Random walks in genus 2 isogeny graphs

Enric Florit¹ Ben Smith²

¹Inria, Universitat de Barcelona

²Inria, École Polytechnique

ANTS XIV Rump Session - July 2020

Consider the graph G_p of superspecial PPAS in characteristic p, connected by (2, 2)-isogenies, a.k.a. Richelot isogenies (Castryck-Decru-Smith).

э

- 4 四 ト - 4 回 ト

- Consider the graph G_p of superspecial PPAS in characteristic p, connected by (2, 2)-isogenies, a.k.a. Richelot isogenies (Castryck-Decru-Smith).
- \mathcal{G}_p is a genus 2 analogue of the supersingular 2-isogeny graph.

- Consider the graph G_p of superspecial PPAS in characteristic p, connected by (2, 2)-isogenies, a.k.a. Richelot isogenies (Castryck-Decru-Smith).
- \mathcal{G}_p is a genus 2 analogue of the supersingular 2-isogeny graph.
- Jordan-Zaytman: the graph is connected, and **not Ramanujan** (at least for p = 11).

- Consider the graph G_p of superspecial PPAS in characteristic p, connected by (2, 2)-isogenies, a.k.a. Richelot isogenies (Castryck-Decru-Smith).
- \mathcal{G}_p is a genus 2 analogue of the supersingular 2-isogeny graph.
- Jordan-Zaytman: the graph is connected, and **not Ramanujan** (at least for p = 11).
- The Ramanujan property is related to the random walk on the graph: we want to study the **stationary distribution** and **mixing rate** of this walk. In expander (and Ramanujan) graphs, this distribution is uniform!

Katsura-Takashima (monday) showed that we have to consider reduced automorphisms to see which and how many isogenies have the same domain and codomain. Katsura-Takashima (monday) showed that we have to consider reduced automorphisms to see which and how many isogenies have the same domain and codomain.

For a PPAV \mathcal{A} , we define the reduced automorphism group as

$$\operatorname{RA}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})/\langle \pm 1 \rangle.$$

$\operatorname{RA}(\mathcal{J}(C))$	Number	$\operatorname{RA}(\mathcal{E} imes \mathcal{E}')$	Number
0	$\sim p^3/2880$	<i>C</i> ₂	$\sim p^2/144$
<i>C</i> ₂	$\sim ho^2/48$	V_4	$\sim {\it p}/12$
S_3	$\sim ho/6$	<i>C</i> ₄	$\sim {\it p}/12$
V_4	$ \sim ho/8$	C_6	$\sim {\it p}/12$
D ₁₂	0 or 1	$C_6 \times S_3$	0 or 1
S_4	0 or 1	$V_4 \rtimes C_4$	0 or 1
<i>C</i> ₅	0 or 1	<i>C</i> ₁₂	0 or 1

Let $K \subset \mathcal{A}[2]$ be a Lagrangian subgroup, and $\phi : \mathcal{A} \to \mathcal{A}' = \mathcal{A}/K$. Let $K' \subset \mathcal{A}'[2]$ be the kernel of the dual isogeny $\phi^{\dagger} : \mathcal{A}' \to \mathcal{A}$. Let S be the stabiliser of K in $RA(\mathcal{A})$.

Let $K \subset \mathcal{A}[2]$ be a Lagrangian subgroup, and $\phi : \mathcal{A} \to \mathcal{A}' = \mathcal{A}/K$. Let $K' \subset \mathcal{A}'[2]$ be the kernel of the dual isogeny $\phi^{\dagger} : \mathcal{A}' \to \mathcal{A}$. Let S be the stabiliser of K in $RA(\mathcal{A})$.

• The isogeny ϕ induces a subgroup S' of $RA(\mathcal{A}')$ isomorphic to S, and S' is the stabiliser of \mathcal{K}' in $RA(\mathcal{A}')$.

Let $K \subset \mathcal{A}[2]$ be a Lagrangian subgroup, and $\phi : \mathcal{A} \to \mathcal{A}' = \mathcal{A}/K$. Let $K' \subset \mathcal{A}'[2]$ be the kernel of the dual isogeny $\phi^{\dagger} : \mathcal{A}' \to \mathcal{A}$.

Let S be the stabiliser of K in RA(A).

- The isogeny ϕ induces a subgroup S' of RA(A') isomorphic to S, and S' is the stabiliser of K' in RA(A').
- **2** The (2,2)-isogeny graph has $\#RA(\mathcal{A})/\#S$ edges from $[\mathcal{A}]$ to $[\mathcal{A}']$ and $\#RA(\mathcal{A}')/\#S$ edges from $[\mathcal{A}']$ to $[\mathcal{A}]$.

< ロ > < 同 > < 三 > < 三 > < 三 > <

Let $K \subset \mathcal{A}[2]$ be a Lagrangian subgroup, and $\phi : \mathcal{A} \to \mathcal{A}' = \mathcal{A}/K$. Let $K' \subset \mathcal{A}'[2]$ be the kernel of the dual isogeny $\phi^{\dagger} : \mathcal{A}' \to \mathcal{A}$. Let S be the stabiliser of K in $RA(\mathcal{A})$.

- The isogeny ϕ induces a subgroup S' of $RA(\mathcal{A}')$ isomorphic to S, and S' is the stabiliser of K' in $RA(\mathcal{A}')$.
- **2** The (2,2)-isogeny graph has $\#RA(\mathcal{A})/\#S$ edges from $[\mathcal{A}]$ to $[\mathcal{A}']$ and $\#RA(\mathcal{A}')/\#S$ edges from $[\mathcal{A}']$ to $[\mathcal{A}]$.

In particular we obtain the ratio

$$\frac{\#E([\mathcal{A}], [\mathcal{A}'])}{\#E([\mathcal{A}'], [\mathcal{A}])} = \frac{\#\mathrm{RA}(\mathcal{A})}{\#\mathrm{RA}(\mathcal{A}')}.$$

Stationary distribution

From the previous ratio principle we get stationary distributions for \mathcal{G}_p , and also the subgraphs \mathcal{J}_p (Jacobians) and \mathcal{E}_p (elliptic products).

Theorem

For $G \in \{\mathcal{G}_p, \mathcal{J}_p, \mathcal{E}_p\}$, the stationary ditribution for the random walk in G is $\phi = \tilde{\phi}/||\tilde{\phi}||_1$, where the vector $(\tilde{\phi}_{[\mathcal{A}]})_{[\mathcal{A}] \in V(G)}$ is given by

$$\tilde{\phi}_{[\mathcal{A}]} = \frac{\deg_G(\mathcal{A})}{\#R\mathcal{A}(\mathcal{A})}.$$

Stationary distribution

From the previous ratio principle we get stationary distributions for \mathcal{G}_p , and also the subgraphs \mathcal{J}_p (Jacobians) and \mathcal{E}_p (elliptic products).

Theorem

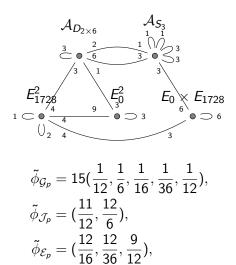
For $G \in \{\mathcal{G}_p, \mathcal{J}_p, \mathcal{E}_p\}$, the stationary ditribution for the random walk in G is $\phi = \tilde{\phi}/||\tilde{\phi}||_1$, where the vector $(\tilde{\phi}_{[\mathcal{A}]})_{[\mathcal{A}] \in V(G)}$ is given by

$$\tilde{\phi}_{[\mathcal{A}]} = \frac{\deg_{\mathcal{G}}(\mathcal{A})}{\# \mathcal{R}\mathcal{A}(\mathcal{A})}.$$

Looks familiar? This is the same as in the supersingular elliptic curve case:

$$\tilde{\phi}_{[\mathcal{E}]} = \begin{cases} 1, \text{ if } \operatorname{RA}(\mathcal{E}) \cong 0, \\ \frac{1}{2}, \text{ if } \operatorname{RA}(\mathcal{E}) \cong C_2 \\ \frac{1}{3}, \text{ if } \operatorname{RA}(\mathcal{E}) \cong C_3. \end{cases}$$

An example: p = 11



э

- ₹ 🖬 🕨

< A > < E

- The second eigenvalue of the random walk matrix determines the mixing rate (this is why we care about Ramanujan-ness: max{|λ₂|, |λ_n|} ≤ 2√d−1).
- G_p is not Ramanujan at least until p = 653, and max(|λ₂|, |λ_n|) > 11 for p > 40.
- \mathcal{J}_p : for 40 < $p \le$ 653, max $(|\lambda_2|, |\lambda_n|) > 11$.

Questions

- Can we give upper bounds on $|\lambda_2|, |\lambda_n|$?
- Can we prove "non-Ramanujan" in general?

Isogenies in dimension 1+ε

< □ > < 同 >

Thank you!

*Meme by Lorenz Panny

A B A A B A

æ