Simultaneous Diagonalization of Incomplete Matrices and Applications

Jean-Sébastien Coron¹, **Luca Notarnicola**² and Gabor Wiese³ ANTS-XIV 2020 July 4, 2020

^{1,2,3}University of Luxembourg, Luxembourg

I • Summary

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\{U_a\}_{a\in I}\subseteq \mathbb{Q}^{n\times n}$ diagonal , $I:=\{1,\ldots,t\}$
- **Problem:** Given W_0 , $\{W_a\}_a$, and assume W_0 is of full rank p compute diagonal entries of $\{U_a\}_a$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- * $\{U_a\}_{a\in I}\subseteq \mathbb{Q}^{n\times n}$ diagonal , $I:=\{1,\ldots,t\}$
- **Problem:** Given W_0 , $\{W_a\}_a$, and assume W_0 is of full rank p compute diagonal entries of $\{U_a\}_a$
- Easy case (p, q = n, t = 1) [we call this Problem A] Solution: Return the eigenvalues of

$$W_0^{-1} \cdot W_1 = Q^{-1} U_1 Q$$

$$\begin{split} & W_{\mathbf{o}} &= P \cdot Q \in \mathbb{Q}^{p \times q} \\ & W_{a} &= P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q} , \quad a \in I \end{split}$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- * $\{U_a\}_{a\in I}\subseteq \mathbb{Q}^{n\times n}$ diagonal , $I:=\{1,\ldots,t\}$
- **Problem:** Given W_0 , $\{W_a\}_a$, and assume W_0 is of full rank p compute diagonal entries of $\{U_a\}_a$
- Easy case (p, q = n, t = 1) [we call this Problem A] Solution: Return the eigenvalues of

$$W_0^{-1} \cdot W_1 = Q^{-1} U_1 Q$$

• Goal: Minimize p, q, t w.r.t. n

$$\begin{split} & W_{\mathbf{o}} &= P \cdot Q \in \mathbb{Q}^{p \times q} \\ & W_{a} &= P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q} , \quad a \in I \end{split}$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\{U_a\}_{a\in I}\subseteq \mathbb{Q}^{n\times n}$ diagonal , $I:=\{1,\ldots,t\}$
- Problem: Given W₀, {W_a}_a, and assume W₀ is of full rank p compute diagonal entries of {U_a}_a
- Easy case (p, q = n, t = 1) [we call this Problem A] Solution: Return the eigenvalues of

$$W_0^{-1} \cdot W_1 = Q^{-1} U_1 Q$$

- Goal: Minimize p, q, t w.r.t. n
- Motivation for improved cryptanalysis

Summary of our work

- 1. We solve the mentioned problem by heuristic algorithms in the following cases:
 - (Problem \mathbb{C}) P of rank p < n, Q of rank q = n
 - (Problem \mathbb{D}) P, Q of rank p = q < n
 - **Parameters:**
 - Solve \mathbb{C} for $p \ge \sqrt{2n} = \mathcal{O}(\sqrt{n})$; $t \ge \sqrt{2n} 1 = \mathcal{O}(\sqrt{n})$
 - Solve \mathbb{D} for $p \geq \frac{2}{3}n + \frac{\sqrt{n}}{3\sqrt{2}} = \frac{2}{3}n + \mathcal{O}(\sqrt{n})$; $t \geq \frac{\sqrt{2n}}{3} + \frac{5}{3} = \mathcal{O}(\sqrt{n})$
- 2. Applications
 - CRT-Approximate-Common Divisor Problem
 - improvement of the Coron-Pereira algorithm (Asiacrypt'19)
 - By solving a certain instance of this problem, we obtain a quadratic improvement in the number of input samples
 - Cryptanalysis of CLT13 Multilinear Maps
 - improvement of the Cheon et al. attack (Eurocrypt'15)
 - By solving a certain instance of this problem, we obtain a quadratic improvement in the number of encodings needed for the attack

II • Our Algorithms

Problem C: $Q \in GL_n(\mathbb{Q})$

• Write $W_a = (PQ)(Q^{-1}U_aQ) =: W_0Z_a$ (Z_a unknown)

Problem C: $Q \in GL_n(\mathbb{Q})$

- Write $W_a = (PQ)(Q^{-1}U_aQ) =: W_oZ_a$ (Z_a unknown)
- Properties of {Z_a}_a:
 (a) General solution: Z_a = Y_a + EX_a, where
 - $Y_a \in \mathbb{Q}^{n \times n}$ s.t. $W_o Y_a = W_a$ (let $Y_a = W_o^{\dagger} W_a$)
 - $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E \rangle = \ker(W_0)$
 - $\{X_a\}_a \subseteq \mathbb{Q}^{p \times n}$ variables

(b) Matrices $\{Z_a\}_a$ commute

Problem \mathbb{C} : $Q \in GL_n(\mathbb{Q})$

- Write $W_a = (PQ)(Q^{-1}U_aQ) =: W_oZ_a$ (Z_a unknown)
- Properties of {Z_a}_a:
 (a) General solution: Z_a = Y_a + EX_a, where
 - $Y_a \in \mathbb{Q}^{n \times n}$ s.t. $W_o Y_a = W_a$ (let $Y_a = W_o^{\dagger} W_a$)
 - $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E \rangle = \ker(W_0)$
 - ${X_a}_a \subseteq \mathbb{Q}^{p \times n}$ variables

(b) Matrices $\{Z_a\}_a$ commute

- $[Z_a, Z_b] = o$ for all a < b gives an explicit system of linear equations in the variables $\{X_a\}_a$
- Heuristic unicity of solution $\{X_a\}_a$ if the system has sufficiently many equations
- working condition: $p(t + 1) \le 2n$

Problem \mathbb{C} : $Q \in GL_n(\mathbb{Q})$

- Write $W_a = (PQ)(Q^{-1}U_aQ) =: W_oZ_a$ (Z_a unknown)
- Properties of {Z_a}_a:
 (a) General solution: Z_a = Y_a + EX_a, where
 - $Y_a \in \mathbb{Q}^{n \times n}$ s.t. $W_o Y_a = W_a$ (let $Y_a = W_o^{\dagger} W_a$)
 - $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E \rangle = \ker(W_0)$
 - $\{X_a\}_a \subseteq \mathbb{Q}^{p \times n}$ variables

(b) Matrices $\{Z_a\}_a$ commute

- $[Z_a, Z_b] = o$ for all a < b gives an explicit system of linear equations in the variables $\{X_a\}_a$
- Heuristic unicity of solution $\{X_a\}_a$ if the system has sufficiently many equations
- working condition: $p(t + 1) \leq 2n$
- e.g. choose $p = \lceil \sqrt{2n} \rceil$, $t = \lceil \sqrt{2n} \rceil 1$

Algorithm for Pb. \mathbb{C} - *P* of low-rank, *Q* of full rank

Note that for $a, b \in I$:

 $[Z_a, Z_b] = o \implies W_a W_o^{\dagger} W_b - W_b W_o^{\dagger} W_a + W_a E X_b - W_b E X_a = o$

Algorithm for Pb. \mathbb{C} - *P* of low-rank, *Q* of full rank

Note that for $a, b \in I$:

 $[Z_a, Z_b] = o \implies W_a W_o^{\dagger} W_b - W_b W_o^{\dagger} W_a + W_a E X_b - W_b E X_a = o$

Algorithm

1. For $a, b \in I, a < b$ compute $\Delta_{ab} = W_a W_0^{\dagger} W_b - W_b W_0^{\dagger} W_a$

2. Solve a linear system of equations

$$\Delta_{ab} = W_b E X_a - W_a E X_b, \quad a, b \in I, \ a < b$$

for the matrices $\{X_a\}_a$

3. If success, run simultaneous diagonalization of $\{Z_a\}_a$ with

$$Z_a = W_o^{\dagger} W_a + E X_a, \quad a \in I$$

Problem \mathbb{D} : *P*, *Q* of low-rank *p*

- Main idea: reduce to Problem $\mathbb C$
- We compute $\{V_a\}_a \subseteq \mathbb{Q}^{p \times (n-p)}$ s.t. there exists $\tilde{Q} \in \mathbb{Q}^{p \times (n-p)}$ s.t. $[Q|\tilde{Q}] \in GL_n(\mathbb{Q})$ and

 $\begin{array}{rcl} P\tilde{Q} & = & \mathbf{O} \\ PU_a\tilde{Q} & = & V_a, & a \in I \end{array}$

Problem \mathbb{D} : *P*, *Q* of low-rank *p*

- Main idea: reduce to Problem $\mathbb C$
- We compute $\{V_a\}_a \subseteq \mathbb{Q}^{p \times (n-p)}$ s.t. there exists $\tilde{Q} \in \mathbb{Q}^{p \times (n-p)}$ s.t. $[Q|\tilde{Q}] \in GL_n(\mathbb{Q})$ and

$$P ilde{Q} = 0$$

 $PU_a ilde{Q} = V_a, \quad a \in I$

• This gives public augmented matrices $\{W'_a\}_{a \in I \cup \{o\}}$:

$$\begin{aligned} W'_{o} &:= [W_{o}|o] = P[Q|\tilde{Q}] \in \mathbb{Q}^{p \times n} \text{ of full rank} \\ W'_{a} &:= [W_{a}|V_{a}] = PU_{a}[Q|\tilde{Q}] \in \mathbb{Q}^{p \times n} \text{ , } a \in I \end{aligned}$$

• Use previous Algorithm on augmented input W'_0 , $\{W'_a\}_a$

Algorithm for Pb. \mathbb{D} - symmetrically low ranks in *P*, *Q*

- For $a, b \in I$ define $\Delta_{ab} = W_a W_o^{-1} W_b W_b W_o^{-1} W_a \in \mathbb{Q}^{p \times p}$
- Rewrite as

$$\Delta_{ab} = V_a G_b - V_b G_a$$

for some $V_a \in \mathbb{Q}^{p imes (n-p)}$, $G_a \in \mathbb{Q}^{(n-p) imes n}$ (explicit construction)

• Heuristically, if $p > \frac{2}{3}n$ and $t = \#I \ge 3$:

$$igcap_{b\in I\setminus\{a\}}\operatorname{Im}(\Delta_{ab})=\operatorname{Im}(V_a)$$
 , $a\in I$

Algorithm

- 1. Compute $\Delta_{ab} = W_a W_o^{-1} W_b W_b W_o^{-1} W_a$ for $a, b \in I$
- 2. Compute basis matrices $\{V'_a\}$ of $\bigcap_{b \in I \setminus \{a\}} Im(\Delta_{ab})$ for every $a \in I$
- 3. Compute $\{V_a\}$ by solving a system of linear equations
- 4. Run first algorithm on $W_0' = [W_0|o]$ and $W_a' = [W_a|V_a]$ for $a \in I$

III • Applications

Motivation : Applications in Cryptography

- 1. The CRT-ACD Approximate Common Divisor Problem
 - improvement of the Coron-Pereira [CP19] algorithm
 - By solving a certain instance of this problem, we obtain a quadratic improvement in the number of input samples

- 2. CLT13 Multilinear Maps
 - improvement of the Cheon et al. attack [CHL⁺15]
 - By solving a certain instance of this problem, we obtain a quadratic improvement in the number of encodings (of zero) needed for the attack

- integers $n\geq$ 2 (dimension of CLT13), $\kappa\geq$ 2 multilinearity degree
- Instance generation: secret "large" primes p₁,..., p_n and secret "small" primes g₁,..., g_n
 - $x_0 = \prod_{1 \le i \le n} p_i$ public

- integers $n\geq$ 2 (dimension of CLT13), $\kappa\geq$ 2 multilinearity degree
- Instance generation: secret "large" primes p₁,..., p_n and secret "small" primes g₁,..., g_n
 - $x_0 = \prod_{1 \le i \le n} p_i$ public
- Messages are elements $m = (m_1, \dots, m_n) \in \mathbb{F}_{g_1} imes \dots imes \mathbb{F}_{g_n}$

- integers $n\geq$ 2 (dimension of CLT13), $\kappa\geq$ 2 multilinearity degree
- Instance generation: secret "large" primes p₁,..., p_n and secret "small" primes g₁,..., g_n
 - $x_0 = \prod_{1 \le i \le n} p_i$ public
- Messages are elements $m = (m_1, \dots, m_n) \in \mathbb{F}_{g_1} \times \dots \times \mathbb{F}_{g_n}$
- Encoding space $\mathcal{E} = \mathbb{F}_{p_1} \times \cdots \times \mathbb{F}_{p_n} \simeq \mathbb{Z}/x_0\mathbb{Z}$
 - graded structure: encode at levels $j \in \{1, \dots, \kappa\}$
 - supports homomorphic addition and multiplication

- integers $n\geq$ 2 (dimension of CLT13), $\kappa\geq$ 2 multilinearity degree
- Instance generation: secret "large" primes p₁,..., p_n and secret "small" primes g₁,..., g_n
 - $x_0 = \prod_{1 \le i \le n} p_i$ public
- Messages are elements $m = (m_1, \dots, m_n) \in \mathbb{F}_{g_1} \times \dots \times \mathbb{F}_{g_n}$
- Encoding space $\mathcal{E} = \mathbb{F}_{p_1} \times \cdots \times \mathbb{F}_{p_n} \simeq \mathbb{Z}/x_0\mathbb{Z}$
 - graded structure: encode at levels $j \in \{1, \dots, \kappa\}$
 - supports homomorphic addition and multiplication
- A public zero-testing procedure $\mathcal{P} : \mathcal{E}_{\kappa} \to \{0, 1\}$ defined by public zero-test parameter $p_{zt} \in \mathbb{Z}/x_0\mathbb{Z}$

Cheon *et al.* **attack against CLT13, [CHL**⁺**15]**

Cheon *et al.* **attack against CLT13, [CHL**⁺**15]**

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t $\forall (a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C} : abc = enc_{\kappa}(o)$
- $\#\mathcal{A} = n, \#\mathcal{B} = 2, \#\mathcal{C} = n$

Cheon *et al.* **attack against CLT13, [CHL**⁺**15]**

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t $\forall (a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C} : abc = enc_{\kappa}(o)$
- $\#\mathcal{A} = n, \#\mathcal{B} = 2, \#\mathcal{C} = n$
- Using zero-test function, derive matrix equalities $W_a = \mathbf{P} \cdot \mathbf{U}_a \cdot \mathbf{Q}, a = 1, 2$ with secret
 - $P n \times n$ matrix of rank n (whp)
 - U_a diagonal $n \times n$
 - **Q** $n \times n$ matrix of rank n (whp)
- Find prime factorization of x_0 from W_1 , W_2 by solving Problem A

Cheon *et al.* **attack against CLT13, [CHL**+**15]**

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t $\forall (a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C} : abc = enc_{\kappa}(o)$
- $\#\mathcal{A} = n, \#\mathcal{B} = 2, \#\mathcal{C} = n$
- Using zero-test function, derive matrix equalities $W_a = \mathbf{P} \cdot \mathbf{U}_a \cdot \mathbf{Q}$, a = 1, 2 with secret
 - **P** *n* × *n* matrix of rank *n* (whp)
 - U_a diagonal $n \times n$
 - **Q** $n \times n$ matrix of rank n (whp)
- Find prime factorization of x_0 from W_1 , W_2 by solving Problem A

Cryptanalysis with fewer encodings

Rearrange sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and solve Pb. \mathbb{C}/\mathbb{D} instead of \mathbb{A} :

- $\mathcal{O}(\sqrt{n})$ encodings of zero vs. n
- $4n/3 + O(\sqrt{n})$ total encodings vs. 2n + 2

This work

- generalizes a computational problem based on simultaneous matrix diagonalization
- provides heuristic algorithms to solve this problem
- offers quadratic improvement in input size for two problems with interest in computational number theory and cryptanalysis
- open: other applications possibly to find

Thank you for your attention

References i

- Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé, <u>Cryptanalysis of the Multilinear Map over</u> <u>the Integers</u>, EUROCRYPT 2015, Part I, LNCS, vol. 9056, Springer, 2015, pp. 3–12.
- Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi, Practical multilinear Maps over the Integers, CRYPTO, Springer, 2013, pp. 476–493.
- Jean-Sébastien Coron and Hilder V. L. Pereira, <u>On Kilian's</u> <u>Randomization of Multilinear Map Encodings</u>, Advances in Cryptology - ASIACRYPT 2019 - Proceedings, Part II, 2019, pp. 325–355.