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A brief review of pre-recording talk (1/2)

 Our target: 𝑔 = 4

This work aims to obtain results for much larger 𝑝 by focusing on Howe curves.

 A Howe curve is a genus-4 curve 𝐷 that fits into a 𝑉4-diagram.

Main problems of this work

 Given 𝑔 and 𝑝, does there exist a ssp. curve of genus 𝑔 in char. 𝑝?

 If a ssp. curve exists, count the num. of isom. classes.

The (non-)existence of a ssp. curve in general 𝑝 is an open problem, 
while some results for specific small 𝑝 are known.

Definition A Howe curve is a curve isomorphic to the 
desingularization of the fiber product 𝐸1 ×𝐏1 𝐸2 of two 
genus-1 double covers 𝐸𝑖 → 𝐏1 ramified over 𝑆𝑖, 
where 𝑆𝑖 consists of 4 points and where 𝑆1 ∩ 𝑆2 = 1.
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A brief review of pre-recording talk (2/2)

 Howe curves are useful to find supersingular curves

We also expect the existence of superspecial Howe curves!

 Our contributions
• Algorithms to find and enumerate ssp. Howe curves

1. Two strategies to produce such curves

2. Efficient isomorphism test for (not necessarily superspecial) Howe curves

• Computational results by executing the algorithms over Magma
 The existence of a ssp. Howe curve for every 7 < 𝑝 < 20000

 Enumeration of ssp. Howe curves for every 7 < 𝑝 ≤ 199
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Thm (K. – H. – Senda, 2019). For every 𝑝 > 3, 
there exists a supersingular Howe curve.

Fact 𝐷 is ssp. (resp. ssg.) ⟺ Both 𝐸1, 𝐸2 and 𝐶
are ssp. (resp. ssg.)
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Isomorphism test for Howe curves (1/2)

 The three data specifying a Howe curve
•𝐶 : a genus-2 curve

• {𝑊1,𝑊2}, where 𝑊1⨆𝑊2 is the set of Weierstrass
points of 𝐶 with #𝑊𝑖 = 3

• {𝑃1, 𝑃2}, where 𝑃𝑖’s are distinct points on 𝐶 mapped 
to one another by hyperelliptic involution

Lem. 3.1 (page 6) The data specifying a Howe curve is recoverable 
up to automorphism of 𝐶 just from the structure map 𝜂:𝐷 → 𝐶.
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Given the above data, we call the double cover 𝜂: 𝐷 → 𝐶 the structure map.

Note that we can take the set of ramified points of 𝜂 as {𝑃1, 𝑃2}.



Isomorphism test for Howe curves (2/2)

 Isomorphism test for Howe curves

•𝐻, 𝐻′ : Howe curves specified respectively by (𝐶, {𝑊1,𝑊2}, {𝑃1, 𝑃2}) and 
(𝐶′, {𝑊1

′,𝑊2
′}, {𝑃1

′, 𝑃2
′}), where the triples are given as in the previous slides

•This allows us to test whether Howe curves are isomorphic or not by 
determining the (non-)existence of a certain automorphism of 𝐏1 with 
simple linear algebra!

Cor. 3.3 (page 8) Assume char 𝐾 ≠ 2. If 𝐻 and 𝐻′ as above 
are isomorphic to each other, then there exists an isomorphism 
𝐶 → 𝐶′ that takes {𝑊1,𝑊2} to {𝑊1

′,𝑊2
′} and {𝑃1, 𝑃2} to {𝑃1

′, 𝑃2
′}.

Thm. 3.2 (page 6) If char 𝐾 ≠ 2, then the two structure 
maps 𝜂𝑖: 𝐷 → 𝐶𝑖 are isomorphic to one another, i.e., 
there is an isomorphism 𝛾 and an automorphism 𝛿 such 
that the diagram of the r.h.s. commutes.

𝐶2𝐶1

𝐷 𝐷

𝜂1 𝜂2

𝛾
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A) (𝐸1, 𝐸2)-first, using Cartier-Manin matrices (1/2)

 2-dim. parameterization of Howe curves by [K. – H. – Senda] 
•Given elliptic curves 𝑦2 = 𝑥3 + 𝐴𝑖𝑥 + 𝐵𝑖 (𝐴𝑖 , 𝐵𝑖 ∈ 𝐾) with 𝑖 = 1,2, 

we say that a point 𝜆: 𝜇: 𝜈 ∈ 𝐏2(𝐾) is of Howe type if
(1) 𝜇 ≠ 0 and 𝜈 ≠ 0, (2) 𝑓1 and 𝑓2 are coprime,

where
 𝑓1 = 𝑥3 + 𝐴1𝜇

2𝑥 + 𝐵1𝜇
3

 𝑓2 = 𝑥 − 𝜆 3 + 𝐴2𝜈
2 𝑥 − 𝜆 + 𝐵2𝜈

3

•The space of these points 𝜆: 𝜇: 𝜈 ∈ 𝐏2(𝐾) parameterizes Howe 
curves 𝐷 by 𝐸1: 𝑧

2𝑦 = 𝑓1
h, 𝐸2: 𝑤

2𝑦 = 𝑓2
h and 𝐶: 𝑦2 = 𝑓1𝑓2, where 

𝑓𝑖
h is the homogenization of 𝑓𝑖 w.r.t. 𝑦.

 The field of definition of superspecial Howe curves

𝐸2
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𝐸1

𝐻

𝐶

Prop. 4.1 (page 9). Any superspecial Howe curve is 𝐾-isomorphic to 𝐻
obtained as above for 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝜆, 𝜇 and 𝜈 belonging to 𝔽𝑝2. 



A) (𝐸1, 𝐸2)-first, using Cartier-Manin matrices (2/2)

 A criterion for superspeciality from Cartier-Manin matrices for 𝐶
 𝐶 : the hyperelliptic curve 𝑦2 = 𝑓 ≔ 𝑓1𝑓2
 𝛾𝑖 : the coefficient of 𝑥𝑖 in 𝑓(𝑝−1)/2

 Outline of algorithm (Alg. 4.2 on pp. 9-10 for details)

1. Compute 𝐴, 𝐵 ∈ 𝔽𝑝2
2

such that 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 is supersingular.

2. For each set of pairs (𝐴1, 𝐵1) and (𝐴2, 𝐵2):

a. Compute 𝛾𝑝−2, 𝛾𝑝−1, 𝛾2𝑝−2, 𝛾2𝑝−1, where 𝜆, 𝜇 are variables and 𝜈 = 1

b. Solve the (multivariate) system in Lem. 2.2 over 𝔽𝑝2.

Lem. 2.2 (page 5). The Howe curve 𝐻 is superspecial if and only if 
𝛾𝑝−2 = 𝛾𝑝−1 = 𝛾2𝑝−2 = 𝛾2𝑝−1 = 0.

The problem to find ssp. Howe curves is reduced into solving 
a zero-dim. system of (multivariate) algebraic equations!
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B) 𝐶-first, using Richelot isogenies (1/4)

 The strategy
1. Enumerate superspecial genus 2-curves 𝐶.
 Apply Algorithm 5.7 of [Howe] with the IKO formula:

where RedAut(𝐶) is the reduced group of automorphisms of 𝐶.

Note: An isomorphism test for genus 2-curves is done by computing Igusa-invariants

2. For each 𝐶, check whether it fits into 𝑉4-diagram.

3. Execute our isomorphism test of Howe curves for each pair of 
computed (𝑓1, 𝑓2) and (𝑓1

′, 𝑓2
′) defining 𝐶: 𝑦2 = 𝑓1𝑓2 and 𝐶′: 𝑦2 = 𝑓1

′𝑓2
′.

𝐸2

𝐏1

𝐸1

𝐻

𝐶

[Howe] Quickly constructing curves of genus 4 with many points, pp. 149–173 in: Frobenius Distributions: 
Sato-Tate and Lang-Trotter conjectures (D. Kohel and I. Shparlinski, eds.), Contemporary Mathematics 
663, American Mathematical Society, Providence, RI (2016)

[Ibukiyama-Katsura-Oort] Supersingular curves of genus two and class numbers, Compositio Math. 57
(1986), no.2, 127-152, MR 827350.

 

𝐶:ssp.genus 2

1

#RedAut(𝐶)
=

(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

2880



B) 𝐶-first, using Richelot isogenies (2/4)

 Enumeration of ssp. genus 2-curves (variant of Alg. 5.7 of [Howe])
1. Set ℒ ← ∅, and compute all 𝔽𝑝2-maximal elliptic curves over 𝔽𝑝2.

2. For every pair (𝐸, 𝐸′) of 𝔽𝑝2-maximal elliptic curves 𝐸 and 𝐸′ over 𝔽𝑝2, 
add at most six genus-2 curves 𝐶 to ℒ such that 𝐽(𝐶) is (2,2)-isogenous
to 𝐸 × 𝐸′, computed by Prop. 4 of [H. – Leprévost – Poonen].

3. Repeat the following until IKO formula holds:
 For each 𝐶 ∈ ℒ: compute non-singular curves 𝐶′ which are Richelot isogenous

to 𝐶. If 𝐶′ is not isomorphic to any element of ℒ, then ℒ ← ℒ ∪ {𝐶′}.

 This is done by using a method in Section 4 of [Bruin - Doerksen] (or see 
Section 3 of [Castryck et al.]) for computing Richelot isogenies.

[Howe - Leprévost – Poonen] Large torsion subgroups of split Jacobians of curves of genus 
two or three, Forum Math. 12 (2000), no. 3, 315-364. MR 1748483

[Castryck – Decru – Smith] Hash functions from superspecial genus-2 curves using Richelot isogenies, 
Proc. of Number-Theoretic Methods in Cryptology 2019 (NutMiC 2019), arXiv: 1903.06451 [cs.CR].

[Bruin – Doerksen] The arithmetic of genus two curves with (4, 4)-split jacobians. Canadian 
Journal of Mathematics, 63(5):992–1024, 2011.



B) 𝐶-first, using Richelot isogenies (3/4)

 Correctness of the enumeration of ssp. genus 2-curves

• See also Conjecture 1 of [Castryck et al.], which conjectures the graph of 
(2,2)-isogenies of ssp. p.p. abelian surfaces is connected.
 Recently it seems to be shown in Corollary 18 in [Jordan-Zaytman] (unpublished).

• Fortunately, we do not need to prove this conjecture in general, because for 
any specific 𝑝 we can verify it computationally by IKO formula.

Conj. 5.1 (page 12). If we seed the list of curves as above, and then 
take the closure of the list under Richelot isogenies, we will obtain 
all superspecial genus 2-curves. 

[Jordan - Zaytman] Isogeny graphs of superspecial abelian varieties and generalized 
Brandt matrices, arXiv:2005.09031.

[Castryck – Decru – Smith] Hash functions from superspecial genus-2 curves using Richelot isogenies, 
Proc. of Number-Theoretic Methods in Cryptology 2019 (NutMiC 2019), arXiv: 1903.06451 [cs.CR], 2019.



B) 𝐶-first, using Richelot isogenies (4/4)

 Testing whether a genus 2-curve fits into 𝑉4-diagram (pp. 12-13)
• Assume 𝐶 ∈ ℒ is given by 𝑦2 =  𝑖=1

6 (𝑥 − 𝑎𝑖)

• For each of 10 ways to split {𝑎𝑖} to 2 sets of 3 points (e.g., {𝑎1, 𝑎2, 𝑎3}, {𝑎4, 𝑎5, 𝑎6}): 
Conduct 1, 2 to compute 𝑏 ∈ 𝔽𝑝2 such that the following are both supersingular: 

(5.1) 𝑦2 = (𝑥 − 𝑏)(𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)

(5.2) 𝑦2 = (𝑥 − 𝑏)(𝑥 − 𝑎4)(𝑥 − 𝑎5)(𝑥 − 𝑎6)

1. For each ssg. 𝑗-invariant 𝑗0 (𝑝/12 choices): solve 𝑗 𝑏 = 𝑗0.

 𝑗(𝑏) : the 𝑗-invariant of an elliptic curve isom. to (5.1)

 𝑗(𝑏) is degree 6 as a poly. of 𝑏

2. For each root 𝑏, check the 𝜆-invariant of (5.2) is supersingular.

 A randomly chosen 𝜆-inv. is ssg. with probability  (6 × 𝑝/12)/𝑝2 = 1/2𝑝

 Approximation of the num. of ssp. Howe curves
𝑝

2880
× 10 × 6 ×

𝑝

12
×

1

2𝑝
=

𝑝3

1152IKO formula
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Computational results with complexity remark

 Our results (recall)

 The upper bounds on 𝑝 in the theorems can be increased. For instance, 

◦ Enumerating the ssp. Howe curves for 𝑝 = 199 by our algorithm (B) took 124 seconds.

◦ Finding examples of ssp. Howe curves for every 7 < 𝑝 < 20000 took 680 minutes.

over Magma on one core of a 2.8 GHz Quad-Core Intel Core i7 with 16GB RAM.

 The results with 𝑝 ≡ 5 mod 6 are obtained not by computer (a proof on page 14)

 Estimated complexities (upper bounds) of the two algorithms
 The method A):  𝑂(𝑝6) > The method B):  𝑂(𝑝4)

Theorem For every prime with 7 < 𝑝 < 20000 or with 𝑝 ≡ 5 mod 6, 
there exists a superspecial Howe curve in characteristic 𝑝.

Theorem For every prime with 7 < 𝑝 ≤ 199, the number of isomorphism 
classes of superspecial Howe curves in characteristic 𝑝 is given in Table 1. 



Table 1. For each prime 𝑝 from 11 to 199, we give the number 𝑛(𝑝) of superspecial

Howe curves over 𝔽𝑝, and the ratio of 𝑛(𝑝) to the heuristic prediction 𝑝3/1152.

Table 2. Benchmark timing data for the strategies (A) and (B). All times 
shown are in seconds.
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Summary and future work

 Results introduced in this talk
• Algorithms to find and enumerate ssp. Howe curves
 Two strategies to produce such curves

 Efficient isomorphism test for (not necessarily superspecial) Howe curves

• Computational results by executing the algorithms over Magma
 The existence of a ssp. Howe curve for every 7 < 𝑝 < 20000

 Enumeration of ssp. Howe curves for every 7 < 𝑝 ≤ 199

 Future work (Open problems)
• Improve the proposed algorithms

•Prove the following conjecture from our computational results:
 For every 𝑝 > 7, there exists a ssp. Howe curve, and thus a ssp. curve of 

genus 4 always exists except for 𝑝 = 7.

•Case of genus > 4 ?


