Simultaneous Diagonalization of Incomplete Matrices and Applications

Jean-Sébastien Coron ${ }^{1}$, Luca Notarnicola ${ }^{2}$ and Gabor Wiese ${ }^{3}$
ANTS-XIV 2020
July 4, 2020
1,2,3 University of Luxembourg, Luxembourg

I•Summary

Notation and Problem Statement

- Consider matrices

$$
\begin{aligned}
& W_{0}=P \cdot Q \in \mathbb{Q}^{p \times q} \\
& W_{a}=P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q}, \quad a \in I
\end{aligned}
$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\left\{U_{a}\right\}_{a \in I} \subseteq \mathbb{Q}^{n \times n}$ diagonal $, I:=\{1, \ldots, t\}$
- Problem: Given $W_{0},\left\{W_{a}\right\} a$, and assume W_{o} is of full rank p compute diagonal entries of $\left\{U_{a}\right\} a$

Notation and Problem Statement

- Consider matrices

$$
\begin{aligned}
& W_{0}=P \cdot Q \in \mathbb{Q}^{p \times q} \\
& W_{a}=P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q}, \quad a \in I
\end{aligned}
$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\left\{U_{a}\right\}_{a \in I} \subseteq \mathbb{Q}^{n \times n}$ diagonal $, I:=\{1, \ldots, t\}$
- Problem: Given $W_{0},\left\{W_{a}\right\} a$, and assume W_{0} is of full rank p compute diagonal entries of $\left\{U_{a}\right\}_{a}$
- Easy case ($p, q=n, t=1$) [we call this Problem \mathbb{A}] Solution: Return the eigenvalues of

$$
W_{o}^{-1} \cdot W_{1}=Q^{-1} U_{1} Q
$$

Notation and Problem Statement

- Consider matrices

$$
\begin{aligned}
& W_{0}=P \cdot Q \in \mathbb{Q}^{p \times q} \\
& W_{a}=P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q}, \quad a \in I
\end{aligned}
$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\left\{U_{a}\right\}_{a \in I} \subseteq \mathbb{Q}^{n \times n}$ diagonal $, I:=\{1, \ldots, t\}$
- Problem: Given $W_{0},\left\{W_{a}\right\} a$, and assume W_{0} is of full rank p compute diagonal entries of $\left\{U_{a}\right\}_{a}$
- Easy case ($p, q=n, t=1$) [we call this Problem \mathbb{A}] Solution: Return the eigenvalues of

$$
W_{o}^{-1} \cdot W_{1}=Q^{-1} U_{1} Q
$$

- Goal: Minimize p, q, t w.r.t. n

Notation and Problem Statement

- Consider matrices

$$
\begin{aligned}
& W_{0}=P \cdot Q \in \mathbb{Q}^{p \times q} \\
& W_{a}=P \cdot U_{a} \cdot Q \in \mathbb{Q}^{p \times q}, \quad a \in I
\end{aligned}
$$

where

- $P \in \mathbb{Q}^{p \times n}$ of rank $p \leq n$
- $Q \in \mathbb{Q}^{n \times q}$ of rank $q \leq n$
- $\left\{U_{a}\right\}_{a \in I} \subseteq \mathbb{Q}^{n \times n}$ diagonal $, I:=\{1, \ldots, t\}$
- Problem: Given $W_{0},\left\{W_{a}\right\} a$, and assume W_{0} is of full rank p compute diagonal entries of $\left\{U_{a}\right\}_{a}$
- Easy case ($p, q=n, t=1$) [we call this Problem \mathbb{A}] Solution: Return the eigenvalues of

$$
W_{o}^{-1} \cdot W_{1}=Q^{-1} U_{1} Q
$$

- Goal: Minimize p, q, t w.r.t. n
- Motivation for improved cryptanalysis

Summary of our work

1. We solve the mentioned problem by heuristic algorithms in the following cases:

- (Problem C) P of rank $p<n, Q$ of rank $q=n$
- (Problem $\mathbb{D}) P, Q$ of rank $p=q<n$

Parameters:

- Solve C for $p \geq \sqrt{2 n}=\mathcal{O}(\sqrt{n}) ; t \geq \sqrt{2 n}-1=\mathcal{O}(\sqrt{n})$
- Solve \mathbb{D} for $p \geq \frac{2}{3} n+\frac{\sqrt{n}}{3 \sqrt{2}}=\frac{2}{3} n+\mathcal{O}(\sqrt{n}) ; t \geq \frac{\sqrt{2 n}}{3}+\frac{5}{3}=\mathcal{O}(\sqrt{n})$

2. Applications

- CRT-Approximate-Common Divisor Problem
- improvement of the Coron-Pereira algorithm (Asiacrypt'19)
- By solving a certain instance of this problem, we obtain a quadratic improvement in the number of input samples
- Cryptanalysis of CLT13 Multilinear Maps
- improvement of the Cheon et al. attack (Eurocrypt'15)
- By solving a certain instance of this problem, we obtain a quadratic improvement in the number of encodings needed for the attack

II • Our Algorithms

Problem $\mathbb{C}: ~ Q \in \mathbf{G L}_{n}(\mathbb{Q})$

- Write $W_{a}=(P Q)\left(Q^{-1} U_{a} Q\right)=: W_{o} Z_{a}\left(Z_{a}\right.$ unknown $)$

Problem $\mathbb{C}: Q \in \mathbf{G L}_{n}(\mathbb{Q})$

- Write $W_{a}=(P Q)\left(Q^{-1} U_{a} Q\right)=: W_{o} Z_{a}\left(Z_{a}\right.$ unknown $)$
- Properties of $\left\{Z_{a}\right\}_{a}$:
(a) General solution: $Z_{a}=Y_{a}+E X_{a}$, where
- $Y_{a} \in \mathbb{Q}^{n \times n}$ s.t. $W_{0} Y_{a}=W_{a}$ (let $Y_{a}=W_{0}^{+} W_{a}$)
- $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E\rangle=\operatorname{ker}\left(W_{o}\right)$
- $\left\{X_{a}\right\} a \subseteq \mathbb{Q}^{p \times n}$ variables
(b) Matrices $\left\{Z_{a}\right\}_{a}$ commute

Problem $\mathbb{C}: Q \in \mathbf{G L}_{n}(\mathbb{Q})$

- Write $W_{a}=(P Q)\left(Q^{-1} U_{a} Q\right)=: W_{o} Z_{a}\left(Z_{a}\right.$ unknown $)$
- Properties of $\left\{Z_{a}\right\}_{a}$:
(a) General solution: $Z_{a}=Y_{a}+E X_{a}$, where
- $Y_{a} \in \mathbb{Q}^{n \times n}$ s.t. $W_{0} Y_{a}=W_{a}$ (let $Y_{a}=W_{0}^{+} W_{a}$)
- $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E\rangle=\operatorname{ker}\left(W_{o}\right)$
- $\left\{X_{a}\right\}_{a} \subseteq \mathbb{Q}^{p \times n}$ variables
(b) Matrices $\left\{Z_{a}\right\}_{a}$ commute
- $\left[Z_{a}, Z_{b}\right]=0$ for all $a<b$ gives an explicit system of linear equations in the variables $\left\{X_{a}\right\}_{a}$
- Heuristic unicity of solution $\left\{X_{a}\right\}_{a}$ if the system has sufficiently many equations
- working condition: $p(t+1) \leq 2 n$

Problem $\mathbb{C}: Q \in \mathbf{G L}_{n}(\mathbb{Q})$

- Write $W_{a}=(P Q)\left(Q^{-1} U_{a} Q\right)=: W_{o} Z_{a}\left(Z_{a}\right.$ unknown $)$
- Properties of $\left\{Z_{a}\right\}_{a}$:
(a) General solution: $Z_{a}=Y_{a}+E X_{a}$, where
- $Y_{a} \in \mathbb{Q}^{n \times n}$ s.t. $W_{0} Y_{a}=W_{a}$ (let $Y_{a}=W_{0}^{+} W_{a}$)
- $E \in \mathbb{Q}^{n \times p}$ s.t. $\langle E\rangle=\operatorname{ker}\left(W_{o}\right)$
- $\left\{X_{a}\right\}_{a} \subseteq \mathbb{Q}^{p \times n}$ variables
(b) Matrices $\left\{Z_{a}\right\}_{a}$ commute
- $\left[Z_{a}, Z_{b}\right]=0$ for all $a<b$ gives an explicit system of linear equations in the variables $\left\{X_{a}\right\}_{a}$
- Heuristic unicity of solution $\left\{X_{a}\right\}_{a}$ if the system has sufficiently many equations
- working condition: $p(t+1) \leq 2 n$
- e.g. choose $p=\lceil\sqrt{2 n}\rceil, t=\lceil\sqrt{2 n}\rceil-1$

Algorithm for Pb. C - P of low-rank, Q of full rank

Algorithm for Pb. C - P of low-rank, Q of full rank

Note that for $a, b \in I$:

$$
\left[Z_{a}, Z_{b}\right]=0 \Longrightarrow W_{a} W_{0}^{+} W_{b}-W_{b} W_{o}^{+} W_{a}+W_{a} E X_{b}-W_{b} E X_{a}=0
$$

Algorithm for Pb. C - P of low-rank, Q of full rank

Note that for $a, b \in I$:

$$
\left[Z_{a}, Z_{b}\right]=0 \Longrightarrow W_{a} W_{0}^{+} W_{b}-W_{b} W_{0}^{+} W_{a}+W_{a} E X_{b}-W_{b} E X_{a}=0
$$

Algorithm

1. For $a, b \in I, a<b$ compute $\Delta_{a b}=W_{a} W_{o}^{+} W_{b}-W_{b} W_{o}^{+} W_{a}$
2. Solve a linear system of equations

$$
\Delta_{a b}=W_{b} E X_{a}-W_{a} E X_{b}, \quad a, b \in I, a<b
$$

for the matrices $\left\{X_{a}\right\}_{a}$
3. If success, run simultaneous diagonalization of $\left\{Z_{a}\right\}_{a}$ with

$$
Z_{a}=W_{0}^{+} W_{a}+E X_{a}, \quad a \in I
$$

Problem $\mathbb{D}: ~ P, Q$ of low-rank p

- Main idea: reduce to Problem C
- We compute $\left\{V_{a}\right\} a \subseteq \mathbb{Q}^{p \times(n-p)}$ s.t. there exists $\tilde{Q} \in \mathbb{Q}^{p \times(n-p)}$ s.t. $[Q \mid \tilde{Q}] \in G L_{n}(\mathbb{Q})$ and

$$
\begin{aligned}
P \tilde{Q} & =0 \\
P U_{a} \tilde{Q} & =V_{a}, \quad a \in I
\end{aligned}
$$

Problem D: P, Q of low-rank p

- Main idea: reduce to Problem C
- We compute $\left\{V_{a}\right\} a \subseteq \mathbb{Q}^{p \times(n-p)}$ s.t. there exists $\tilde{Q} \in \mathbb{Q}^{p \times(n-p)}$ s.t. $[Q \mid Q ̃] \in G L_{n}(Q)$ and

$$
\begin{aligned}
P \tilde{Q} & =0 \\
P U_{a} \tilde{Q} & =V_{a}, \quad a \in I
\end{aligned}
$$

- This gives public augmented matrices $\left\{W_{a}^{\prime}\right\}_{a \in I \cup\{0\}}$:

$$
\begin{aligned}
W_{0}^{\prime}:=\left[W_{0} \mid \mathrm{o}\right] & =P[Q \mid \tilde{Q}] \in \mathbb{Q}^{p \times n} \text { of full rank } \\
W_{a}^{\prime}:=\left[W_{a} \mid V_{a}\right] & =P U_{a}[Q \mid \tilde{Q}] \in \mathbb{Q}^{p \times n}, \quad a \in I
\end{aligned}
$$

- Use previous Algorithm on augmented input $W_{o}^{\prime},\left\{W_{a}^{\prime}\right\} a$

Algorithm for Pb. \mathbb{D} - symmetrically low ranks in P, Q

- For $a, b \in I$ define $\Delta_{a b}=W_{a} W_{o}^{-1} W_{b}-W_{b} W_{o}^{-1} W_{a} \in \mathbb{Q}^{p \times p}$
- Rewrite as

$$
\Delta_{a b}=V_{a} G_{b}-V_{b} G_{a}
$$

for some $V_{a} \in \mathbb{Q}^{p \times(n-p)}, G_{a} \in \mathbb{Q}^{(n-p) \times n}$ (explicit construction)

- Heuristically, if $p>\frac{2}{3} n$ and $t=\# I \geq 3$:

$$
\bigcap_{b \in \backslash \backslash\{a\}} \operatorname{Im}\left(\Delta_{a b}\right)=\operatorname{Im}\left(V_{a}\right), a \in I
$$

Algorithm

1. Compute $\Delta_{a b}=W_{a} W_{o}^{-1} W_{b}-W_{b} W_{o}^{-1} W_{a}$ for $a, b \in I$
2. Compute basis matrices $\left\{V_{a}^{\prime}\right\}$ of $\bigcap_{b \in \backslash \backslash\{a\}} \operatorname{Im}\left(\Delta_{a b}\right)$ for every $a \in I$
3. Compute $\left\{V_{a}\right\}$ by solving a system of linear equations
4. Run first algorithm on $W_{0}^{\prime}=\left[W_{0} \mid 0\right]$ and $W_{a}^{\prime}=\left[W_{a} \mid V_{a}\right]$ for $a \in I$

III • Applications

Motivation : Applications in Cryptography

1. The CRT-ACD Approximate Common Divisor Problem

- improvement of the Coron-Pereira [CP19] algorithm
- By solving a certain instance of this problem, we obtain a quadratic improvement in the number of input samples

2. CLT13 Multilinear Maps

- improvement of the Cheon et al. attack [CHL ${ }^{+}$15]
- By solving a certain instance of this problem, we obtain a quadratic improvement in the number of encodings (of zero) needed for the attack

The CLT13 multilinear maps over the integers [CLT13]

- integers $n \geq 2$ (dimension of CLT13), $\kappa \geq 2$ multilinearity degree
- Instance generation: secret "large" primes p_{1}, \ldots, p_{n} and secret "small" primes g_{1}, \ldots, g_{n}
- $x_{0}=\prod_{1 \leq i \leq n} p_{i}$ public

The CLT13 multilinear maps over the integers [CLT13]

- integers $n \geq 2$ (dimension of CLT13), $\kappa \geq 2$ multilinearity degree
- Instance generation: secret "large" primes p_{1}, \ldots, p_{n} and secret "small" primes g_{1}, \ldots, g_{n}
- $x_{0}=\Pi_{1 \leq i \leq n} p_{i}$ public
- Messages are elements $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{F}_{g_{1}} \times \cdots \times \mathbb{F}_{g_{n}}$

The CLT13 multilinear maps over the integers [CLT13]

- integers $n \geq 2$ (dimension of CLT13), $\kappa \geq 2$ multilinearity degree
- Instance generation: secret "large" primes p_{1}, \ldots, p_{n} and secret "small" primes g_{1}, \ldots, g_{n}
- $x_{0}=\Pi_{1 \leq i \leq n} p_{i}$ public
- Messages are elements $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{F}_{g_{1}} \times \cdots \times \mathbb{F}_{g_{n}}$
- Encoding space $\mathcal{E}=\mathbb{F}_{p_{1}} \times \cdots \times \mathbb{F}_{p_{n}} \simeq \mathbb{Z} / x_{0} \mathbb{Z}$
- graded structure: encode at levels $j \in\{1, \ldots, \kappa\}$
- supports homomorphic addition and multiplication

The CLT13 multilinear maps over the integers [CLT13]

- integers $n \geq 2$ (dimension of CLT13), $\kappa \geq 2$ multilinearity degree
- Instance generation: secret "large" primes p_{1}, \ldots, p_{n} and secret "small" primes g_{1}, \ldots, g_{n}
- $x_{0}=\Pi_{1 \leq i \leq n} p_{i}$ public
- Messages are elements $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{F}_{g_{1}} \times \cdots \times \mathbb{F}_{g_{n}}$
- Encoding space $\mathcal{E}=\mathbb{F}_{p_{1}} \times \cdots \times \mathbb{F}_{p_{n}} \simeq \mathbb{Z} / x_{0} \mathbb{Z}$
- graded structure: encode at levels $j \in\{1, \ldots, \kappa\}$
- supports homomorphic addition and multiplication
- A public zero-testing procedure $\mathcal{P}: \mathcal{E}_{\kappa} \rightarrow\{0,1\}$ defined by public zero-test parameter $p_{z t} \in \mathbb{Z} / x_{0} \mathbb{Z}$

Application to the cryptanalysis of the CLT13 Mmap

Cheon et al. attack against CLT13, [CHL ${ }^{+}$15]

Application to the cryptanalysis of the CLT13 Mmap

Cheon et al. attack against CLT13, [CHL ${ }^{+}$15]

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t
$\forall(a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C}: a b c=e n c_{\kappa}(0)$
- $\# \mathcal{A}=n, \# \mathcal{B}=2, \# \mathcal{C}=n$

Application to the cryptanalysis of the CLT13 Mmap

Cheon et al. attack against CLT13, [CHL ${ }^{+}$15]

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t
$\forall(a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C}: a b c=e n c_{\kappa}(0)$
- $\# \mathcal{A}=n, \# \mathcal{B}=2, \# \mathcal{C}=n$
- Using zero-test function, derive matrix equalities
$W_{a}=P \cdot U_{a} \cdot Q, a=1,2$ with secret
- $P-n \times n$ matrix of rank n (whp)
- U_{a} - diagonal $n \times n$
- $Q-n \times n$ matrix of rank n (whp)
- Find prime factorization of x_{0} from W_{1}, W_{2} by solving Problem \mathbb{A}

Application to the cryptanalysis of the CLT13 Mmap

Cheon et al. attack against CLT13, [CHL ${ }^{+}$15]

- Sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of low-level encodings s.t
$\forall(a, b, c) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C}: a b c=e n c_{\kappa}(0)$
- $\# \mathcal{A}=n, \# \mathcal{B}=2, \# \mathcal{C}=n$
- Using zero-test function, derive matrix equalities $W_{a}=P \cdot U_{a} \cdot Q, a=1,2$ with secret
- $P-n \times n$ matrix of rank n (whp)
- U_{a} - diagonal $n \times n$
- $Q-n \times n$ matrix of rank n (whp)
- Find prime factorization of x_{0} from W_{1}, W_{2} by solving Problem \mathbb{A}

Cryptanalysis with fewer encodings
Rearrange sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and solve $\mathrm{Pb} . \mathbb{C} / \mathbb{D}$ instead of \mathbb{A} :

- $\mathcal{O}(\sqrt{n})$ encodings of zero vs. n
- $4 n / 3+\mathcal{O}(\sqrt{n})$ total encodings vs. $2 n+2$

Conclusion

This work

- generalizes a computational problem based on simultaneous matrix diagonalization
- provides heuristic algorithms to solve this problem
- offers quadratic improvement in input size for two problems with interest in computational number theory and cryptanalysis
- open: other applications possibly to find

Thank you for your attention

References i

嗇 Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé, Cryptanalysis of the Multilinear Map over the Integers, EUROCRYPT 2015, Part I, LNCS, vol. 9056, Springer, 2015, pp. 3-12.
䍰 Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi, Practical multilinear Maps over the Integers, CRYPTO, Springer, 2013, pp. 476-493.
(Jean-Sébastien Coron and Hilder V. L. Pereira, On Kilian's Randomization of Multilinear Map Encodings, Advances in Cryptology - ASIACRYPT 2019 - Proceedings, Part II, 2019, pp. 325-355.

