Genus 3 hyperelliptic curves with CM via Shimura Reciprocity

B. Dina, Ulm University, UPJV
S. Ionica, UPJV

ANTS 2020

Problem (Main Problem)

Let X be a hyperelliptic curve of genus 3 over \mathbb{C} with $C M$ by K. Compute the Rosenhain class polynomials

$$
H_{k}^{R}(t)=\prod_{\sigma \in \operatorname{Gal}\left(\mathcal{C M}(2) / K^{r}\right)}\left(t-\lambda_{k}^{\sigma}(X)\right)
$$

for $k=1, \ldots, 5$.

Invariants of genus 3 hyperelliptic curves over \mathbb{C}.

- The Shiodas are invariants for $\mathcal{M}_{3}^{h y p}$.
- The Rosenhains are invariants for $\mathcal{M}_{3}^{\text {hyp }}[2]$.

Why the Rosenhains?

- By their definition, the Shioda invariants have larger denominators.
- In our examples the precision for the computation of H_{k}^{R} is by a factor ≈ 10 smaller than the precision for the Shioda class polynomials.
- Time for the computation for our examples: Rosenhains $\approx 1 \mathrm{~min}$, Shiodas $\approx 60 \mathrm{~min}$ on a single core of a CPU.

Our main setup.

Let (K, Φ) be a primitive CM-pair.

- We have solved (computationally) the CM hyperelliptic Schottky Problem, i.e. for a p.p.a.v. (A, E) represented by a torus with $Z \in \mathbb{H}_{3}$,
- $\exists X$ a hyperelliptic curve of genus 3 over \mathbb{C} with
- $(J a c(X), E)=(A, E)$ is of type (K, Φ).
- From Poor's construction there is an azygetic system η for Z which determines

$$
\nu_{\eta}: \operatorname{Jac}(X)[2] \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{6}
$$

- We compute a Rosenhain model for $X \in \mathcal{M}_{3}^{\text {hyp }}$ [2] by using the formula of Takase (generalized by Vincent) ${ }^{1}$.

Shimura's CM Theory.

Let (K, Φ) be a CM-pair and denote by $\left(K^{r}, \Phi^{r}\right)$ the reflex CM-pair.

- By class field theory

$$
\Phi_{2}: C I_{2}\left(K^{r}\right)=I_{2}\left(K^{r}\right) / P_{2}\left(K^{r}\right) \xrightarrow{\sim} \operatorname{Gal}\left(\mathcal{H}_{2} / K^{r}\right) .
$$

- By Shimura's Main Thm. 2 of CM^{2}

$$
\mathcal{C M}(2) \subset \mathcal{H}_{2},
$$

with $\operatorname{Gal}\left(\mathcal{C M}(2) / K^{r}\right) \cong I_{2}\left(K^{r}\right) / H_{2}\left(K^{r}\right)$.

- $\operatorname{Princ}(K, \Phi, 2)=$ set of p.p.a.v. of type $(K, \Phi)+$ a proper 2-tp.
\rightsquigarrow For $A=A(\mathfrak{a}, \xi, t) \in \operatorname{Princ}(K, \Phi, 2)$, and $\left[\mathfrak{c}_{\sigma}\right] \in I_{2}\left(K^{r}\right) / H_{2}\left(K^{r}\right)$,

$$
A^{\mathfrak{c}_{\sigma}}=A\left(N_{\Phi^{r}}\left(\mathfrak{c}_{\sigma}\right)^{-1} \mathfrak{a}, N_{K^{r} / \mathbb{Q}}\left(\mathfrak{c}_{\sigma}\right) \xi, t \quad \bmod \left(N_{\Phi^{r}}\left(\mathfrak{c}_{\sigma}\right)^{-1} \mathfrak{a}\right)\right) .
$$

An effective version of Shimura's Reciprocity Law (SRL).

Let \mathcal{F}_{2} be the field of modular functions of level 2 .

We choose the setup as above:

- Let $A(\mathfrak{a}, \xi)$ be a p.p.a.v. of type (K, Φ).
- Let $B=\left[B_{1} \mid B_{2}\right]$ be a symplectic basis of \mathfrak{a} with respect to E_{ξ}.

Theorem (Streng)

For any $\left[\mathrm{c}_{\sigma}\right] \in I_{2}\left(K^{r}\right) / H_{2}\left(K^{r}\right)$ let $C=\left[C_{1} \mid C_{2}\right]$ be a symplectic basis for $N_{\Phi r}\left(\mathfrak{c}_{\sigma}\right)^{-1} \mathfrak{a}$ with respect to $E_{N_{K^{r} / \mathbb{Q}}\left(\mathfrak{c}_{\sigma}\right) \xi}$. There are matrices $M \in G p_{6}(\mathbb{Q})^{+}$and $U \in S p_{6}(\mathbb{Z} / 2 \mathbb{Z})$ with M invertible $\bmod 2$ and $U \equiv M^{-1}(\bmod 2)$ s.t. $C=B M^{t}$. For any $f \in \mathcal{F}_{2}$

$$
f^{[c]}(Z)=f^{U M}(Z)=f^{U}(M \cdot Z) .
$$

The statement of Theorem 4.4

- Let $\left[\mathfrak{c}_{\sigma}\right] \in I_{2}\left(K^{r}\right) / H_{2}\left(K^{r}\right)$ corresponding to $\sigma \in \operatorname{Gal}\left(\mathcal{C M}(2) / K^{r}\right)$.
- Let $Z \in \mathbb{H}_{3}$ be p.m. for a hyperelliptic p.p.a.v. $\left(\operatorname{Jac}(X), E_{\xi}, \nu_{\eta}\right)$, and η an a.s. for Z.
- Let $X \in \mathcal{M}_{3}^{\text {hyp }}$ [2] with Rosenhain coefficients λ_{i} computed via Takase's formula.
Let M, U be the matrices from the S.R.L. for $\left[\mathfrak{c}_{\sigma}\right]$. Then

$$
\lambda_{k}^{\sigma}(Z)=\exp \left(4 \pi i\left(\eta_{k}+\eta_{7}\right)_{1}\left(\eta_{6}\right)_{2}\right) \cdot \zeta_{4}(\tilde{U}, \eta) \cdot \lambda_{k}^{\prime}\left(Z^{\prime}\right)
$$

with $Z^{\prime}=M . Z \in \mathbb{H}_{3}$, and $\tilde{U} \in \operatorname{Sp}_{6}(\mathbb{Z})$ a lift of U.

Problem

In general, $\left(\lambda_{k}^{\prime}\left(Z^{\prime}\right)\right)_{1 \leq k \leq 5}$ does not represent the conjugate moduli point as a point in $\mathcal{M}_{3}^{\text {hyp }}[2]$.

How to solve this problem?

- Note that the action of \mathfrak{c}_{σ} corresponds to an isogeny

$$
\boldsymbol{I}_{\mathfrak{c}_{\sigma}}: \operatorname{Jac}(X) \longrightarrow \operatorname{Jac}\left(X^{\sigma}\right),
$$

with $\operatorname{ker} I_{\mathbf{c}_{\sigma}} \cap \operatorname{Jac}(X)[2]=\emptyset$ which induces a level 2 structure on $\operatorname{Jac}\left(X^{\sigma}\right)[2]$.

- The action of M on the p.m. Z yields an action on the a.s. η of the form

$$
M \circlearrowright(Z, \eta)=\left(Z^{\prime}, \tilde{U}^{t} \eta+(1 / 2) \delta_{0}\right)
$$

- By constructing another tuple of matrices $\left(M^{\prime}, U^{\prime}\right)$ with
- $M^{\prime} . Z \sim Z^{\prime}, U^{\prime}=I d_{3} \rightsquigarrow\left(M^{\prime} . Z, \eta\right)$, and
- By SRL

$$
\lambda_{k}^{\sigma}(Z)=\lambda_{k}\left(M^{\prime} . Z\right),
$$

with $\left(\lambda_{k}\left(M^{\prime} . Z\right)\right)_{1 \leq k \leq 5}$ representing the conjugate moduli point in $\mathcal{M}_{3}^{\text {hyp }}{ }^{[2]}$.

The Rosenhain class polynomials.

- $K=\mathbb{Q}(\beta)=\mathbb{Q}[X] /\left(x^{6}+56 x^{4}+592 x^{2}+576\right)$.
- $K^{r} \cong K$.
- $K_{0}^{r}=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\left(x^{3}-56 x^{2}+592 x-576\right)$.

$$
\begin{aligned}
& H_{1}^{R}(t)= t^{3}+\left(-(2577 / 26908) \alpha^{2}+(114759 / 26908) \alpha-69100 / 6727\right) t^{2}+ \\
&\left((964 / 6727) \alpha^{2}-(173963 / 26908) \alpha+111913 / 6727\right) t+ \\
&\left(-(7263 / 107632) \alpha^{2}+(82251 / 26908) \alpha-56934 / 6727\right) \\
& H_{2}^{R}(t)=t^{3}+\left((1 / 784) \alpha^{2}+(1 / 49) \alpha+-241 / 49\right) t^{2}+ \\
&\left((1 / 784) \alpha^{2}+(1 / 49) \alpha-241 / 49\right) t+ \\
&\left((19 / 9604) \alpha^{2}+(13 / 2401) \alpha-9657 / 2401\right) .
\end{aligned}
$$

The Rosenhain class polynomials.

$$
\begin{aligned}
& H_{3}^{R}(t)=t^{3}+\left((2577 / 26908) \alpha^{2}-(114759 / 26908) \alpha+28738 / 6727\right) t^{2}+ \\
&\left(-(1613 / 6727) \alpha^{2}+(285073 / 26908) \alpha-83763 / 6727\right) t+ \\
&\left((2521 / 15376) \alpha^{2}-(27623 / 3844) \alpha+7956 / 961\right) . \\
& H_{4}^{R}(t)=t^{3}+\left(-(1 / 784) \alpha^{2}-(1 / 49) \alpha-53 / 49\right) t^{2}+ \\
&\left(-(3 / 9604) \alpha^{2}+(1779 / 9604) \alpha-2862 / 2401\right) t+ \\
&\left((9 / 2401) \alpha^{2}-(1413 / 4802) \alpha+6561 / 2401\right) . \\
& H_{5}^{R}(t)=t^{3}-6 t^{2}+12 t-8 .
\end{aligned}
$$

The first Shioda class polynomial.

$$
H_{1}^{S}(t)=t^{3}+
$$

$\left(\left(\frac{51118350147041007075289102892382502539160241}{5660063794116315441540945577836697432320371678} \cdots\right) \alpha^{2}+\right.$ $\left(-\frac{14322880374552213474542083923644095961299243}{28300318970581577207704727889183487161601858} \ldots\right) \alpha+$ $\left.\left(\frac{4600126427627198652471020889568602004682}{452805103529305235323275646226935794585629} \ldots\right)\right) t^{2}$
$\left(\left(-\frac{4578662938443493196751230471128350852824}{310624301021103391431767093311677955085741} \ldots\right) \alpha^{2}+\right.$ $\left(-\frac{13084620317595913189365728314348783027469}{155312150510551695715883546655838977542870} \ldots\right) \alpha$ $\left.\left(-\frac{426115644676914309503428825305553}{14909966449012962788724820478960541} \ldots\right)\right) t+\ldots$

The first Shioda class polynomial.

$\ldots+\left(\left(\frac{36545221560643723862700022172632423619}{1987995526535061705163309397194738912548} \ldots\right) \alpha^{2}\right.$
$\left(-\frac{12650616752414183351459427600138678810}{993997763267530852581654698597369456274} \ldots\right) \alpha$

$\left.-\frac{1153821644015682350199228400182601145320193}{8763408851664761802352547546817624594092443}\right)$.

Thank you for listening!

