
Recent results on fast multiplication

David Harvey
ANTS XIV, University of Auckland (or thereabouts), 29th/30th June 2020

University of New South Wales, Sydney
Joint work with Joris van der Hoeven (École Polytechnique, Palaiseau)

Australia vs New Zealand 2/42

Claim
New Zealand is the “best country in the world”

— Steven Galbraith, personal communication, April 2020

What does the data show?

Australia New Zealand

Sheep (per capita) 2.7 5.3
Fields medallists (per 100,000,000) 7.8 20.0
ANTS conferences (per 100,000,000) 3.9 20.0
Reported COVID-19 cases (per 100,000) 30.3 30.5

Australia vs New Zealand 2/42

Claim
New Zealand is the “best country in the world”

— Steven Galbraith, personal communication, April 2020

What does the data show?

Australia New Zealand

Sheep (per capita) 2.7 5.3
Fields medallists (per 100,000,000) 7.8 20.0
ANTS conferences (per 100,000,000) 3.9 20.0
Reported COVID-19 cases (per 100,000) 30.3 30.5

Two multiplication problems 3/42

Integer multiplication

M(n) := cost of multiplying integers with at most n digits

• “digits” means in some fixed base (e.g. binary or decimal).
• “cost” means “bit complexity”
(e.g. # steps on multi-tape Turing machine, or # gates in Boolean circuit).

Polynomial multiplication over finite fields

Mq(n) := cost of multiplying polynomials in Fq[x] of degree at most n

• Fq = field with q elements, q a fixed prime power.
• “cost” means bit complexity, or # ring operations in Fq.

Two multiplication problems 3/42

Integer multiplication

M(n) := cost of multiplying integers with at most n digits

• “digits” means in some fixed base (e.g. binary or decimal).
• “cost” means “bit complexity”
(e.g. # steps on multi-tape Turing machine, or # gates in Boolean circuit).

Polynomial multiplication over finite fields

Mq(n) := cost of multiplying polynomials in Fq[x] of degree at most n

• Fq = field with q elements, q a fixed prime power.
• “cost” means bit complexity, or # ring operations in Fq.

Long multiplication 4/42

Goes back at least to ancient Egypt —
probably much older.

Complexity:

M(n) = O(n2).

Same algorithm for polynomials:

Mq(n) = O(n2).

Kolmogorov’s lower bound conjecture 5/42

Conjecture (Kolmogorov, around 1956)

M(n) = Θ(n2).

According to Karatsuba (1995),
“Probably, [the conjecture’s] appearance is based on
the fact that throughout the history of mankind
people have been using [the algorithm] whose
complexity is O(n2), and if a more economical
method existed, it would have already been found.”

Kolmogorov’s lower bound conjecture 5/42

Conjecture (Kolmogorov, around 1956)

M(n) = Θ(n2).

According to Karatsuba (1995),
“Probably, [the conjecture’s] appearance is based on
the fact that throughout the history of mankind
people have been using [the algorithm] whose
complexity is O(n2), and if a more economical
method existed, it would have already been found.”

Faster multiplication 6/42

Brief history of bounds for M(n):

1962 Karatsuba nlog 3/ log 2 (≈ n1.58)
1969 Knuth n 2

√
2 log n/ log 2 logn

1971 Schönhage–Strassen n logn log logn
2007 Fürer n lognKlog∗ n for some K > 1
2019 H.–van der Hoeven∗ n logn

Conjecture (Schönhage–Strassen, 1971)

M(n) = Θ(n logn).

∗not yet published

Faster multiplication 6/42

Brief history of bounds for M(n):

1962 Karatsuba nlog 3/ log 2 (≈ n1.58)
1969 Knuth n 2

√
2 log n/ log 2 logn

1971 Schönhage–Strassen n logn log logn
2007 Fürer n lognKlog∗ n for some K > 1
2019 H.–van der Hoeven∗ n logn

Conjecture (Schönhage–Strassen, 1971)

M(n) = Θ(n logn).

∗not yet published

Faster multiplication 7/42

Brief history of bounds for Mq(n):

1977 Schönhage n logn log logn
2017 H.–van der Hoeven–Lecerf n logn 8log∗ n

2019 H.–van der Hoeven n logn 4log∗ n

2019 H.–van der Hoeven∗ n logn (conditional on unproved
number-theoretic hypothesis)

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

∗not yet published

Faster multiplication 7/42

Brief history of bounds for Mq(n):

1977 Schönhage n logn log logn
2017 H.–van der Hoeven–Lecerf n logn 8log∗ n

2019 H.–van der Hoeven n logn 4log∗ n

2019 H.–van der Hoeven∗ n logn (conditional on unproved
number-theoretic hypothesis)

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

∗not yet published

Outline of rest of talk 8/42

1. Complex DFTs and FFTs

2. Further FFT techniques (Rader & Nussbaumer)

3. Conditional O(n logn) multiplication for integers and polynomials

4. Unconditional O(n logn) integer multiplication

Complex DFTs and FFTs

The discrete Fourier transform (DFT) 9/42

Let n ⩾ 1 and ζ := e2πi/n ∈ C. The roots of xn − 1 are 1, ζ, . . . , ζn−1.

The DFT of length n over C is the linear map (in fact ring isomorphism)

C[x]/(xn − 1) −→ Cn, F 7−→ (F(1), F(ζ), . . . , F(ζn−1)).

Example: DFT of length 4

a+ bx+ cx2 + dx3 (mod x4 − 1) 7−→

a+ b+ c+ d
a+ ib− c− id
a− b+ c− d
a− ib− c+ id

 ∈ C4.

The naive algorithm to evaluate the DFT requires O(n2) operations in C.

The discrete Fourier transform (DFT) 9/42

Let n ⩾ 1 and ζ := e2πi/n ∈ C. The roots of xn − 1 are 1, ζ, . . . , ζn−1.

The DFT of length n over C is the linear map (in fact ring isomorphism)

C[x]/(xn − 1) −→ Cn, F 7−→ (F(1), F(ζ), . . . , F(ζn−1)).

Example: DFT of length 4

a+ bx+ cx2 + dx3 (mod x4 − 1) 7−→

a+ b+ c+ d
a+ ib− c− id
a− b+ c− d
a− ib− c+ id

 ∈ C4.

The naive algorithm to evaluate the DFT requires O(n2) operations in C.

The fast Fourier transform (FFT) 10/42

The simplest case of the Cooley–Tukey FFT (1965) reduces the complexity of the
DFT from O(n2) to O(n logn) operations in the case n = 2k.

Example: FFT of length 8

F mod x8 − 1

F mod x4 − 1

F mod x4 + 1

F mod x2 − 1

F mod x2 + 1

F mod x2 − ζ2

F mod x2 + ζ2

F mod x− 1
F mod x+ 1
F mod x− ζ2

F mod x+ ζ2

F mod x− ζ

F mod x+ ζ

F mod x− ζ3

F mod x+ ζ3

= F(ζ0)
= F(ζ4)
= F(ζ2)
= F(ζ6)
= F(ζ1)
= F(ζ5)
= F(ζ3)
= F(ζ7)

DFTs and cyclic convolutions 11/42

DFTs can be used to compute cyclic convolutions, i.e. multiply in C[x]/(xn − 1).

Given as input F,G ∈ C[x]/(xn − 1):

1. use DFT to compute aj := F(ζ j) and bj := G(ζ j) for j = 0, . . . ,n− 1
2. compute pointwise products cj := aj · bj
3. use inverse DFT to find H ∈ C[x]/(xn − 1) such that H(ζ j) = cj for all j

Output is H = FG (mod xn − 1).

Therefore, FFTs lead to fast convolution algorithms.

Application: the first Schönhage–Strassen multiplication algorithm 12/42

Suppose we want to multiply n-bit integers u and v.

Step 1. Rewrite u and v in base 2b where b ≈ logn.
Encode as polynomials F,G ∈ Z[x], coefficient size b bits, degree ≈ n/ logn.

Baby example (in decimal). Suppose that

u = 314159265, v = 271828182.

Rewrite in base 103, i.e. put u = F(103) and v = G(103) where

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182.

Application: the first Schönhage–Strassen multiplication algorithm 13/42

Step 2. Multiply in C[x] using complex FFTs, with working precision O(logn) bits.
Round result to get correct product in Z[x].

Baby example continued. Compute the polynomial product

H(x) = (314x2 + 159x+ 265)× (271x2 + 828x+ 182)
= 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.

Step 3. Substitute x = 2b to get product in Z.

Baby example continued. Substitute x = 103 to get

uv = H(103) = 85397341863406230.

Application: the first Schönhage–Strassen multiplication algorithm 13/42

Step 2. Multiply in C[x] using complex FFTs, with working precision O(logn) bits.
Round result to get correct product in Z[x].

Baby example continued. Compute the polynomial product

H(x) = (314x2 + 159x+ 265)× (271x2 + 828x+ 182)
= 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.

Step 3. Substitute x = 2b to get product in Z.

Baby example continued. Substitute x = 103 to get

uv = H(103) = 85397341863406230.

Application: the first Schönhage–Strassen multiplication algorithm 14/42

Sketch of complexity analysis:

• Overall complexity dominated by the FFTs of length O(n/ logn).
• Coefficient multiplications in C are handled recursively:
cost per multiplication is O(M(logn)).

So we get

M(n) = O
(n
log n log

(n
log n

)
M(logn)

)
= O(nM(logn))
= O(n lognM(log logn))
= O(n logn log lognM(log log logn))
= · · ·

Application: the first Schönhage–Strassen multiplication algorithm 14/42

Sketch of complexity analysis:

• Overall complexity dominated by the FFTs of length O(n/ logn).
• Coefficient multiplications in C are handled recursively:
cost per multiplication is O(M(logn)).

So we get

M(n) = O
(n
log n log

(n
log n

)
M(logn)

)
= O(nM(logn))
= O(n lognM(log logn))
= O(n logn log lognM(log log logn))
= · · ·

Further FFT techniques (Rader &
Nussbaumer)

Rader’s algorithm 15/42

Rader’s algorithm (1968)
A DFT of prime length p may be reduced to a cyclic convolution of length p− 1,
together with O(p) additions in C.

Example: let ζ = e2πi/5, and suppose we
want to compute the DFT

u0 + u1 + u2 + u3 + u4
u0 + u1ζ1 + u2ζ2 + u3ζ3 + u4ζ4

u0 + u1ζ2 + u2ζ4 + u3ζ1 + u4ζ3

u0 + u1ζ3 + u2ζ1 + u3ζ4 + u4ζ2

u0 + u1ζ4 + u2ζ3 + u3ζ2 + u4ζ1.

This reduces to computing the cyclic
convolution of

(u1,u2,u4,u3) and (ζ3, ζ4, ζ2, ζ1),

plus a few additions.

The ordering is given by the powers of
the multiplicative generator 2 modulo 5.

Nussbaumer’s algorithm 16/42

DFTs may be generalised to polynomials in several variables.

Example: let F ∈ C[x, y, z]/(x4 − 1, y5 − 1, z6 − 1), say

F =
3∑
j=0

4∑
k=0

5∑
l=0

Fj,k,lxjykzl.

Let ζn = e2πi/n, and assume we want to evaluate

F(ζ j4, ζ
k
5 , ζ

l
6)

for all j ∈ {0, 1, 2, 3}, k ∈ {0, . . . , 4}, l ∈ {0, . . . , 5}.

This is a 3-dimensional DFT of size 4× 5× 6.

xj

yk

zl

Nussbaumer’s algorithm 17/42

The “standard” method for evaluating a multidimensional DFT is to perform
1-dimensional DFTs in each dimension successively:

30 DFTs of length 4
with respect to x

24 DFTs of length 5
with respect to y

20 DFTs of length 6
with respect to z

Nussbaumer’s algorithm 18/42

Nussbaumer proposed a better algorithm (late 1970s) for the special case that all
the dimensions are powers of two, say

F ∈ C[x1, . . . , xd]/(x2
k1
1 − 1, . . . , x2

kd
d − 1), k1 ⩽ · · · ⩽ kd.

Step 1. Treating the last variable xd as a “synthetic” root of unity of order 2kd ,
evaluate the first d− 1 variables at suitable powers of xd.∗

This uses the Cooley–Tukey FFT, but with no multiplications in C: multiplying by a
“synthetic” root of unity only involves data rearrangement.

Step 2. Evaluate the last variable at the usual complex roots of unity, using any
convenient method.

∗Actually, this doesn’t quite work; one needs to fudge things to work with x2
k
+ 1 instead of x2

k
− 1.

Nussbaumer’s algorithm 19/42

Let n = 2k1 × · · · × 2kd be the total data size.

Assuming all the dimensions 2kj are roughly equal:

additions in C multiplications in C

standard algorithm O(n logn) O(n logn)

Nussbaumer’s algorithm O(n logn) O
(
n logn
d

)

The bottom line
Nussbaumer reduces the number of multiplications in C by a factor of O(d).

Conditional O(n logn) multiplication
for integers and polynomials

Conditional O(n logn) integer multiplication 20/42

I will illustrate for integers with n = 1014 bits (around 11 TB).

Step 1. Cut integers into chunks of 46 (≈ log2 1014) bits.

Encode into polynomials in Z[t], with 46-bit coefficients, and degree less than

⌈n/46⌉ = 2 173 913 043 479.

It suffices to multiply the polynomials in the ring Z[t]/(tN − 1) where

N = 5 509 236 183 041 = p1p2p3, p1 = 15361, p2 = 18433, p3 = 19457.

This let us recover the product in Z[t] because N > 2× 2 173 913 043 479.

The primes are chosen very carefully; I will return to this in a few slides.

Conditional O(n logn) integer multiplication 20/42

I will illustrate for integers with n = 1014 bits (around 11 TB).

Step 1. Cut integers into chunks of 46 (≈ log2 1014) bits.

Encode into polynomials in Z[t], with 46-bit coefficients, and degree less than

⌈n/46⌉ = 2 173 913 043 479.

It suffices to multiply the polynomials in the ring Z[t]/(tN − 1) where

N = 5 509 236 183 041 = p1p2p3, p1 = 15361, p2 = 18433, p3 = 19457.

This let us recover the product in Z[t] because N > 2× 2 173 913 043 479.

The primes are chosen very carefully; I will return to this in a few slides.

Conditional O(n logn) integer multiplication 20/42

I will illustrate for integers with n = 1014 bits (around 11 TB).

Step 1. Cut integers into chunks of 46 (≈ log2 1014) bits.

Encode into polynomials in Z[t], with 46-bit coefficients, and degree less than

⌈n/46⌉ = 2 173 913 043 479.

It suffices to multiply the polynomials in the ring Z[t]/(tN − 1) where

N = 5 509 236 183 041 = p1p2p3, p1 = 15361, p2 = 18433, p3 = 19457.

This let us recover the product in Z[t] because N > 2× 2 173 913 043 479.

The primes are chosen very carefully; I will return to this in a few slides.

Conditional O(n logn) integer multiplication 21/42

Step 2. Using the Chinese remainder theorem, there is an isomorphism
(Agarwal–Cooley 1977):

Z[t]/(t5 509 236 183 041 − 1) ∼= Z[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1),
t 7−→ xyz.

Can be computed efficiently in either direction (just rearrange coefficients).

So we have reduced to a 3-dimensional cyclic convolution of size p1 × p2 × p3.

Conditional O(n logn) integer multiplication 22/42

Step 3. Use the same strategy as the Schönhage–Strassen algorithm to reduce
multiplication in

Z[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1)

to several complex DFTs of size p1 × p2 × p3:

1. Compute (multidimensional) DFTs of both polynomials over C.
2. Multiply pointwise in C.
3. Perform inverse DFT to get approximate product in

C[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1).

4. Round resulting coefficients to nearest integer.
(Working precision throughout is a small multiple of 46 bits.)

Conditional O(n logn) integer multiplication 23/42

Step 4. Use multidimensional version of Rader’s trick
to reduce complex DFT of size 15361× 18433× 19457
to a multiplication in

C[x, y, z]/(x15360 − 1, y18432 − 1, z19456 − 1).

Key observation
Convolution lengths are reduced from pi to pi − 1.

I picked the primes very carefully; notice that

15360 = 15× 210, 18432 = 18× 210, 19456 = 19× 210.

Conditional O(n logn) integer multiplication 24/42

Step 5. Use standard techniques to reduce multiplication in

C[x, y, z]/(x15360 − 1, y18432 − 1, z19456 − 1)

to a collection of smaller 3-dimensional DFTs:

1. “Nice” DFTs of size 210 × 210 × 210.
These may be evaluated via Nussbaumer’s trick.
(This is the decisive point where we win over previous algorithms.)

2. “Annoying” DFTs of size 15× 18× 19.
These can be computed using any convenient method... (??!!)

Primes in arithmetic progressions 25/42

In the general case, we need to take d somewhat bigger than 3. It turns out that
d = Θ(1) is good enough (i.e., independent of n).

The sticking point in the complexity analysis turns out to be the cost of the
“annoying” DFTs.

To make these DFTs cheap enough, we need to prove existence of small primes in
arithmetic progressions of the type p = 1 (mod 2k).

Linnik’s theorem (1944)
There exists a constant L > 1 such that for any relatively prime integers a and
m≫ 0, there exists a prime p = a (mod m) with p < mL.

A Linnik constant is a value of L for which the above statement holds.

Best published Linnik constant is currently L = 5.18 (Xylouris, 2011).

Primes in arithmetic progressions 25/42

In the general case, we need to take d somewhat bigger than 3. It turns out that
d = Θ(1) is good enough (i.e., independent of n).

The sticking point in the complexity analysis turns out to be the cost of the
“annoying” DFTs.

To make these DFTs cheap enough, we need to prove existence of small primes in
arithmetic progressions of the type p = 1 (mod 2k).

Linnik’s theorem (1944)
There exists a constant L > 1 such that for any relatively prime integers a and
m≫ 0, there exists a prime p = a (mod m) with p < mL.

A Linnik constant is a value of L for which the above statement holds.

Best published Linnik constant is currently L = 5.18 (Xylouris, 2011).

Primes in arithmetic progressions 26/42

Linnik’s theorem is embarrassingly weak!

Example: consider p = 1 (mod 210). The first few primes are

p = 12289, 13313, 15361, 18433, 19457, 25601, 37889, 39937,

But Linnik’s theorem (with the best known L) only guarantees that

p < (210)5.18 ≈ 4× 1015.

Under GRH, can prove that any L > 2 is a Linnik constant (Heath-Brown 1992).

This is still hopeless: we get
p < (210)2 ≈ 106.

Primes in arithmetic progressions 26/42

Linnik’s theorem is embarrassingly weak!

Example: consider p = 1 (mod 210). The first few primes are

p = 12289, 13313, 15361, 18433, 19457, 25601, 37889, 39937,

But Linnik’s theorem (with the best known L) only guarantees that

p < (210)5.18 ≈ 4× 1015.

Under GRH, can prove that any L > 2 is a Linnik constant (Heath-Brown 1992).

This is still hopeless: we get
p < (210)2 ≈ 106.

Primes in arithmetic progressions 27/42

Widely-believed conjecture
Any L > 1 is a Linnik constant.

Theorem (H.–van der Hoeven 2019)
If there exists a Linnik constant L < 1+ 1

303 , then the cost of the “annoying” DFTs
can be controlled, and the algorithm sketched in this talk achieves

M(n) = O(n logn).

We can probably weaken the bound for L a bit, but we have no idea how to get
anywhere near L = 2.

Primes in arithmetic progressions 27/42

Widely-believed conjecture
Any L > 1 is a Linnik constant.

Theorem (H.–van der Hoeven 2019)
If there exists a Linnik constant L < 1+ 1

303 , then the cost of the “annoying” DFTs
can be controlled, and the algorithm sketched in this talk achieves

M(n) = O(n logn).

We can probably weaken the bound for L a bit, but we have no idea how to get
anywhere near L = 2.

Conditional O(n logn) multiplication in Fq[x] 28/42

A similar idea works for multiplying in Fq[x], with various additional technicalities
(especially in characteristic 2):

1. Choose small primes p1, . . . ,pd = 1 (mod 2k) for suitable k
2. Construct extension Fqs/Fq containing pi-th and (pi − 1)-th roots of 1
3. Reduce to multiplication in Fqs [x] (i.e. cut into chunks of size s)
4. Reduce to multiplication in Fqs [x1, . . . , xd]/(xp11 − 1, . . . , xpdd − 1)
5. Reduce to DFTs of size p1 × · · · × pd over Fqs
6. Reduce to multiplication in Fqs [x1, . . . , xd]/(xp1−11 − 1, . . . , xpd−1d − 1) (Rader)
7. Use Nussbaumer to do synthetic FFTs in d− 1 dimensions, etc etc.

Conditional O(n logn) multiplication in Fq[x] 29/42

Theorem (H.–van der Hoeven 2019)
If there exists a Linnik constant L < 1+ 2−1162, then

Mq(n) = O(n logn).

Can probably improve 2−1162, but we don’t know by how much.

Unconditional O(n logn) integer
multiplication

Unconditional O(n logn) integer multiplication 30/42

Again take n = 1014 bits.

As before, reduce to multiplying polynomials of degree 2 173 913 043 479 with
46-bit coefficients.

This time we choose primes

p1 = 16381, p2 = 16369, p3 = 16363.

Notice they are all just below 214 = 16384.

(Easy to find such primes. No arithmetic progressions involved.)

Unconditional O(n logn) integer multiplication 30/42

Again take n = 1014 bits.

As before, reduce to multiplying polynomials of degree 2 173 913 043 479 with
46-bit coefficients.

This time we choose primes

p1 = 16381, p2 = 16369, p3 = 16363.

Notice they are all just below 214 = 16384.

(Easy to find such primes. No arithmetic progressions involved.)

Unconditional O(n logn) integer multiplication 31/42

It suffices to multiply in Z[t]/(tN − 1) where

N = p1p2p3 = 4 387 584 457 807 > 2× 2 173 913 043 479.

As before, reduce to complex DFTs of size 16381× 16369× 16363.

But instead of using Rader’s
algorithm, we use a new technique
called Gaussian resampling to
directly reduce to a DFT of size
214 × 214 × 214.

Then we win by using Nussbaumer’s
method to evaluate this last DFT.

DFT of size
p1 × p2 × p3

=⇒

DFT of size
214 × 214 × 214

Unconditional O(n logn) integer multiplication 31/42

It suffices to multiply in Z[t]/(tN − 1) where

N = p1p2p3 = 4 387 584 457 807 > 2× 2 173 913 043 479.

As before, reduce to complex DFTs of size 16381× 16369× 16363.

But instead of using Rader’s
algorithm, we use a new technique
called Gaussian resampling to
directly reduce to a DFT of size
214 × 214 × 214.

Then we win by using Nussbaumer’s
method to evaluate this last DFT.

DFT of size
p1 × p2 × p3

=⇒

DFT of size
214 × 214 × 214

Unconditional O(n logn) integer multiplication 31/42

It suffices to multiply in Z[t]/(tN − 1) where

N = p1p2p3 = 4 387 584 457 807 > 2× 2 173 913 043 479.

As before, reduce to complex DFTs of size 16381× 16369× 16363.

But instead of using Rader’s
algorithm, we use a new technique
called Gaussian resampling to
directly reduce to a DFT of size
214 × 214 × 214.

Then we win by using Nussbaumer’s
method to evaluate this last DFT.

DFT of size
p1 × p2 × p3

=⇒

DFT of size
214 × 214 × 214

Gaussian resampling in one dimension 32/42

Example: given input u ∈ C13, suppose we want to compute DFT û ∈ C13.

Suppose however that we only know how to compute DFTs of length 16.

We will convert length 13 to length 16 via a certain resampling map

S : C13 → C16.

I will show how to construct S over the next few slides.

Gaussian resampling in one dimension 32/42

Example: given input u ∈ C13, suppose we want to compute DFT û ∈ C13.

Suppose however that we only know how to compute DFTs of length 16.

We will convert length 13 to length 16 via a certain resampling map

S : C13 → C16.

I will show how to construct S over the next few slides.

The resampling map 33/42

The diagram shows a typical
input vector u ∈ C13.

For simplicity we assume ui ∈ R.

The blue points are (i13 ,ui) for
i = 0, . . . , 12.

Notice the x-axis wraps around
from left to right (i.e., the
x-values live in R/Z).

1
13

2
13

3
13

4
13

5
13

6
13

7
13

8
13

9
13

10
13

11
13

12
13

The resampling map 34/42

Draw a Gaussian curve centred
around each data point.

The equation for the i-th point is

y = uie−13
2(x− i

13)
2
.

The “height” of the curve is ui
and the “width” is 1

13 .

The resampling map 35/42

Add up all the Gaussians to get
a nice smooth 1-periodic curve:

f(x) =
12∑
i=0

uie−13
2(x− i

13)
2
.

The resampling map 36/42

Add up all the Gaussians to get
a nice smooth 1-periodic curve:

f(x) =
12∑
i=0

uie−13
2(x− i

13)
2
.

The resampled vector v = S(u) is
defined by evaluating f(x) at 16
equally-spaced points:

vj = f(j
16), j = 0, . . . , 15.

1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

11
16

12
16

13
16

14
16

15
16

The resampling map 37/42

1.000 0.368 0.018 0.018 0.368
0.517 0.965 0.244 0.008 0.037
0.071 0.677 0.869 0.151 0.004 0.001
0.003 0.127 0.826 0.729 0.087 0.001

0.006 0.210 0.939 0.570 0.047 0.001
0.014 0.323 0.996 0.415 0.023

0.030 0.465 0.984 0.282 0.011
0.001 0.058 0.623 0.907 0.179 0.005

0.002 0.105 0.779 0.779 0.105 0.002
0.005 0.179 0.907 0.623 0.058 0.001

0.011 0.282 0.984 0.465 0.030
0.023 0.415 0.996 0.323 0.014
0.001 0.047 0.570 0.939 0.210 0.006

0.003 0.001 0.087 0.729 0.826 0.127
0.071 0.001 0.004 0.151 0.869 0.677
0.517 0.037 0.008 0.244 0.965

Matrix of resampling map S : C13 → C16.
Each “output” coordinate depends mainly on the nearby “input” coordinates.

Three fun facts about the resampling map 38/42

Fun fact #1. The Fourier transform of a Gaussian is again a Gaussian. This leads to
a commutative diagram

u û

v v̂

Resample
S : Cs → Ct

Resample
Ŝ : Cs → Ct

DFT of length s

DFT of length t

In our example, s = 13 and t = 16.

The map Ŝ is defined almost exactly the same way as S; it differs by some
straightforward scaling factors and data reindexing.

Three fun facts about the resampling map 39/42

Fun fact #2. Due to the rapid decay of the Gaussians, the resampling map can be
evaluated efficiently.

If the target transform length is t, the cost is

O(t
√
log t)

operations in C (assuming working precision O(log t) bits).

This is asymptotically negligble compared to O(t log t) cost of the FFT.

Three fun facts about the resampling map 40/42

Fun fact #3. The resampling map is injective.

This follows more or less from the “diagonal” structure of the matrix of S.

Moreover, there is a deconvolution algorithm that recovers u from v = S(u) using

O(t
√
log t)

operations in C.

(Note: we do not actually prove this in the paper. For technical reasons we do
something a bit different.)

Three fun facts about the resampling map 41/42

Conclusion: we can compute the map u 7→ û (a DFT of length 13) by traversing the
diagram as follows:

u û

v v̂

Resample
C13 → C16

Deconvolve
C16 → C13

DFT of length 13

DFT of length 16

The cost of the vertical arrows is asymptotically negligible.

Final words 42/42

Combining a multidimensional version of Gaussian resampling with everything
else from before, we get:

Theorem (H.–van der Hoeven 2019)

M(n) = O(n logn).

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

Unfortunately, Gaussian resampling does not seem to work over Fq.

Is there some other way of “changing the transform length” over Fq???

Final words 42/42

Combining a multidimensional version of Gaussian resampling with everything
else from before, we get:

Theorem (H.–van der Hoeven 2019)

M(n) = O(n logn).

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

Unfortunately, Gaussian resampling does not seem to work over Fq.

Is there some other way of “changing the transform length” over Fq???

Thank you!

	Complex DFTs and FFTs
	Further FFT techniques (Rader & Nussbaumer)
	Conditional O(n log n) multiplication for integers and polynomials
	Unconditional O(n log n) integer multiplication

