New rank records for elliptic curves with rational torsion

ANTS-14, New Zoomland 6-7/2020

Noam D. Elkies*1 \& Zev Klagsbrun²

1) Harvard University, Cambridge, MA USA
2) Center for Communications Research, La Jolla, CA USA

Overview

- Elliptic curves E / Q : theorems of Mordell[-Weil] and Mazur
- General approach: find E_{t}, search for good specializations t
- Mestre-Nagao heuristic and new improvements
- New results

Theorem [Mordell 1922]:
$E(\mathrm{Q})$ is a finitely generated abelian group.
That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text {tors }} \oplus \mathbf{Z}^{r}$, where $E(\mathbf{Q})_{\text {tors }}$ is a finite abelian group and $0 \leq r<\infty$. This r is the rank of E.

Theorem [Mordell 1922]:
$E(\mathrm{Q})$ is a finitely generated abelian group.

That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text {tors }} \oplus \mathbf{Z}^{r}$, where $E(\mathbf{Q})_{\text {tors }}$ is a finite abelian group and $0 \leq r<\infty$. This r is the rank of E.

Fundamental question: which pairs (G, r) occur as $\left(E(\mathbf{Q})_{\text {tors }}, \operatorname{rank}(E)\right.$) for some (or infinitely many) E / \mathbf{Q} ?

Theorem [Mordell 1922]:
$E(\mathrm{Q})$ is a finitely generated abelian group.
That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text {tors }} \oplus \mathbf{Z}^{r}$, where $E(\mathbf{Q})_{\text {tors }}$ is a finite abelian group and $0 \leq r<\infty$. This r is the rank of E.

Fundamental question: which pairs (G, r) occur as $\left(E(\mathbf{Q})_{\text {tors }}, \operatorname{rank}(E)\right.$) for some (or infinitely many) E / \mathbf{Q} ?

Mazur's torsion theorem (1977):
$E(\mathbf{Q})_{\text {tors }}$ is always isomorphic with either $\mathbf{Z} / n \mathbf{Z}$ (some $n \leq 10$ or $n=12$) or $(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 2 n \mathbf{Z})$ (some $n \leq 4)$.

Each of these $11+4$ groups G occurs for infinitely many E.

Randomly chosen coeffs a_{i} almost always yield $E(\mathbf{Q})_{\text {tors }}=\{0\}$, but in practice curves with nontrivial torsion arise often, as with FLT_{3} and FLT_{4}. Torsion also tends to make r and $E(\mathrm{Q})$ easier to determine by "descent", again as with FLT_{3} and FLT_{4}. Both of those curves have $r=0$; an example with large rank is

$$
\begin{array}{r}
+O+O=977315089699 \\
\times O \times O=283424925213 \\
932974760115972230625
\end{array}
$$

with torsion $\mathrm{Z} / 3 \mathrm{Z}$ and rank 14 (E., 2018).
[In general $X+Y+Z=a_{1}, X Y Z=a_{3}$ gives $\left(a_{1}, 0, a_{3}, 0,0\right)$;
translation by 3-torsion cyclically permutes $\{X, Y, Z\}$.]

So the natural question now is:

Given one of the fifteen groups G in Mazur's list, how large can r get for an elliptic curve E / \mathbf{Q} with $E(\mathbf{Q}) \cong G \oplus \mathbf{Z}^{r}$?

We report on new searches for such E, and in particular on new records for five six of the fifteen groups G, namely the cyclic groups of orders $2,3,4,5,6,7$.

For example, we increment the $G=\mathbb{Z} / 3 \mathbb{Z}$ record to

So the natural question now is:
Given one of the fifteen groups G in Mazur's list, how large can r get for an elliptic curve E / \mathbf{Q} with $E(\mathbf{Q}) \cong G \oplus \mathbf{Z}^{r}$?

We report on new searches for such E, and in particular on new records for five six of the fifteen groups G, namely the cyclic groups of orders $2,3,4,5,6,7$.

For example, we increment the $G=\mathrm{Z} / 3 \mathrm{Z}$ record to

with torsion $\mathrm{Z} / 3 \mathrm{Z}$ and rank 15.

Table showing the new r records for $G=\mathbf{Z} / n \mathbf{Z}(n=2,3,4,6,7)$, From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathrm{Q})_{\text {tors }}$	previous record	current record
\{1\}	28 (E., 2006)	
Z/2Z	19 (E., 2009)	
Z/3Z	14 (E., 2018)	
Z/4Z	12 (E., 2006)	
Z/5Z	8 (Dujella-Lecacheux, 2009)	
Z/6Z	8 (Eroshkin, 2008)	
Z/7Z	5 (Dujella-Kulesz, 2001)	
Z/8Z	6 (E., 2006)	
Z/9Z	4 (Fisher, 2009)	
Z/10Z	4 (Dujella, 2005)	
Z/12Z	4 (Fisher, 2008)	
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 2 \mathbf{Z})$	15 (E., 2009)	
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 4 \mathbf{Z})$	9 (Dujella-Peral, 2012)	
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 6 \mathbf{Z})$	6 (E., 2006)	
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 8 \mathbf{Z})$	3 (Connell, 2000)	

Table showing the new r records for $G=\mathbf{Z} / n \mathbf{Z}(n=2,3,4,6,7)$, From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathrm{Q})_{\text {tors }}$	previous record	current record
\{1\}	28 (E., 2006)	28
Z/2Z	19 (E., 2009)	20 (E.-K.)
Z/3Z	14 (E., 2018)	15 (E.-K.)
Z/4Z	12 (E., 2006)	13 (E.-K.)
Z/5Z	8 (Dujella-Lecacheux, 2009)	8
Z/6Z	8 (Eroshkin, 2008)	9 (K.)
Z/7Z	5 (Dujella-Kulesz, 2001)	6 (K.)
Z/8Z	6 (E., 2006)	6
Z/9Z	4 (Fisher, 2009)	4
Z/10Z	4 (Dujella, 2005)	4
Z/12Z	4 (Fisher, 2008)	4
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 2 \mathbf{Z})$	15 (E., 2009)	15
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 4 \mathrm{Z})$	9 (Dujella-Peral, 2012)	9
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 6 \mathbf{Z})$	6 (E., 2006)	6
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathrm{Z} / 8 \mathbf{Z})$	3 (Connell, 2000)	3

Table showing the new r records for $G=\mathbf{Z} / n \mathbf{Z}(n=2,3,4,6,7)$, From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathrm{Q})_{\text {tors }}$	previous record	current record
\{1\}	28 (E., 2006)	28
Z/2Z	19 (E., 2009)	20 (E.-K.)
Z/3Z	14 (E., 2018)	15 (E.-K.)
Z/4Z	12 (E., 2006)	13 (E.-K.)
Z/5Z	8 (Dujella-Lecacheux, 2009)	9 (K.)
Z/6Z	8 (Eroshkin, 2008)	9 (K.)
Z/7Z	5 (Dujella-Kulesz, 2001)	6 (K.)
Z/8Z	6 (E., 2006)	6
Z/9Z	4 (Fisher, 2009)	4
Z/10Z	4 (Dujella, 2005)	4
Z/12Z	4 (Fisher, 2008)	4
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 2 \mathbf{Z})$	15 (E., 2009)	15
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 4 \mathrm{Z})$	9 (Dujella-Peral, 2012)	9
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 6 \mathbf{Z})$	6 (E., 2006)	6
$(\mathbf{Z} / 2 \mathbf{Z}) \oplus(\mathbf{Z} / 8 \mathbf{Z})$	3 (Connell, 2000)	3

The new curve with $E(\mathbf{Q}) \cong(\mathbf{Z} / 2 \mathbf{Z}) \oplus \mathbf{Z}^{20}$ now also holds the record for the largest rank of $E(\mathbf{Q})$ for an elliptic curve E whose rank is known unconditionally (i.e., not assuming any GRH).

Other Results: for the same G 's (cyclic of orders 2-7) and a few others, we find numerous new examples of E that tie the previous rank records for $E(\mathbb{Q})_{\text {tors }} \cong G$, including a few that are smaller* than any previously known with the same ($\left.E(\mathrm{Q})_{\text {tors }}, r\right)$.
*"Smaller" may be measured by height, discriminant, and/or conductor.

Overview of search technique. The overall strategy for such searches has not changed in decades:
i) Find a family $\left\{E_{t}\right\}$ with $G \oplus \mathbf{Z}^{r_{0}} \hookrightarrow E_{t}$ for almost all t;
ii) Search for special values of $t \in \mathbf{Q}$ (or $t \in \mathbf{Q}^{d}$, etc.) for which E_{t} has even more rational points.

A simple example of (i) for $|G|=r_{0}=2$: let $t=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ $\in \mathrm{Q}^{4}$; solve simult. lin. eqs. $y_{i}^{2}=x_{i}^{3}+a_{2} x_{i}^{2}+a_{4} x_{i} \quad(i=1,2)$ for $\left(a_{2}, a_{4}\right)$. (For $G=\mathbf{Z} / 2 \mathbf{Z}$ we actually used E_{t} with $r_{0}=9$; the construction of such E_{t} is described elsewhere.)

Our new improvements all target part (ii).

Mestre-Nagao heuristic for good candidates E_{t}.

Wholesale testing of curves E_{t} for high rank is usually not feasible. Instead one uses the heuristic of Mestre (1982) and Nagao (1992): record and near-record rank curves E tend to have many points modulo most small primes p. So use a score

$$
S(t, B):=\log \prod_{p \leq B} \frac{N_{p}\left(E_{t}\right)}{p}=\sum_{p \leq B} \log \frac{N_{p}\left(E_{t}\right)}{p}
$$

as a proxy for high rank. Here p ranges over "primes of good reduction" for the curve $(p \nmid \Delta)$, and $N_{p}\left(E_{t}\right)=\# E_{t}(\mathbf{Z} / p \mathbf{Z})$, which is easy to compute for small p.
[This score also aligns with the BSD conjecture: $\prod_{p \leq B} N_{p}(E) / p$ is a partial product for $1 / L(E, 1)$.]

Sieving for bulk computation of $S(t, B)$.

We now use a trick known from "Sieve" techniques (QS, NFS) for factoring etc. to efficiently compute many values of

$$
S(t, B)=\sum_{p \leq B} \log \frac{N_{p}\left(E_{t}\right)}{p} .
$$

That is:

- Set up an array of counters s_{t}, initialized to zero
- For each $p \leq B$: for each $\tau \bmod p$: compute $\log \left(N_{p}\left(E_{\tau}\right) / p\right)$, and use it to increment each s_{t} in the arith. prog. $t \equiv \tau \bmod p$.

This make $s_{t}=S(t, B)$ for each t.
[In practice, fix $M=2^{10}$, compute $\operatorname{ROUND}\left(M \log \left(N_{p}\left(E_{\tau}\right) / p\right)\right.$), and approximate $M \cdot S(t, B)$ by the 16 -bit sum of those integers.]

Post-sieve processing

Having computed many approximate $S(t, B)$ values, take the top "few" for further processing: possibly compute $S\left(t, B^{\prime}\right)$ for some $B^{\prime} \gg B$ to further cull the list, then descent* to get upper bound on rank of E_{t}, and if the bound is large enough then search for rational points.

* 2-descent for $n=5$ or $n=7$; descent by 2- or 3-isogeny otherwise. For 3-isogeny, also implemented Cassels-Tate pairing.

A decisive ingredient for all the new records (except maybe $G=\mathrm{Z} / 7 \mathrm{Z}$) was throwing lots more computing power at the problem. All of Elkies' previous rank-record curves took less than half a core-year in total. Here each of $\mathbf{Z} / 2 \mathbf{Z}$ and $\mathbf{Z} / 3 \mathbf{Z}$ got 40+ core-years, $\mathbf{Z} / 6 \mathbf{Z}$ got almost that long, and $\mathbf{Z} / 4 \mathbf{Z}$ got about 12. Klagsbrun also searched the universal $\mathbf{Z} / 5 \mathrm{Z}$ family $[t+1, t, t, 0,0]$ for several core-centuries; yesterday the first examples of rank 9 turned up, just in time!

$$
t=266165145 / 442317512 .
$$

Also 100+ new examples that tie the 2009 record of 8 (DujellaLecacheux), including the smallest conductor and discriminant known for a curve with $E(\mathbf{Q}) \cong(\mathbf{Z} / 5 \mathbf{Z}) \oplus \mathbf{Z}^{8}$, at respectively $t=1809535 / 5292661\left(N \approx 2^{85.86}\right)$ and $t=5167107 / 723695$ $\left(|\Delta| \approx 2^{254.77}\right)$; the rank-9 curve has $\left.(N,|\Delta|) \approx 2^{110.34}, 2^{343.56}\right)$.

