# Reductions between short vector problems and simultaneous approximation

ANTS 2020

Daniel Martin

July 7, 2020

University of Colorado, Boulder

Our goal is to reduce the first problem to the second:

Short vector problem (approx-SVP) For  $M \in M_n(\mathbb{Z})$  and  $\alpha \ge 1$ , find  $\mathbf{q}_0 \in \mathbb{Z}^n$  with  $0 \ne ||M\mathbf{q}_0|| \le \alpha \min_{\mathbf{q}}^{\times} ||M\mathbf{q}||$ .

#### Simultaneous approximation problem

For  $\mathbf{x} \in \mathbb{Q}^n$  and  $\alpha' \ge 1$ , find  $q_0 \in \mathbb{Z}$  with  $0 \neq ||\{q_0\mathbf{x}\}|| \le \alpha' \min_q^{\times} ||\{q\mathbf{x}\}||$ .

Alternatively, we could ask that  $q_0 \leq \alpha' N$  and  $||\{q_0\mathbf{x}\}|| \leq \alpha' \min_{q \leq N} ||\{q\mathbf{x}\}||$ .

Under a fixed  $\ell_p$ -norm, the reduction is gap-preserving ( $\alpha = \alpha'$ ). It requires  $O(n^4 \log mn)$  operations on integers of length  $O(n^4 \log mn)$ , where *m* is the maximum input integer magnitude.

For short vector problems, we typically have lattices of this form:



For short vector problems, we typically have lattices of this form:



Lattice generated by  $\mathbf{x}$ ,  $\mathbf{y}$ , and  $d\mathbb{Z}^3$ .

Another generating set is  $\{c_1, c_2, c_3, z\}.$ 

Do simultaneous approximation on the vector  $[\boldsymbol{c}_1 \, \boldsymbol{c}_2 \, \boldsymbol{c}_3]^{-1} \boldsymbol{z}.$ 

Since  $[\mathbf{c}_1 \, \mathbf{c}_2 \, \mathbf{c}_3]$  is nearly scaled orthonormal, it preserves shortness.

So the desired setup is



Let *M* be the input matrix (column vectors). Using a multiple of det  $M \mathbb{Z}^n$  as the sublattice, this becomes

$$M(c \operatorname{adj} M) + MA, \qquad M\mathbf{b},$$

where  $A \in M_n(\mathbb{Z})$ ,  $\mathbf{b} \in \mathbb{Z}^n$ , and  $c \in \mathbb{Z}$ . The goals are

- 1. the columns of  $c \operatorname{adj} M + A$  and **b** generate  $\mathbb{Z}^n$
- 2. MA is small relative to  $c \det M$  (do 1, then make c bigger)

For 1, we'll make sure that replacing the last column of  $c \operatorname{adj} M + A$  with **b** gives a matrix with determinant 1.

By Cramer's rule, we want the last entry in

 $\operatorname{adj}(c \operatorname{adj} M + A)\mathbf{b}$ 

to be 1. We can choose A and c so that



Then  $b_1$  and  $b_2$  can be Bézout coefficients.

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

| 2 | -1 | 1  | -1 | 2 | -1 | 1  | -1  |
|---|----|----|----|---|----|----|-----|
| 4 | 1  | 5  | -5 | 4 | 1  | 5  | -5  |
| 4 | 1  | -1 | 1  | 4 | 1  | -1 | 1   |
| 2 | -1 | 1  | -7 | 2 | -1 | 1  | -7] |
|   |    |    |    |   |    |    |     |

determinant: -36

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

| 2 | -1 | 1     | -1 |
|---|----|-------|----|
| 4 | 1  | 5     | -5 |
| 4 | 1  | -1    | 1  |
| 2 | -1 | 1 + x | -7 |

| 2 | -1 | 1     | $-1^{-1}$ |
|---|----|-------|-----------|
| 4 | 1  | 5     | -5        |
| 4 | 1  | -1    | 1         |
| 2 | -1 | 1 + x | -7        |

determinant: -36 + 0x

determinant: 0 + 6x

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

| 2 | -1 | 1     | -1 | 2 | -1 | 1     | -1 |  |
|---|----|-------|----|---|----|-------|----|--|
| 4 | 1  | 5     | -5 | 4 | 1  | 5     | -5 |  |
| 4 | 1  | -1    | 1  | 4 | 1  | -1    | 1  |  |
| 2 | -1 | 1 + x | -7 | 2 | -1 | 1 + x | -7 |  |
|   |    |       |    |   |    |       |    |  |

determinant: 0

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

| 2 | -1    | 1     | -1 | 2 | -1    | 1     | -1 |
|---|-------|-------|----|---|-------|-------|----|
| 4 | 1     | 5     | -5 | 4 | 1     | 5     | -5 |
| 4 | 1 + y | -1    | 1  | 4 | 1 + y | -1    | 1  |
| 2 | -1    | 1 + x | -7 | 2 | -1    | 1 + x | -7 |

determinant: 0 + 4y

determinant: 6 + 2y

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

| 2 | -1    | 1     | -1 | 2 | -1    | 1     | -1  |
|---|-------|-------|----|---|-------|-------|-----|
| 4 | 1     | 5     | -5 | 4 | 1     | 5     | -5  |
| 4 | 1 + y | -1    | 1  | 4 | 1 + y | -1    | 1   |
| 2 | -1    | 1 + x | -7 | 2 | -1    | 1 + x | -7] |
|   |       |       |    |   |       |       |     |

determinant: 4

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+y & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+y & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix}$$

determinant: 5

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+y & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+y & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix}$$

determinant: 1 + 5y

determinant: 6 + 2y

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix}$$

determinant: 1

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+x & -7 \end{bmatrix}$$

determinant: -36 + 1x

determinant: 0 + 6x

Suppose we have the following value of  $c \operatorname{adj} M$  (here c = 1).

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+1 & -7 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 1 & -1 \\ 4+1 & 1 & 5 & -5 \\ 4 & 1+0 & -1 & 1 \\ 2 & -1 & 1+1 & -7 \end{bmatrix}$$

determinant: -35

determinant: 6

This gives

$$\operatorname{adj}(c \operatorname{adj} M + A)\mathbf{b} = \begin{bmatrix} 30 & 0 & 30 & 0 \\ -125 & 30 & 25 & 0 \\ 30 & 36 & -42 & -36 \\ 35 & 6 & -7 & -36 \end{bmatrix} \begin{bmatrix} -1 \\ 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -30 \\ 305 \\ 180 \\ 1 \end{bmatrix}$$

#### The columns of

$$Madj(cadj M + A) = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 5 & 0 \\ 0 & 0 & -1 & 6 \end{bmatrix} \text{ and } M\mathbf{b} = \begin{bmatrix} -1 \\ 10 \\ 5 \\ -1 \end{bmatrix}$$

generate the same lattice as the columns of M. The matrix above is roughly scaled orthonormal, so do simultaneous approximation on

$$\begin{bmatrix} 6 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 5 & 0 \\ 0 & 0 & -1 & 6 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 10 \\ 5 \\ -1 \end{bmatrix} = \begin{bmatrix} -1/6 \\ 61/36 \\ 31/30 \\ 1/180 \end{bmatrix}$$

For a pair of integers r, s, the previous algorithm finds a small t so that r and s + t are coprime.

The maximum "smallest t" needed as s varies is called *Jacobsthal's* function, J(r). We know

$$\begin{split} J(r) &< 2\omega(r)^{2+2e\log\omega(r)} \quad \text{(Stevens)}, \\ J(r) &\ll (\omega(r)\log\omega(r))^2 \quad \text{(Iwaniec)}, \end{split}$$

where  $\omega$  counts distinct prime factors.

These bounds make for difficult worst-case analysis, so leave "c" a variable. Then r(c) and s(c) are polynomials. And if  $r(c) \neq 0$  there are at most deg r(c) integers t for which r(c) and s(c) + t are not coprime over  $\mathbb{Q}(c)$ .

This is the version presented in the paper.

M. Agrawal. Simultaneous Diophantine approximation and short lattice vectors. https://www.youtube.com/watch?v=7SGCXbim6Ug, 2019.

W. Chen and J. Meng. An improved lower bound for approximating Shortest Integer Relation in  $\ell_{\infty}$ -norm. *Information Processing Letters*, 101(4):174–179, 2007.

H. Iwaniec. On the problem of Jacobsthal. *Demonstratio Mathematica*, 11(1):225–232, 1978.

J. Lagarias. The computational complexity of simultaneous Diophantine approximation problems. *SIAM Journal on Computing*, 14(1):196–209, 1985.

H. Stevens. On Jacobsthal's g(n)-function. Mathematische Annalen, 226(1):95–97, 1977.