concern for SIDH).

https://csrc.nist.gov/CSRC/media/Presentations/sike-round-3-presentation/images-media/session-6-sike-de-feo.pdf
https://arxiv.org/abs/1910.03180
https://arxiv.org/abs/1910.03180
https://eprint.iacr.org/2022/975.pdf#page=13


Diffie-Hellman key exachange

To agree on a shared secret Alice and Bob execute the following protocol:
• Alice generates random skA ∈ [0, 2a) and sends (EA, ϕA(PB), ϕA(QB)) to Bob,

where ϕA : Estart → EA := E/⟨PA + [skA]QA⟩.
• Bob generates random skB ∈ [0, 3b) and sends (EB, ϕB(PA), ϕB(QA)) to Alice,

where ϕB : Estart → EB := E/⟨PB + [skB]QB⟩.
• Alice computes j(EAB) where EAB := EB/⟨ϕB(PA) + [skA]ϕB(QA)⟩.
• Bob computes j(EBA) where EBA := EA/⟨ϕA(PB) + [skB]ϕA(QB)⟩.

Now Alice and Bob both know the shared secret j(EAB) = j(EBA).

Note that ϕA(PB) and ϕA(QB) are sent in the clear, so to learn the shared secret it is
enough to compute skB, which is what the attack does. It can be adapted to compute
skA as well, but this is not necessary: once you know skB you can compute the shared
secret the same way Bob does.



What is the main idea behind the attack?
The attack exploits the fact that if you start from a product of supersingular elliptic
curves C × E and walk the (ℓ, ℓ)-isogeny graph of principally polarized superspecial
abelian surfaces, almost all the vertices you encounter will be Jacobians of genus 2
curves (≈ p3/2880 of them); products of elliptic curves are rare (≈ p2/288 of them).
If p is cryptographically large you will almost never see another product of elliptic
curves once you depart from C × E on a walk of polynomial length.
But if your destination A happens to be the codomain of an (ℓa, ℓa)-isogeny whose
kernel is a maximal isotropic subgroup of (C × E)[ℓa] arising from an anti-isometry
ψ : C[ℓa] → E[ℓa] associated to an isogeny diamond of order ℓa, then A will be a
product of elliptic curves. And at least heuristically, the converse appears to almost
always hold (the attack relies on this heuristic).
One can turn this into an effective test that makes it possible to compute Bob’s secret
key by iteratively guessing successive ternary digits and testing each guess. When ℓ = 2
the edges we walk are almost all Richelot isogenies, which makes things particularly
simple, explicit, and fast, but this is not essential to the attack, as noted in Section 8.1.

https://eprint.iacr.org/2021/013
https://eprint.iacr.org/2022/975.pdf#page=13


The main workhorse of the algorithm

In their paper Castryck and Decru describe an algorithm that takes inputs:
(i) A prime p = 2a3bf − 1 with 2a ≈ 3b (we will assume 2a > 3b and f = 1).
(ii) A supersingular elliptic curve E0/Fp2 with E0(Fp2) = E0[2a3b] of order (p+ 1)2.
(iii) Generators P0, Q0 for E[2a] = ⟨P0, Q0⟩.
(iv) A known cyclic 3β-isogeny τ : E0 → Estart := y2 = x3 + 6x2 + x with 0 ≤ β < b.
(v) The codomain E/Fp2 of a secret cyclic 3b-isogeny φ : E0 → E.
(vi) The points P = φ(P0) and Q = φ(Q0) generating E[2a] = ⟨P,Q⟩.
The algorithm outputs:

• A generator of the kernel of φ specified as a linear combination of P0 and Q0
(of the form P0 + κQ0 where κ is an integer we compute in base 3).

To determine skB this algorithm is applied iteratively, starting with β = 0 and
E0 = Estart. Each output κ gives another few ternary digits (typically one) of skB.



A decision problem

(1) Given E, P , Q, does there exist a cyclic 3b-isogeny φ : E0 → E such that
φ(P0) = P and φ(Q0) = Q, with E0, P0, Q0 as in (i),(ii),(iii)?

Suppose (1) holds.
Let c := 2a − 3b > 0 and x ∈ [0, 2a) be the inverse of 3b mod 2a so −xc ≡ 1 mod 2a.
Let γ : E0 → C be a cyclic c-isogeny, let ψ := [−1] ◦ φ ◦ γ̂ : C → E with Pc := γ(P0),
Qc := γ(Q0), so that ψ(Pc) = −cP and ψ(Qc) = −cQ. If we apply the Weil pairing

e2a : E[2a] × E[2a] → µ2a(Fp2)

to any R,S ∈ E[2a] we obtain e2a(xψ(R), xψ(S)) = e2a(R,S)x2c3b = e2a(R,S)−1,
which implies that [x] ◦ ψ|C[2a] : C[2a] → E[2a] is an anti-isometry, and that

(2) ⟨(Pc, xψ(Pc)), (Qc, xψ(Qc))⟩ = ⟨(Pc,−xcP ), (Qc,−xcQ)⟩ = ⟨(Pc, P ), (Qc, Q)⟩ is
a maximal isotropic subgroup of (C × E)[2a].



Definition
An anti-isometry ι : C[N ] → E[N ] is reducible if (C × E)/G is a product of elliptic
curves, where G := ⟨(Pc, ι(Pc)), (Qc, ι(Qc))⟩ ⊆ (C ×E)[N ] for some ⟨Pc, Qc⟩ = C[N ].

Definition
An isogeny diamond of order N is a triple (ψ,H1, H2) with ψ : C → E separable,
H1, H2 ⊆ kerψ, H1 ∩H1 = {0}, H1 ×H2 = kerψ, and #H1 + #H2 = N .

Theorem (Kani97)

Let (ψ,H1, H2) be an isogeny diamond of order N , let d := gcd(#H1,#H2),
n := N/d, and ki := #Hi/d. Then ψ = ψ′ ◦ [d] for some ψ′ : C → E and there
exists a unique reducible anti-isometry ι : C[N ] → E[N ] such that

ι(k1R1 + k2R2) = ψ′(R2 −R1)

for all Ri ∈ [n]−1Hi, and every reducible anti-isometry C[N ] → E[N ] arises this way.

https://www.mast.queensu.ca/~kani/papers/numgenl.pdf


Applying Kani’s theorem
Kani’s theorem implies that if (1) holds then xψ|C[2a] is a reducible anti-isometry and
(C × E)/⟨(Pc, P ), (Qc, Q)⟩ is a product of elliptic curves. Heuristically, the converse
almost always holds for large p, which allows one to test whether or not (1) holds.
Suppose the prime factors of c = 2a − 3b are all congruent to 1 mod 4 (this happens
with probability ≈ 1/

√
a). Call such a c good. Then we can write c = u2 + 4v2 and

γstart := [u] + [v] ◦ 2i ∈ End(Estart)

has degree c and is easy to compute; we can choose u, v so γstart cyclic. We are given a
cyclic 3β-isogeny τ : E0 → Estart. Let τ̃ be the cyclic isogeny with kernel γstart(ker τ̂).
Then τ̃ ◦ γstart ◦ τ : E0 → C is a 32βc-isogeny whose kernel contains E0[3β]. Now let

γ := τ̃ ◦ γstart ◦ τ
[3β] : E0 → C.

To compute γ(P0) and γ(Q0) we apply τ̃ ◦ γstartτ and multiply by 1/3β modulo 2a.



Turning our solution to the decision problem into an algorithm

(1) Choose β1 ≥ 1 minimal so there exists α1 ≥ 0 with c1 := 2a−α1 − 3b−β1 good.
(2) Write φ = φ1 ◦ κ1 where κ1 : E0 → E1 is a cyclic 3β1-isogeny

(there are 3β1 or 4 · 3β1−1 possible κ1 and we expect β1 to be small, e.g. β1 = 2).
(3) Test every possible κ1 by solving the decision problem on the inputs

(ii) E1 := κ1(E0).
(iii) P1 := κ1(2α1P0), Q1 := κ1(2α1Q0) generating E1[2a−α1 ].
(iv) The cyclic 3β1 -isogeny κ1 : E1 → E0.
(v) The given codomain E of a secret cyclic 3b−β1 -isogeny φ1 : E1 → E.
(vi) The points 2α1φ(P1) and 2α1φ(P2) generating E[2a−α1 ].

Step 3 involves an initial gluing step (see Howe-Leprévost-Poonen) followed by a
sequence of Richelot isogenies, followed by a single ”δ = 0” test, where δ is the
determinant that shows up in the formula for computing Richelot isogenies.
Heuristically exactly one κ1 will pass the test and you can stop as soon as you find it.

https://arxiv.org/abs/math/9809210


Background on Richelot isogenies
For general background on Richelot isogenies and the (2, 2)-isogeny graph of PPAS’s
I recommend Benjamin Smith’s thesis, and this paper by Smith and Florit.
Let C : y2 = f(x) be a genus 2 curve defined by a sextic f ∈ k[x] with Jacobian J .
The maximal isotropic subgroups of J [2] (kernels of (2, 2)-isogenies) are in one-to-one
correspondence with quadratic splittings of f . If f = g1g2g3 with g1, g2, g3 ∈ k̄[x]
quadratic, the divisors D1 and D2 formed by taking the difference of the points whose
x-coordinates are roots of g1(x) and g2(x) (respectively) generate a maximal isotropic
subgroup Gg1g2 ⊆ J [2], and every maximal isotropic subgroup of J [2] arises this way.
Let gi(x) = gi2x

2 + gi1x+ gi0. We may assume g12 = g22 = 1. If

δ := det
(

g10 g11 1
g20 g21 1
g30 g31 g32

)
is nonzero then J/Gg1g2 is the Jacobian J ′ of a genus 2 curve C ′, and there are
explicit formulas for the (2, 2)-isogeny J → J ′ with kernel Gg1g2 and the curve C ′.
But if δ = 0 then J/Gg1g2 is a product of elliptic curves; this is the ”δ = 0” test.

http://www.ma.rhul.ac.uk/~bensmith/smith-thesis.pdf
https://eprint.iacr.org/2021/013


Computing all the ternary digits of skB
Once we know κ1 we have the first few digits of skB. We now choose β2 > β1 and
proceed as above to compute κ2, and then do the same for κ3, . . . , κr.

In total we need to compute approximately

1
2

(
3β1 + 3β2−β1 + · · · + 3b−βr

)
chains of (2, 2)-isogenies. In the best case this is about 9b/4, and this is actually close
to the typical case, at least heuristically; most steps involve two ternary digits of skB.

As an optimization, after the first step one can extend φ by composing with an extra
3-isogeny, making it easier to obtain good ci using smaller βi. With this optimization
we are typically computing just one ternary digit of skB in each step.

Demonstration time!

https://pcmi2022.org/hub/user-redirect/lab/tree/course_folder/CDSIKEattack/SIKE_challenge.ipynb

