Algorithms to enumerate superspecial Howe curves of genus 4

Momonari Kudo¹
Shushi Harashita²
Everett Howe³

¹The University of Tokyo ²Yokohama National University ³Unaffiliated Mathematician

June 26th 2020

Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV)

Superspecial/Supersingular curves

Definition of superspecial/supersingular curves

• K: an algebraically closed field of characteristic p>0

Definition C: a non-singular curve of genus g over K

- C is superspecial (ssp.) \Leftrightarrow Jac(C) \cong E^g (ISOMORPHIC) over K
- C is supersingular (ssg.) \Leftrightarrow Jac(C) $\sim E^g$ (ISOGENOUS) over K
 - \rightarrow $\exists E$: ssg. elliptic curve

Applications to cryptography and coding theory

- Algebraic geometric codes
 - \triangleright Ssp./ssg. curves tend to have many rational points w.r.t. (g, p) over finite fields.
- Isogeny-based cryptography (genus 1 or 2) e.g.
 - [Castryck-Decru-Smith], or Katsura-Takashima's work

[Castryck-Decru-Smith] *Hash functions from superspecial genus-2 curves using Richelot isogenies*, Proceedings of Number-Theoretic Methods in Cryptology 2019 (NutMiC 2019), arXiv: 1903.06451 [cs.CR], 2019.

(Non-)Existence and enumeration of ssp. curves

☐ The finiteness of the number of ssp. curves

Fact; case of principally polarized abelian varieties (PPAV)

Fixed (g,p), the num. of ssp. PPAVs of dim g over $\overline{\mathbb{F}_p}$ is finite $\neq 0$

- \triangleright In particular, the num. of isomorphism classes of ssp. curves of genus g over $\overline{\mathbb{F}_p}$ is finite (if such a curve exists)
- The main problems of this work

Problems

- Given g and p, does there exist a ssp./ssg. curve of genus g in char. p?
- If a ssp. curve exists, count the num. of isom. classes.

[Pries] Current results on newton polygons of curves, Chapter 6, Questions in Arithmetic Algebraic Geometry, Advanced Lectures in Mathematics Book Series.

> This work focuses mainly on ssp. case.

Related works (1/2)

Ekedahl's bound

Thm. (Ekedahl, 1987)
$$\exists X/\overline{\mathbb{F}_p}$$
: ssp. curve of genus $g \Longrightarrow 2g \le p^2 - p$

[Ekedahl] On supersingular curves and abelian varieties, Math. Scand. 60 (1987), pp. 151-178.

- \square Case of $g \le 3$: There exists a ssp. curve in every char. p > 3.
 - > In fact, the num. of isom. classes is determined by
 - (g = 1): Deuring 1941
 - (g = 2): Ibukiyama-Katsura-Oort 1986
 - (g = 3): Brock 1993

[Deuring] M. Deuring, *Die Typen der Multiplikatorenringe elliptischer Funktionenkörper*, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.

[Ibukiyama-Katsura-Oort] *Supersingular curves of genus two and class numbers*, Compositio Math. **57** (1986), no.2, 127-152, MR 827350.

[Brock] Superspecial curves of genera two and three, Ph.D. thesis, Princeton University, 1993, MR 2689446

Related works (2/2)

 \square The next target: g = 4

The (non-)existence of a ssp. curve in general p is an open problem!

Some results for specific small p are known, e.g.,

 $(p \le 3)$: Non-existence by Ekedahl 1987

(p=5): \exists ! Isom. class over $\overline{\mathbb{F}_p}$ by Fuhrmann-Garcia-Torres 1997

(p = 7): Non-existence by [K. – H. 2017]

 \triangleright Also see [K. – H. 2018] for the hyperelliptic case with $p \le 23$

[K. – H. 2017], Superspecial curves of genus 4 in small characteristic,

Finite Fields and Their Applications, 45, 131-169, 2017.

[K. – H. 2018] Algorithmic study of superspecial hyperelliptic curves over finite fields, 2019, arXiv:1907.00894 [math.AG]

- \square This work aims to obtain results for much larger p by:
- Focusing on *Howe curves* (defined in the next slide) with *algorithmic approaches*

Howe curves (1/2)

Definition of Howe curves

<u>**Definition**</u> A *Howe curve* is a curve isomorphic to the desingularization of the fiber product $E_1 \times_{\mathbf{P}^1} E_2$ of two genus-1 double covers $E_i \to \mathbf{P}^1$ ramified over S_i , where S_i consists of 4 points and where $|S_1 \cap S_2| = 1$.

= 1. E_1 E_2 P^1

<u>Lem.</u> Every Howe curve is a canonical curve of genus 4.

Fig. 1 V_4 -diagram

- Namely, a Howe curve is a genus-4 curve D that fits into a V_4 -diagram of the form shown in **Fig. 1**, where C is a genus-2 curve.
- The third author [Howe] studied these curves in order to quickly construct genus-4 curves with many rational points.

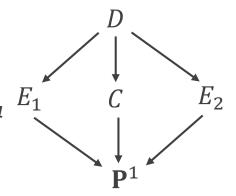
[Howe] Quickly constructing curves of genus 4 with many points, pp. 149–173 in: Frobenius Distributions Sato-Tate and Lang-Trotter conjectures (D. Kohel and I. Shparlinski, eds.), Contemporary Mathematics **663**, American Mathematical Society, Providence, RI (2016)

Howe curves (2/2)

□ Howe curves are very useful to find ssp. curves and *ssg*. curves!

Thm (K. – H. – Senda). For every p > 3, there exists a supersingular Howe curve.

[K. – H. – Senda] *The existence of supersingular curves of genus 4 in arbitrary characteristic,* 2019. arXiv:1903.08095 [math.AG]



Fact D is superspecial (resp. supersingular)

 \Leftrightarrow Both E_1 , E_2 and C are ssp. (resp. ssg.)

- The authors of [K. H. Senda] construct a 2-dim. family of Howe curves realized as E_i : $z_i^2 = f_i$ for cubic f_i parametrized by $(\lambda: \mu: \nu) \in \mathbf{P}^2(K)$.
- We expect that the space of Howe curves also includes a ssp. points!

Our contribution (1/2)

- Algorithms (in a later slide) to find and enumerate ssp. Howe curves
- Executing the algorithms over Magma, we have the following:
 - Finding an example of ssp. Howe curves;

Theorem For every prime with $7 or with <math>p \equiv 5 \mod 6$, there exists a superspecial Howe curve in characteristic p.

Enumeration of isomorphism classes;

<u>Theorem</u> For every prime with 7 , the number of isomorphism classes of superspecial Howe curves in characteristic <math>p is given in Table 1.

- \triangleright The upper bounds on p in the theorems can be increased. For instance,
 - Enumerating the ssp. Howe curves for p=199 by our algorithm (B) took 124 seconds.
 - Finding examples of ssp. Howe curves for every 7 took 680 minutes. on one core of a 2.8 GHz Quad-Core Intel Core i7 with 16GB RAM.

Our contribution (2/2)

Table 1. For each prime p from 11 to 199, we give the number n(p) of superspecial Howe curves over $\overline{\mathbb{F}_p}$, and the ratio of n(p) to the heuristic prediction $p^3/1152$.

p	n(p)	Ratio	1	n(p)	Ratio		p	n(p)	Ratio
11	4	3.462	67	7 260	0.996	-	137	2430	1.089
13	3	1.573	7	742	2.388		139	2447	1.050
17	10	2.345	73	316	0.936		149	3082	1.073
19	4	0.672	79	595	1.390		151	3553	1.189
23	33	3.125	83	655	1.320		157	3427	1.020
29	45	2.126	89	863	1.410		163	3518	0.936
31	59	2.281	97	7 802	1.012		167	6268	1.550
37	41	0.932	101	1207	1.350		173	4780	1.064
41	105	1.755	103	1151	1.213		179	5771	1.159
43	79	1.145	107	7 1237	1.163		181	5419	1.053
47	235	2.608	109	1193	1.061		191	9610	1.589
53	167	1.292	113	3 1323	1.056		193	6298	1.009
59	259	1.453	127	7 2013	1.132		197	6839	1.030
61	243	1.233	131	2606	1.335		199	8351	1.221

Outline of the algorithms (details at live session)

- Two strategies to find superspecial Howe curves
 - A) (E_1, E_2) -first, using Cartier-Manin matrices
 - Use the same realization as in [K. H. Senda]
 - > Reduced into solving multivariate systems with a few variables
 - > Solve them with computer algebra techniques, e.g., resultants
 - B) C-first, using Richelot isogenies
 - Reduced into producing superspecial genus 2-curves
 - > Efficiently produce them by applying Richelot isogenies
- Efficient isomorphism test specific to Howe curves
 - \triangleright Use of ramified points of $E_i \rightarrow \mathbf{P}^1$
 - Very efficient compared to the conventional method [K. − H. 2017], which compute Gröbner bases

You are very welcome to our live session!

