New rank records for elliptic curves with rational torsion

ANTS-14, New Zoomland 6–7/2020

Noam D. Elkies^{*1} & Zev Klagsbrun²

1) Harvard University, Cambridge, MA USA

2) Center for Communications Research, La Jolla, CA USA

Overview

- Elliptic curves E/Q: theorems of Mordell[–Weil] and Mazur
- General approach: find E_t , search for good specializations t
- Mestre-Nagao heuristic and new improvements
- New results

Theorem [Mordell 1922]:

 $E(\mathbf{Q})$ is a finitely generated abelian group.

That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text{tors}} \oplus \mathbf{Z}^r$, where $E(\mathbf{Q})_{\text{tors}}$ is a finite abelian group and $0 \le r < \infty$. This *r* is the <u>rank</u> of *E*.

Fundamental question: which pairs (G, r) occur as $(E(\mathbf{Q})_{tors}, rank(E))$ for some (or infinitely many) E/\mathbf{Q} ?

Mazur's torsion theorem (1977): $E(\mathbf{Q})_{tors}$ is always isomorphic with either $\mathbf{Z}/n\mathbf{Z}$ (some $n \leq 10$ or n = 12) or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2n\mathbf{Z})$ (some $n \leq 4$).

Each of these 11 + 4 groups G occurs for infinitely many E.

Theorem [Mordell 1922]:

 $E(\mathbf{Q})$ is a finitely generated abelian group.

That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text{tors}} \oplus \mathbf{Z}^r$, where $E(\mathbf{Q})_{\text{tors}}$ is a finite abelian group and $0 \le r < \infty$. This *r* is the <u>rank</u> of *E*.

Fundamental question: which pairs (G, r) occur as $(E(\mathbf{Q})_{tors}, rank(E))$ for some (or infinitely many) E/\mathbf{Q} ?

Mazur's torsion theorem (1977): $E(\mathbf{Q})_{tors}$ is always isomorphic with either $\mathbf{Z}/n\mathbf{Z}$ (some $n \leq 10$ or n = 12) or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2n\mathbf{Z})$ (some $n \leq 4$).

Each of these 11 + 4 groups G occurs for infinitely many E.

Theorem [Mordell 1922]:

 $E(\mathbf{Q})$ is a finitely generated abelian group.

That is, $E(\mathbf{Q}) \cong E(\mathbf{Q})_{\text{tors}} \oplus \mathbf{Z}^r$, where $E(\mathbf{Q})_{\text{tors}}$ is a finite abelian group and $0 \le r < \infty$. This *r* is the <u>rank</u> of *E*.

Fundamental question: which pairs (G, r) occur as $(E(\mathbf{Q})_{tors}, rank(E))$ for some (or infinitely many) E/\mathbf{Q} ?

Mazur's torsion theorem (1977): $E(\mathbf{Q})_{\text{tors}}$ is always isomorphic with either $\mathbf{Z}/n\mathbf{Z}$ (some $n \leq 10$ or n = 12) or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2n\mathbf{Z})$ (some $n \leq 4$).

Each of these 11 + 4 groups G occurs for infinitely many E.

Randomly chosen coeffs a_i almost always yield $E(\mathbf{Q})_{\text{tors}} = \{0\}$, but in practice curves with nontrivial torsion arise often, as with FLT₃ and FLT₄. Torsion also tends to make r and $E(\mathbf{Q})$ easier to determine by "descent", again as with FLT₃ and FLT₄. Both of those curves have r = 0; an example with large rank is

with torsion $\mathbf{Z}/3\mathbf{Z}$ and rank 14 (E., 2018).

[In general $X + Y + Z = a_1$, $XYZ = a_3$ gives $(a_1, 0, a_3, 0, 0)$; translation by 3-torsion cyclically permutes $\{X, Y, Z\}$.]

So the natural question now is:

Given one of the fifteen groups G in Mazur's list, how large can r get for an elliptic curve E/\mathbf{Q} with $E(\mathbf{Q}) \cong G \oplus \mathbf{Z}^r$?

We report on new searches for such E, and in particular on new records for five **six** of the fifteen groups G, namely the cyclic groups of orders 2, 3, 4, 5, 6, 7.

For example, we increment the $G = \mathbf{Z}/3\mathbf{Z}$ record to

with torsion $\mathbf{Z}/3\mathbf{Z}$ and rank 15.

So the natural question now is:

Given one of the fifteen groups G in Mazur's list, how large can r get for an elliptic curve E/\mathbf{Q} with $E(\mathbf{Q}) \cong G \oplus \mathbf{Z}^r$?

We report on new searches for such E, and in particular on new records for five **six** of the fifteen groups G, namely the cyclic groups of orders 2, 3, 4, 5, 6, 7.

For example, we increment the G = Z/3Z record to

with torsion $\mathbf{Z}/3\mathbf{Z}$ and rank 15.

Table showing the new r records for $G = \mathbb{Z}/n\mathbb{Z}$ (n = 2, 3, 4, 6, 7), From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathbf{Q})_{tors}$		previous record	current record
{1}	28	(E., 2006)	
$\mathbf{Z}/2\mathbf{Z}$	19	(E., 2009)	20 (EK.)
$\mathbf{Z}/\mathbf{3Z}$	14	(E., 2018)	15 (EK.)
$\mathbf{Z}/4\mathbf{Z}$	12	(E., 2006)	13 (EK.)
$\mathbf{Z}/5\mathbf{Z}$	8	(Dujella-Lecacheux, 2009)	
$\mathbf{Z}/6\mathbf{Z}$	8	(Eroshkin, 2008)	9 (K.)
$\mathbf{Z}/\mathbf{7Z}$	5	(Dujella-Kulesz, 2001)	6 (K.)
$\mathbf{Z}/8\mathbf{Z}$	6	(E., 2006)	
$\mathbf{Z}/9\mathbf{Z}$	4	(Fisher, 2009)	
$\mathbf{Z}/10\mathbf{Z}$	4	(Dujella, 2005)	
$\mathbf{Z}/12\mathbf{Z}$	4	(Fisher, 2008)	
$({ m Z}/2{ m Z})\oplus ({ m Z}/2{ m Z})$	15	(E., 2009)	
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{4Z})$	9	(Dujella-Peral, 2012)	
$({ m Z}/2{ m Z})\oplus ({ m Z}/6{ m Z})$	6	(E., 2006)	
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{8Z})$	3	(Connell, 2000)	

Table showing the new r records for $G = \mathbb{Z}/n\mathbb{Z}$ (n = 2, 3, 4, 6, 7), From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathbf{Q})_{tors}$		previous record	current record
{1}	28	(E., 2006)	28
$\mathbf{Z}/2\mathbf{Z}$	19	(E., 2009)	20 (EK.)
$\mathbf{Z}/3\mathbf{Z}$	14	(E., 2018)	15 (EK.)
$\mathbf{Z}/4\mathbf{Z}$	12	(E., 2006)	13 (EK.)
$\mathbf{Z}/5\mathbf{Z}$	8	(Dujella-Lecacheux, 2009)	8
$\mathbf{Z}/6\mathbf{Z}$	8	(Eroshkin, 2008)	9 (K.)
$\mathbf{Z}/\mathbf{7Z}$	5	(Dujella-Kulesz, 2001)	6 (K.)
$\mathbf{Z}/8\mathbf{Z}$	6	(E., 2006)	6
$\mathbf{Z}/9\mathbf{Z}$	4	(Fisher, 2009)	4
$\mathbf{Z}/10\mathbf{Z}$	4	(Dujella, 2005)	4
$\mathbf{Z}/12\mathbf{Z}$	4	(Fisher, 2008)	4
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{2Z})$	15	(E., 2009)	15
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{4Z})$	9	(Dujella-Peral, 2012)	9
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{6Z})$	6	(E., 2006)	6
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{8Z})$	3	(Connell, 2000)	3

Table showing the new r records for $G = \mathbb{Z}/n\mathbb{Z}$ (n = 2, 3, 4, 6, 7), From https://web.math.pmf.unizg.hr/~duje/tors/tors.html :

$E(\mathbf{Q})_{tors}$		previous record	current record
{1}	28	(E., 2006)	28
$\mathbf{Z}/2\mathbf{Z}$	19	(E., 2009)	20 (EK.)
$\mathbf{Z}/3\mathbf{Z}$	14	(E., 2018)	15 (EK.)
$\mathbf{Z}/4\mathbf{Z}$	12	(E., 2006)	13 (EK.)
$\mathbf{Z}/5\mathbf{Z}$	8	(Dujella-Lecacheux, 2009)	9 (K.)
$\mathbf{Z}/6\mathbf{Z}$	8	(Eroshkin, 2008)	9 (K.)
$\mathbf{Z}/\mathbf{7Z}$	5	(Dujella-Kulesz, 2001)	6 (K.)
$\mathbf{Z}/8\mathbf{Z}$	6	(E., 2006)	6
$\mathbf{Z}/9\mathbf{Z}$	4	(Fisher, 2009)	4
$\mathbf{Z}/10\mathbf{Z}$	4	(Dujella, 2005)	4
$\mathbf{Z}/12\mathbf{Z}$	4	(Fisher, 2008)	4
$(\mathrm{Z}/2\mathrm{Z}) \oplus (\mathrm{Z}/2\mathrm{Z})$	15	(E., 2009)	15
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{4Z})$	9	(Dujella-Peral, 2012)	9
$({ m Z}/2{ m Z}) \oplus ({ m Z}/6{ m Z})$	6	(E., 2006)	6
$(\mathrm{Z}/\mathrm{2Z})\oplus(\mathrm{Z}/\mathrm{8Z})$	3	(Connell, 2000)	3

The new curve with $E(\mathbf{Q}) \cong (\mathbf{Z}/2\mathbf{Z}) \oplus \mathbf{Z}^{20}$ now also holds the record for the largest rank of $E(\mathbf{Q})$ for an elliptic curve E whose rank is known unconditionally (i.e., not assuming any GRH).

Other Results: for the same G's (cyclic of orders 2–7) and a few others, we find numerous new examples of E that tie the previous rank records for $E(\mathbf{Q})_{\text{tors}} \cong G$, including a few that are smaller* than any previously known with the same $(E(\mathbf{Q})_{\text{tors}}, r)$.

* "Smaller" may be measured by height, discriminant, and/or conductor.

Overview of search technique. The overall strategy for such searches has not changed in decades:

i) Find a family $\{E_t\}$ with $G \oplus \mathbb{Z}^{r_0} \hookrightarrow E_t$ for almost all t; ii) Search for special values of $t \in \mathbb{Q}$ (or $t \in \mathbb{Q}^d$, etc.) for which E_t has even more rational points.

A simple example of (i) for $|G| = r_0 = 2$: let $t = (x_1, y_1, x_2, y_2) \in \mathbf{Q}^4$; solve simult. lin. eqs. $y_i^2 = x_i^3 + a_2 x_i^2 + a_4 x_i$ (i = 1, 2) for (a_2, a_4) . (For $G = \mathbf{Z}/2\mathbf{Z}$ we actually used E_t with $r_0 = 9$; the construction of such E_t is described elsewhere.)

Our new improvements all target part (ii).

Mestre-Nagao heuristic for good candidates E_t .

Wholesale testing of curves E_t for high rank is usually not feasible. Instead one uses the heuristic of Mestre (1982) and Nagao (1992): record and near-record rank curves E tend to have many points modulo most small primes p. So use a score

$$S(t,B) := \log \prod_{p \le B} \frac{N_p(E_t)}{p} = \sum_{p \le B} \log \frac{N_p(E_t)}{p}$$

as a proxy for high rank. Here p ranges over "primes of good reduction" for the curve $(p \nmid \Delta)$, and $N_p(E_t) = \#E_t(\mathbf{Z}/p\mathbf{Z})$, which is easy to compute for small p.

[This score also aligns with the BSD conjecture: $\prod_{p \leq B} N_p(E)/p$ is a partial product for 1/L(E, 1).]

Sieving for bulk computation of S(t, B).

We now use a trick known from "Sieve" techniques (QS, NFS) for factoring etc. to efficiently compute many values of

$$S(t,B) = \sum_{p \le B} \log \frac{N_p(E_t)}{p}.$$

That is:

• Set up an array of counters s_t , initialized to zero

• For each $p \leq B$: for each $\tau \mod p$: compute $\log(N_p(E_{\tau})/p)$, and use it to increment each s_t in the arith. prog. $t \equiv \tau \mod p$.

This make $s_t = S(t, B)$ for each t.

[In practice, fix $M = 2^{10}$, compute ROUND $(M \log(N_p(E_{\tau})/p))$, and approximate $M \cdot S(t, B)$ by the 16-bit sum of those integers.]

Post-sieve processing

Having computed many approximate S(t, B) values, take the top "few" for further processing: possibly compute S(t, B') for some $B' \gg B$ to further cull the list, then descent* to get upper bound on rank of E_t , and if the bound is large enough then search for rational points.

* 2-descent for n = 5 or n = 7; descent by 2- or 3-isogeny otherwise. For 3-isogeny, also implemented Cassels-Tate pairing. A decisive ingredient for all the new records (except maybe $G = \mathbf{Z}/7\mathbf{Z}$) was throwing <u>lots</u> more computing power at the problem. All of Elkies' previous rank-record curves took less than half a core-year in total. Here each of $\mathbf{Z}/2\mathbf{Z}$ and $\mathbf{Z}/3\mathbf{Z}$ got 40+ core-years, $\mathbf{Z}/6\mathbf{Z}$ got almost that long, and $\mathbf{Z}/4\mathbf{Z}$ got about 12. Klagsbrun also searched the universal $\mathbf{Z}/5\mathbf{Z}$ family [t + 1, t, t, 0, 0] for several core-<u>centuries</u>; yesterday the first examples of rank 9 turned up, just in time!

t = 266165145/442317512.

Also 100+ new examples that tie the 2009 record of 8 (Dujella-Lecacheux), including the smallest conductor and discriminant known for a curve with $E(\mathbf{Q}) \cong (\mathbf{Z}/5\mathbf{Z}) \oplus \mathbf{Z}^8$, at respectively t = 1809535/5292661 ($N \approx 2^{85.86}$) and t = 5167107/723695($|\Delta| \approx 2^{254.77}$); the rank-9 curve has ($N, |\Delta|$) $\approx 2^{110.34}, 2^{343.56}$).