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Lattices, (H)SVP, CVP



Lattices in a nutshell a

Lattice
A (Euclidean) lattice L is a discrete subgroup of
an Euclidean space (say Rn).
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Lattices in a nutshell a

Lattice
A (Euclidean) lattice L is a discrete subgroup of
an Euclidean space (say Rn).

• Finding a shortest vector: hard

• Solving lattice problems depends on the quality
of the basis

• Size of vectors
• Orthogonality defect of basis
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Closest vector problem

• Given a lattice Λ and a vector t in the ambient
space:

Retrieve the closest vector of Λ to t.
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Closest vector problem

• Given a lattice Λ and a vector t in the ambient
space:

Retrieve the closest vector of Λ to t.
• Decode at distance µ(Λ).

• Solving the problem exactly is hard
• Emumeration ([HS]) nn/2

• Sieve (proved) ([ADS]) (2 + o(1))n
• Sieve (heur.) ([BDGL])

( 4
3 + o(1)

)n
2

t

Relaxed version: γ-Approx-CVP: find v ∈ Λ at distance at most γminw∈Λ ∥w− t∥
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Hierarchy for SVP/CVP

1
(4/3 + o(1))n

· · · β
n
2β

(4/3 + o(1))β
· · · 2n

Poly

• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n

5



Hierarchy for SVP/CVP

1
(4/3 + o(1))n
Enum/Sieve

· · · β
n
2β

(4/3 + o(1))β
· · · 2n

Poly

• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n

5



Hierarchy for SVP/CVP

1
(4/3 + o(1))n

· · ·
β

n
2β

(4/3 + o(1))β
BKZ

· · · 2n

Poly

• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n

5



Hierarchy for SVP/CVP
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• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n
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Hierarchy for SVP/CVP
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· · · β
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• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n

• Exists for Approx-CVP by Kannan’s embedding, but use the reduction to SVP,
and does not allow preprocess.

CVP in Λ for t = e+ v −→ SVP to reveal e in

 Λ 0

t K
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Hierarchy for SVP/CVP

1
(4/3 + o(1))n
Enum/Sieve

· · · β
n
2β

(4/3 + o(1))β
· · ·

2n

Poly
Nearest plane

• Hierarchy given by BKZ algorithm: hinges on the call of (exact) SVP oracle in
dimension to β to solve the relaxed problem in dimension n

• Exists for Approx-CVP by Kannan’s embedding, but use the reduction to SVP,
and does not allow preprocess.

• Natural approach ? (i.e. using an oracle CVP)

5



From Babai’s nearest plane...

Λ/Λ2

Λ20

6



From Babai’s nearest plane...

Λ/Λ2

t

Λ20

7



From Babai’s nearest plane...

Λ/Λ2

t

v+Λ2

Λ2

t+Λ2

0

π2(v)
π2(t)

8



To nearest-2-colattice

Λ1

Λ/Λ1
0
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To nearest-2-colattice

Λ1

t

Λ/Λ1
0
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To nearest-2-colattice

Λ1

t

π1(t)

t+Λ1v+Λ1

Λ/Λ1
π1(v)0
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... to a general nearest-colattice algorithm

Algorithm 1: Nearest-collatice
Input : A filtration {0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ

Output : A vector v ∈ Λ

1 s← −t

2 for i = k downto 1 do
3 s← s− Lift(argminh∈Λi/Λi−1∥v− h∥)
4 end for
5 return t+ s

Quality: ∥x− t∥2 ⩽
∑k

i=1 µ
(
Λi+1⧸Λi

)2
in time TCVP(β)Poly(n, log ∥t∥, log ∥B∥)
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Averaged analysis

• For a random lattice of rank n: λ1 > c
√
n =⇒ µ ⩽

√
n

Average behavior
Given a BKZ-β reduced basis and supposing that every sublattice behaves as a
random lattice, Nearest-Colattice finds a vector x ∈ Λ such that

∥x− t∥ ⩽ Θ(β)
n
2β covol(Λ)

1
n

in time TCVP(β)Poly(n, log ∥t∥, log ∥B∥).

• BKZ algorithm: Find a vector such that

∥v∥ ⩽ Θ(β)
n
2β covol(Λ)

1
n

in time TSVP(β)Poly(n, log ∥t∥, log ∥B∥).
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Applications in Cryptanalysis

• The CVP problem is ubiquitous in cryptanalysis
• Class of signatures schemes (à la GPV)

valid signature ≡ lattice point close to a public target
→ Solving CVP ⇒ Forgery

• Nearest-colattice algorithm ⇒ once a reduced basis is found, batch forgery is easy.

• Applies to tradeoff in primal-attack on LWE: allows to use lattice reduction only
once to amortize the cost of combinatorial techniques (guessing, small
enumeration, ...)
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Thank you !
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