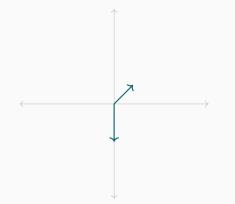
The Nearest-Colattice algorithm

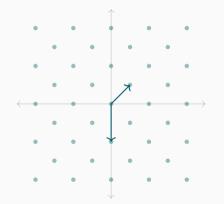
Time-approximation tradeoff for Approx-CVP

Thomas Espitau and Paul Kirchner

ANTS 2020

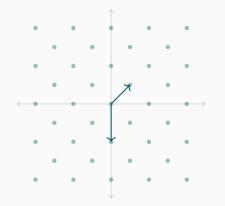
Lattices, (H)SVP, CVP





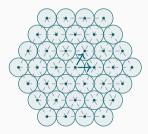
Lattice

A (Euclidean) lattice L is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

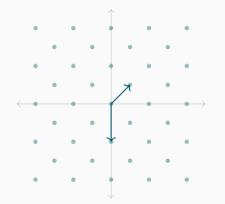


Lattice

A (Euclidean) lattice L is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

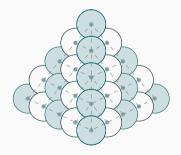


Sphere Packing problem

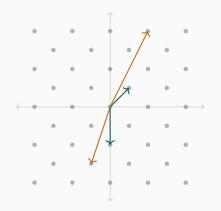


Lattice

A (Euclidean) lattice L is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).



Sphere Packing problem



Lattice

A (Euclidean) lattice L is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

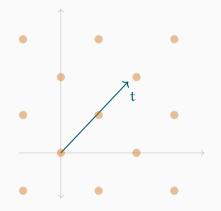
- Finding a shortest vector: hard
- Solving lattice problems depends on the quality of the basis
 - Size of vectors
 - Orthogonality defect of basis

Given a lattice ∧ and a vector t in the ambient space:

Retrieve the closest vector of Λ to t.

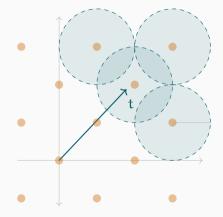
 Given a lattice A and a vector t in the ambient space:

Retrieve the closest vector of Λ to t.



 Given a lattice A and a vector t in the ambient space:

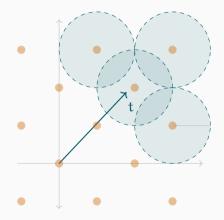
Retrieve the closest vector of Λ to t.



 Given a lattice A and a vector t in the ambient space:

Retrieve the closest vector of Λ to t.

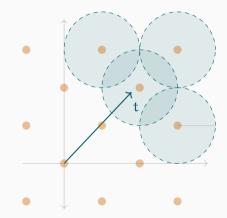
• Decode at distance $\mu(\Lambda)$.



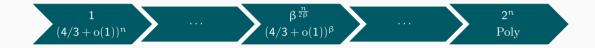
Given a lattice Λ and a vector t in the ambient space:

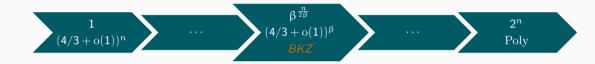
Retrieve the closest vector of Λ to t.

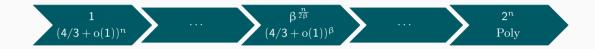
- Decode at distance $\mu(\Lambda)$.
- Solving the problem exactly is hard
 - Emumeration ([HS]) n^{n/2}
 - Sieve (proved) ([ADS]) (2 + o(1))ⁿ
 - Sieve (heur.) ([BDGL]) $\left(\frac{4}{3} + o(1)\right)^{\frac{n}{2}}$



Relaxed version: γ -Approx-CVP: find $\nu \in \Lambda$ at distance at most $\gamma \min_{w \in \Lambda} \|w - t\|$





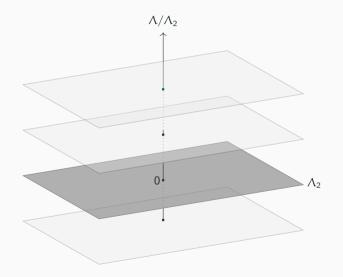


- Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in dimension to β to solve the relaxed problem in dimension n
- Exists for Approx-CVP by Kannan's embedding, but use the reduction to SVP, and does not allow preprocess.

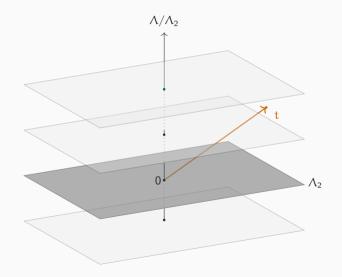
CVP in Λ for $t = e + v \longrightarrow$ SVP to reveal e in $\left[\begin{array}{c} \Lambda \\ \end{array} \right] = 0$

- Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in dimension to β to solve the relaxed problem in dimension n
- Exists for Approx-CVP by Kannan's embedding, but use the reduction to SVP, and does not allow preprocess.
- Natural approach ? (i.e. using an oracle CVP)

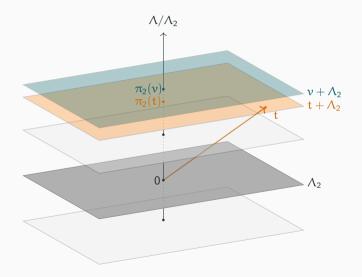
From Babai's nearest plane...

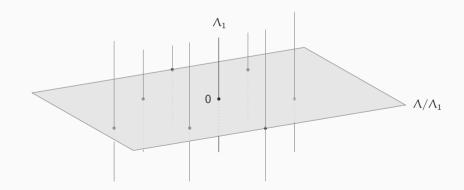


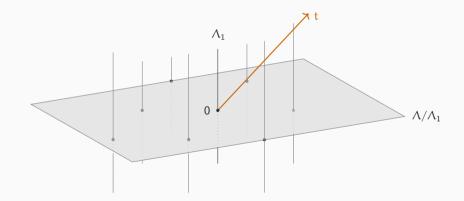
From Babai's nearest plane...



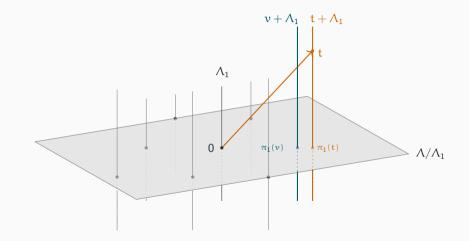
From Babai's nearest plane...







To nearest-2-colattice



Algorithm 1: Nearest-collatice Input : A filtration $\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_k = \Lambda$ **Output** : A vector $v \in \Lambda$ $1 s \leftarrow -t$ 2 for i = k downto 1 do 3 $| s \leftarrow s - \text{Lift}(\operatorname{ARGMIN}_{h \in \Lambda_i / \Lambda_{i-1}} \| v - h \|)$ 4 end for 5 return t + s

$$\text{Quality:} \quad \|x - t\|^2 \leqslant \sum_{i=1}^k \mu \left(\bigwedge_{i+1} \bigwedge_i \right)^2 \text{ in time } \mathsf{T}_{\mathsf{CVP}}(\beta) \mathrm{Poly}(n, \log \|t\|, \log \|B\|)$$

Averaged analysis

- For a random lattice of rank $n \colon \lambda_1 > c \sqrt{n} \Longrightarrow \mu \leqslant \sqrt{n}$

Averaged analysis

- For a random lattice of rank $n \colon \lambda_1 > c \sqrt{n} \Longrightarrow \mu \leqslant \sqrt{n}$

Average behavior

Given a BKZ- β reduced basis and supposing that every sublattice behaves as a random lattice, Nearest-Colattice finds a vector $x \in \Lambda$ such that

$$\|\mathbf{x} - \mathbf{t}\| \leqslant \Theta(\beta)^{\frac{n}{2\beta}} \operatorname{covol}(\Lambda)^{\frac{1}{n}}$$

in time $T_{CVP}(\beta)$ Poly $(n, \log ||t||, \log ||B||)$.

Averaged analysis

- For a random lattice of rank $n \colon \lambda_1 > c \sqrt{n} \Longrightarrow \mu \leqslant \sqrt{n}$

Average behavior

Given a BKZ- β reduced basis and supposing that every sublattice behaves as a random lattice, Nearest-Colattice finds a vector $x \in \Lambda$ such that

$$\|\mathbf{x} - \mathbf{t}\| \leq \Theta(\beta)^{\frac{n}{2\beta}} \operatorname{covol}(\Lambda)^{\frac{1}{n}}$$

in time $T_{CVP}(\beta)$ Poly $(n, \log ||t||, \log ||B||)$.

BKZ algorithm: Find a vector such that

 $\|v\| \leqslant \Theta(\beta)^{\frac{n}{2\beta}} \operatorname{covol}(\Lambda)^{\frac{1}{n}}$

in time $T_{SVP}(\beta)$ Poly $(n, \log ||t||, \log ||B||)$.

Applications in Cryptanalysis

- The CVP problem is ubiquitous in cryptanalysis
- Class of signatures schemes (à la GPV)

valid signature \equiv lattice point *close to a public target* \rightarrow Solving CVP \Rightarrow Forgery

Applications in Cryptanalysis

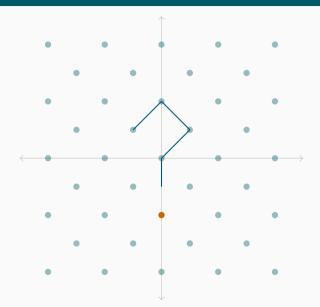
- The CVP problem is ubiquitous in cryptanalysis
- Class of signatures schemes (à la GPV)

valid signature \equiv lattice point *close to a public target* \rightarrow Solving CVP \Rightarrow Forgery

• Nearest-colattice algorithm \Rightarrow once a reduced basis is found, batch forgery is easy.

 Applies to tradeoff in primal-attack on LWE: allows to use lattice reduction only once to amortize the cost of combinatorial techniques (guessing, small enumeration, ...)

Thank you !



15