On the security of the m-RLWE problem

Carl Bootland, Wouter Castryck, Frederik Vercauteren

14th Algorithmic Number Theory Symposium
Auckland, New Zealand, June 29 - July 4, 2020

1. The LWE problem (Regev '05)

C "learning with errors"

System of approximate linear equations over \mathbf{F}_{p} :

$$
\left\{\begin{array}{l}
a_{11} s_{1}+a_{12} s_{2}+\ldots \\
a_{m 1} s_{1}+a_{m 2} s_{2}+\ldots a_{1 n} s_{n} \\
\vdots
\end{array}\right.
$$

1. The LWE problem (Regev ‘05)

\longrightarrow"learning with errors"

System of approximate linear equations over \mathbf{F}_{p} :

$$
A \approx\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right) \approx\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Lattice:

$$
\Lambda=\left\{\begin{array}{l|l}
\vec{y} \in \mathbf{Z}^{m} & \begin{array}{l}
A \cdot \vec{s}=\vec{y} \text { has a } \\
\text { solution } \bmod p
\end{array}
\end{array}\right\}
$$

Goal: find $s_{1}, s_{2}, \ldots, s_{n}$ (requires $m>n$ or extra assumptions on the s_{i} 's).

Notes: > Gaussian elimination?
\longrightarrow errors heap up and become indistuinguishable from uniform
> Can be viewed as instance of bounded distance decoding (BDD)

1. The LWE problem (Regev ‘05)

Good: > Flexible and versatile
\longleftrightarrow key exchange, signatures, homomorphic encryption, ...
> Random self-reducible
\longrightarrow average case as hard as worst case
$>$ No known quantum attacks
\longleftrightarrow of the 26 second-round contenders to the NIST competition,
9 schemes are based on some form of LWE

Bad: > Quadratic key size

$$
\longrightarrow \operatorname{need}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right),\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right) \text { to hide }\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)
$$

2. The RLWE problem (Lyubashevsky, Peikert, Regev '12)
\longrightarrow "ring learning with errors"

Idea to reduce key size: use structured matrices, such as circulant matrices

2. The RLWE problem (Lyubashevsky, Peikert, Regev '12)

〈 "ring learning with errors"

Idea to reduce key size: use structured matrices, such as circulant matrices

$$
\begin{array}{cc}
\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right) \cdot\left(s_{1}+s_{2} x+\cdots+s_{n} x^{n-1}\right) \approx b_{1}+b_{2} x+\cdots+b_{n} x^{n-1} \\
!! & !! \\
a(x) & b(x)
\end{array}
$$

Security now depends on BDD in structured lattices.
\longrightarrow Can this structure be exploited?
2. The RLWE problem (Lyubashevsky, Peikert, Regev '12)〈 "ring learning with errors" - Note: this does not apply to

most popular proper use:

$$
\frac{\mathbf{F}_{p}[x]}{\left(x^{n}+1\right)}\left(\text { with } n=2^{k}\right)
$$

Therefore: $\quad a(x) \cdot s(x)=b(x)-e(x)$

$$
\begin{aligned}
& e(x)=b(x)-a(x) \cdot s(x) \\
& e(1)=b(1)-a(1) \cdot s(1) \\
& \quad \| \\
& \sum_{i} e_{i} \longrightarrow \text { small }
\end{aligned}
$$

3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González '15) \longrightarrow "multivariate ring learning with errors"

Idea: use quotients of multivariate polynomial rings, such as

$$
\frac{\mathbf{F}_{p}[x, y]}{\left(x^{n_{1}}+1, y^{n_{2}}+1\right)} \quad\left(n_{1}=2^{k_{1}}, n_{2}=2^{k_{2}}\right)
$$

Samples now look like:

$$
\begin{gathered}
\left(\sum_{i=0}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} a_{i j} x^{i} y^{j}\right) \cdot\left(\sum_{i=0}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} s_{i j} x^{i} y^{j}\right) \approx \sum_{i=0}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} b_{i j} x^{i} y^{j} \\
!!! \\
s(x, y)
\end{gathered} \quad b(x, y)=c(x, y)+e(x, y) .
$$

Motivation: matrix/tensor arithmetic in homomorphic encryption (e.g., signal processing).
3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González ‘15) \longrightarrow "multivariate $\underline{\text { ring learning with errors" }}$

This paper: m-RLWE falls prey to evaluation attack (also observed by Cheon, Kim, Yhee '18):

$$
\left.\frac{\mathbf{F}_{p}[x, y]}{\left(x^{n_{1}}+1, y^{n_{2}}+1\right)}=\frac{\frac{\mathbf{F}_{p}[x]}{\left(x^{n_{1}}+1\right)}[y]}{\left(y^{n_{2}}+1\right)} \quad \text { admits } x^{n_{1} / n_{2}} \text { as a root } \quad \text { (assume } n_{2} \mid n_{1}\right)
$$

3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González '15) \longrightarrow "multivariate $\underline{\text { ring }}$ learning with errors"

This paper: m-RLWE falls prey to evaluation attack (also observed by Cheon, Kim, Yhee '18):

$$
\frac{\mathbf{F}_{p}[x, y]}{\left(x^{n_{1}}+1, y^{n_{2}}+1\right)} \rightarrow \frac{\mathbf{F}_{p}[x]}{\left(x^{n_{1}}+1\right)}: f(x, y) \mapsto f\left(x, x^{n_{1} / n_{2}}\right)
$$

As before: $a(x, y) \cdot s(x, y)=b(x, y)-e(x, y)$

$$
\begin{gathered}
e(x, y)=b(x, y)-a(x, y) \cdot s(x, y) \\
e\left(x, x^{n_{1} / n_{2}}\right)=b\left(x, x^{n_{1} / n_{2}}\right)-a\left(x, x^{n_{1} / n_{2}}\right) \cdot s\left(x, x^{n_{1} / n_{2}}\right) \\
\sum_{i=0}^{\sum_{j=0}^{n_{1}-1}} \pm e_{r(i, j), j}^{n_{2}-1} x^{i}
\end{gathered}
$$

solving RLWE in $\operatorname{dim} n_{1}$
3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González '15) (\longrightarrow "multivariate $\underline{\text { ring }}$ learning with errors"

It does not stop there:

$$
\begin{aligned}
& \frac{\mathbf{F}_{p}[x]}{\left(x^{n_{1}}+1\right)}[y] \\
& \left(y^{n_{2}}+1\right)
\end{aligned} \quad \begin{array}{r}
\text { factors completely as } \\
\left(y-x^{n_{1} / n_{2}}\right)\left(y-x^{3 n_{1} / n_{2}}\right) \cdots\left(y-x^{\left(2 n_{2}-1\right) n_{1} / n_{2}}\right)
\end{array}
$$

Thus: solving n_{2} instances of RLWE in $\operatorname{dim} n_{1}$ leaks

$$
\left.\begin{array}{c}
s\left(x, x^{n_{1} / n_{2}}\right) \\
s\left(x, x^{3 n_{1} / n_{2}}\right) \\
\vdots \\
s\left(x, x^{\left(2 n_{2}-1\right) n_{1} / n_{2}}\right)
\end{array}\right] \quad \text { easy linear algebra } s(x, y) .
$$

3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González '15) \longrightarrow "multivariate $\underline{\text { ring }}$ learning with errors"

It does not stop there:

$$
\begin{aligned}
& \frac{\mathbf{F}_{p}[x]}{\left(x^{n_{1}}+1\right)}[y] \\
& \left(y^{n_{2}}+1\right)
\end{aligned} \quad \begin{array}{r}
\text { factors completely as } \\
\left(y-x^{n_{1} / n_{2}}\right)\left(y-x^{3 n_{1} / n_{2}}\right) \cdots\left(y-x^{\left(2 n_{2}-1\right) n_{1} / n_{2}}\right)
\end{array}
$$

Concrete example:
$>n_{1}=n_{2}=128, p=2^{42}+15, \sigma=1$ were expected to reach security level >2500,
$>$ actual security level ≈ 32, easy to run full break in practice.
3. The m-RLWE problem (Pedrouzo-Ulloa, Troncoso-Pastoriza, Pérez-González '15) \longrightarrow "multivariate $\underline{\text { ring learning with errors" }}$

High-level viewpoint: hardness of LWE in (the reduction $\bmod p$ of)
tensor product $\mathbf{Z}\left[\zeta_{2 n_{1}}\right] \otimes_{\mathbf{Z}} \mathbf{Z}\left[\zeta_{2 n_{2}}\right]$ reduces to that in compositum $\mathbf{Z}\left[\zeta_{2 n_{1}}, \zeta_{2 n_{2}}\right]=\mathbf{Z}\left[\zeta_{2 n_{1}}\right]$

$$
\operatorname{dim}=n_{1} n_{2}
$$

$$
\operatorname{dim}=n_{1}
$$

Generalizes:
$>$ from 2-RLWE to m-RLWE, i.e., to arbitrary number of factors,
$>$ to arbitrary products with Galois compositum and good error growth.
4. The MLWE problem (Langlois, Stehlé '15)
\longrightarrow "module learning with errors"

Interpolation LWE \longrightarrow RLWE

A DANGER

Interpolation LWE \longrightarrow RLWE

4. The MLWE problem (Langlois, Stehlé '15)

C "module learning with errors"
what if, in a similar attempt to save space, we endow this module with a ring structure ...

$$
\left(\begin{array}{ccc}
a_{11}(x) & \cdots & a_{1 m}(x) \\
\vdots & \ddots & \vdots \\
a_{m 1}(x) & \cdots & a_{m m}(x)
\end{array}\right)
$$

... like

$$
\frac{\frac{\mathbf{F}_{p}[x]}{\left(x^{n}+1\right)}[y]}{\left(y^{m}+1\right)} ?
$$

... and choose this matrix to be a matrix of multiplication?

Note: warning does not apply to all parameters

$$
\frac{\mathbf{F}_{p}[x]}{\left(x^{n}+1\right)} \oplus \cdots \oplus \frac{\mathbf{F}_{p}[x]}{\left(x^{n}+1\right)}
$$

$$
\text { (e.g., Kyber- } 768 \text { uses } n=256 \text { and } m=3 \text {). }
$$

