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I • Summary



Notation and Problem Statement

• Consider matrices

W0 = P · Q ∈ Qp×q

Wa = P · Ua · Q ∈ Qp×q , a ∈ I
where

• P ∈ Qp×n of rank p ≤ n
• Q ∈ Qn×q of rank q ≤ n
• {Ua}a∈I ⊆ Qn×n diagonal , I := {1, . . . , t}

• Problem: Given W0, {Wa}a, and assume W0 is of full rank p
compute diagonal entries of {Ua}a

• Easy case (p,q = n, t = 1) [we call this Problem A]
Solution: Return the eigenvalues of

W−1
0 ·W1 = Q−1U1Q

• Goal: Minimize p,q, t w.r.t. n
• Motivation for improved cryptanalysis
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Summary of our work

1. We solve the mentioned problem by heuristic algorithms in the
following cases:

• (Problem C) P of rank p < n, Q of rank q = n
• (Problem D) P,Q of rank p = q < n

Parameters:
• Solve C for p ≥

√
2n = O(

√
n) ; t ≥

√
2n− 1 = O(

√
n)

• Solve D for p ≥ 2
3n+

√
n

3
√

2 = 2
3n+O(

√
n) ; t ≥

√
2n
3 + 5

3 = O(
√
n)

2. Applications
• CRT-Approximate-Common Divisor Problem

• improvement of the Coron-Pereira algorithm (Asiacrypt’19)
• By solving a certain instance of this problem, we obtain a quadratic

improvement in the number of input samples
• Cryptanalysis of CLT13 Multilinear Maps

• improvement of the Cheon et al. attack (Eurocrypt’15)
• By solving a certain instance of this problem, we obtain a quadratic

improvement in the number of encodings needed for the attack



II • Our Algorithms



Problem C: Q ∈ GLn(Q)

• Write Wa = (PQ)(Q−1UaQ) =: W0Za (Za unknown)

• Properties of {Za}a:
(a) General solution: Za = Ya + EXa, where

• Ya ∈ Qn×n s.t. W0Ya = Wa (let Ya = W†
0Wa)

• E ∈ Qn×p s.t. 〈E〉 = ker(W0)
• {Xa}a ⊆ Qp×n variables

(b) Matrices {Za}a commute
• [Za, Zb] = 0 for all a < b gives an explicit system of linear

equations in the variables {Xa}a
• Heuristic unicity of solution {Xa}a if the system has su�ciently

many equations
• working condition: p(t+ 1) ≤ 2n
• e.g. choose p = d

√
2ne, t = d

√
2ne − 1
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Algorithm for Pb. C - P of low-rank, Q of full rank

Note that for a,b ∈ I:

[Za, Zb] = 0 =⇒ WaW†
0Wb −WbW†

0Wa +WaEXb −WbEXa = 0

Algorithm

1. For a,b ∈ I,a < b compute ∆ab = WaW†
0Wb −WbW†

0Wa

2. Solve a linear system of equations

∆ab = WbEXa −WaEXb , a,b ∈ I, a < b

for the matrices {Xa}a
3. If success, run simultaneous diagonalization of {Za}a with

Za = W†
0Wa + EXa, a ∈ I
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Problem D: P,Q of low-rank p

• Main idea: reduce to Problem C

• We compute {Va}a ⊆ Qp×(n−p) s.t. there exists Q̃ ∈ Qp×(n−p)

s.t. [Q|Q̃] ∈ GLn(Q) and

PQ̃ = 0
PUaQ̃ = Va, a ∈ I

• This gives public augmented matrices {W′a}a∈I∪{0}:

W′0 := [W0|0] = P[Q|Q̃] ∈ Qp×n of full rank
W′a := [Wa|Va] = PUa[Q|Q̃] ∈ Qp×n , a ∈ I

• Use previous Algorithm on augmented input W′0, {W′a}a
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Algorithm for Pb. D - symmetrically low ranks in P,Q

• For a,b ∈ I de�ne ∆ab = WaW−1
0 Wb −WbW−1

0 Wa ∈ Qp×p

• Rewrite as
∆ab = VaGb − VbGa

for some Va ∈ Qp×(n−p), Ga ∈ Q(n−p)×n (explicit construction)
• Heuristically, if p > 2

3n and t = #I ≥ 3:⋂
b∈I\{a}

Im(∆ab) = Im(Va) , a ∈ I

Algorithm

1. Compute ∆ab = WaW−1
0 Wb −WbW−1

0 Wa for a,b ∈ I
2. Compute basis matrices {V′a} of ⋂b∈I\{a} Im(∆ab) for every a ∈ I
3. Compute {Va} by solving a system of linear equations
4. Run �rst algorithm on W′0 = [W0|0] and W′a = [Wa|Va] for a ∈ I



III • Applications



Motivation : Applications in Cryptography

1. The CRT-ACD Approximate Common Divisor Problem

• improvement of the Coron-Pereira [CP19] algorithm
• By solving a certain instance of this problem, we obtain a

quadratic improvement in the number of input samples

2. CLT13 Multilinear Maps

• improvement of the Cheon et al. attack [CHL+15]
• By solving a certain instance of this problem, we obtain a

quadratic improvement in the number of encodings (of zero)
needed for the attack



The CLT13 multilinear maps over the integers [CLT13]

• integers n ≥ 2 (dimension of CLT13), κ ≥ 2 multilinearity degree
• Instance generation: secret ”large” primes p1, . . . ,pn and secret

”small” primes g1, . . . ,gn
• x0 = ∏1≤i≤n pi public

• Messages are elements m = (m1, . . . ,mn) ∈ Fg1 × · · · ×Fgn

• Encoding space E = Fp1 × · · · ×Fpn ' Z/x0Z

• graded structure: encode at levels j ∈ {1, . . . , κ}
• supports homomorphic addition and multiplication

• A public zero-testing procedure P : Eκ → {0, 1} de�ned by
public zero-test parameter pzt ∈ Z/x0Z
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Application to the cryptanalysis of the CLT13 Mmap

Cheon et al. attack against CLT13, [CHL+15]

• Sets A,B, C of low-level encodings s.t
∀ (a,b, c) ∈ A×B × C : abc = encκ(0)

• #A = n, #B = 2, #C = n
• Using zero-test function, derive matrix equalities
Wa = P · Ua · Q, a = 1, 2 with secret

• P – n× n matrix of rank n (whp)
• Ua – diagonal n× n
• Q – n× n matrix of rank n (whp)

• Find prime factorization of x0 from W1,W2 by solving Problem A

Cryptanalysis with fewer encodings
Rearrange sets A,B, C and solve Pb. C/D instead of A:

• O(
√
n) encodings of zero vs. n

• 4n/3 +O(
√
n) total encodings vs. 2n+ 2
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Conclusion

This work

• generalizes a computational problem based on simultaneous
matrix diagonalization

• provides heuristic algorithms to solve this problem
• o�ers quadratic improvement in input size for two problems

with interest in computational number theory and
cryptanalysis

• open: other applications possibly to �nd



Thank you for your attention
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