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Lattice problems

Our goal is to reduce the first problem to the second:

Short vector problem (approx-SVP)

For M ∈ Mn(Z) and α ≥ 1, find q0∈Zn with 0 6= ‖Mq0‖ ≤ αmin×q ‖Mq‖.

Simultaneous approximation problem

For x ∈ Qn and α′ ≥ 1, find q0 ∈ Z with 0 6= ‖{q0x}‖ ≤ α′min×q ‖{qx}‖.

Alternatively, we could ask that q0 ≤ α′N and ‖{q0x}‖ ≤ α′minq≤N‖{qx}‖.

Under a fixed `p-norm, the reduction is gap-preserving (α = α′). It requires

O(n4 logmn) operations on integers of length O(n4 logmn), where m is the

maximum input integer magnitude.



The goal

For short vector problems, we typically have lattices of this form:

(d , 0, 0)

(0, d , 0)

(0, 0, d) Lattice generated by x,

y, and dZ3.
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The goal

For short vector problems, we typically have lattices of this form:

c1

c2

c3
Lattice generated by x,

y, and dZ3.

Another generating set is

{c1, c2, c3, z}.

Do simultaneous approx-

imation on the vector

[c1 c2 c3]−1z.

Since [c1 c2 c3] is nearly

scaled orthonormal, it

preserves shortness.
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The goal

So the desired setup is

scaled

orthonormal

sublattice

+
small

lattice

vectors

n vectors

, .

extra

lattice

vector

Let M be the input matrix (column vectors). Using a multiple of detM Zn

as the sublattice, this becomes

M(c adjM) + MA, Mb,

where A ∈ Mn(Z), b ∈ Zn, and c ∈ Z. The goals are

1. the columns of c adjM + A and b generate Zn

2. MA is small relative to c detM (do 1, then make c bigger)



The goal

For 1, we’ll make sure that replacing the last column of c adjM + A with b

gives a matrix with determinant 1.

By Cramer’s rule, we want the last entry in

adj(c adjM + A)b

to be 1. We can choose A and c so that

coprime

adj(c adjM + A) =


∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗
∗ ∗ · · · ∗

b



b1

b2

0

...

0


=



∗
∗
...

∗
1


.

Then b1 and b2 can be Bézout coefficients.



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 −7


determinant: −36


2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 −7


determinant: 0



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 + x −7


determinant: −36 + 0x


2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 + x −7


determinant: 0 + 6x



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 + x −7


determinant: 0


2 −1 1 −1

4 1 5 −5

4 1 −1 1

2 −1 1 + x −7


determinant: 6



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 0 + 4y


2 −1 1 −1

4 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 6 + 2y



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 4


2 −1 1 −1

4 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 2



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 + 1 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 5


2 −1 1 −1

4 + 1 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 2



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 + 1 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 1 + 5y


2 −1 1 −1

4 + 1 1 5 −5

4 1 + y −1 1

2 −1 1 + x −7


determinant: 6 + 2y



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + x −7


determinant: 1


2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + x −7


determinant: 6



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + x −7


determinant: −36 + 1x


2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + x −7


determinant: 0 + 6x



Finding A

Suppose we have the following value of c adjM (here c = 1).
2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + 1 −7


determinant: −35


2 −1 1 −1

4 + 1 1 5 −5

4 1 + 0 −1 1

2 −1 1 + 1 −7


determinant: 6

This gives

adj(c adjM + A) =


30 0 30 0

−125 30 25 0

30 36 −42 −36

35 6 −7 −36

b


−1

6

0

0

 =


−30

305

180

1

 .



Changing to simultaneous approximation

The columns of

Madj(cadjM + A) =


6 0 0 0

1 6 0 0

1 0 5 0

0 0 −1 6

 and Mb =


−1

10

5

−1


generate the same lattice as the columns of M. The matrix above is roughly

scaled orthonormal, so do simultaneous approximation on
6 0 0 0

1 6 0 0

1 0 5 0

0 0 −1 6


−1 
−1

10

5

−1

 =


−1/6

61/36

31/30

1/180

 .



Avoiding Jacobsthal

For a pair of integers r , s, the previous algorithm finds a small t so that r

and s + t are coprime.

The maximum “smallest t” needed as s varies is called Jacobsthal’s

function, J(r). We know

J(r) < 2ω(r)2+2e logω(r) (Stevens),

J(r)� (ω(r) logω(r))2 (Iwaniec),

where ω counts distinct prime factors.

These bounds make for difficult worst-case analysis, so leave “c” a variable.

Then r(c) and s(c) are polynomials. And if r(c) 6= 0 there are at most

deg r(c) integers t for which r(c) and s(c) + t are not coprime over Q(c).

This is the version presented in the paper.
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