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Introduction

C - smooth curve over Q of genus g .

A = Jac(C ) is a principally polarised abelian variety of
dimension g .

ρ : GQ −→ GSp(2g ,Fp) is the Galois representation on the
p-torsion subgroup A[p]. The similitude character corresponds
to the mod p cyclotomic character under ρ.

Conversely...

Given ρ with cyclotomic similitude character, can we find all ppavs
A whose p-torsion is given by ρ? What is this moduli space?



Genus 1

X (p) - modular curve with full level p-structure. It corresponds to
ρ0 = Z/p ⊕ µp.

X (p) has genus 0 only for p = 2, 3, 5. Moreover, for these values
of p, it is isomorphic to P1 over Q.

For general ρ with cyclotomic determinant, the moduli space X (ρ)

of pairs (E , i) where E is an elliptic curve and i : E [p]
'−→ ρ is a

symplectic isomorphism, is a twist of X (p).

Theorem (Rubin-Silverberg)

X (ρ) is rational for p = 2, 3, 5. The Magma command
RubinSilverbergPolynomials(n,j) describes the family.



Prior work in genus 2

Theorem (Bruin-Nasserden)

The moduli space A2(3) is rational, and there is an explicit
description of the universal curve over this space.

Theorem (Calegari-C)

The moduli space A2(ρ) is not rational in general. But it always
has a unirational cover of degree at most 6.

Theorem (Boxer-Calegari-Gee-Pilloni)

The moduli space Mw
2 (ρ) of genus 2 curves with a Weierstrass

point and three torsion isomorphic to ρ is rational.



Main result

Let C : y2 = x5 + ax3 + bx2 + cx + d be a smooth genus 2 curve.

Theorem (Calegari-C-Roberts)

There are explicit polynomials A,B,C ,D ∈ Q[a, b, c, d , s, t, u, v ]
homogenous of degrees 12, 18, 24, 30 in the variables s, t, u, v
parametrizing all Weierstrass curves giving rise to same 3-torsion.

P3(Q) 3 (s : t : u : v) 7→ C ′ : y2 = x5 + A x3 + B x2 + C x + D.

The curve corresponding to the point (1 : 0 : 0 : 0) is C .

This describes the universal curve over Mw
2 (ρ).

The polynomials A,B,C and D have respectively
14604, 112763, 515354 and 1727097 terms.

The coefficients are in fact in Z
[

1
5

]
.



Transferring modularity

Corollary

Suppose C has good ordinary reduction at 3, and A = Jac(C )
satisfies the conditions of [BCGP18 Prop. 10.1.1. and 10.1.3.] so
that C is modular. Then, if C ′ is a curve in the above family and
has good reduction at 3, C ′ is also modular.

One can thus produce infinitely many modular abelian surfaces, by
considering (s : t : u : v) ∈ P3(Q) which reduce to (1 : 0 : 0 : 0) ∈ P3(F3).

Example (Calegari-C-Ghitza)

C : y 2 = (x2 + 2x + 2)(x2 + 2)x ; (a, b, c, d) =
(

12
5
, 12

52 ,
292
53 , −3672

55

)
.

C ′ : y 2 = (2x4 + 2x2 + 1)(2x + 3); (A,B,C ,D) =
(

27

5
, 21157

52 , −212503
53 , 21717943

55

)
.

We realize these as occuring in a family, with C given by
(1 : 0 : 0 : 0) and C ′ given by

(
129
125

, 11
25
, 3

100
, 1

20

)
.



Questions?



Subrepresentations in torsion field

Write down a division polynomial that cuts out an extension
K |Q with Galois group G that is generically GSp(2g ,Fp).

K = Q[G ] as a G -representation and the roots of this
polynomial generate a representation V inside Q[G ] of small
dimension.

For the small (g , p) we consider, this V is irreducible.

This process is reversible and any copy of V inside K gives an
abelian variety with the same p-torsion. Since the isotypical
component is V ⊗V ∗, this identifies the moduli space with P(V ∗).

Computational problem

Given V inside K = Q[G ], how to find the ”other” copies of it
inside K explicitly?

Remark. Usually V is defined over F = Q(ζp). So we work with
G = Gal(K |F ) and keep track of descent.



Invariant theory of reflection groups

A map V → K of representations induces a map Sym(V )→ K .
So it is enough to find the V -isotypical piece inside Sym(V ).

Theorem (Chevalley-Shephard-Todd)

A pair (G ,V ) consisting of a finite group G with a representation
V is a complex reflection group if and only if Sym(V )G is a
polynomial algebra.

The isotypical piece of an irrep π inside Sym(V ) is a free module
over the invariant algebra Sym(V )G of rank equal to dimπ.

We are (almost) in this situation, and so we exploit the invariant
theory of complex reflection groups.



Invariants, covariants and contravariants

(g,p) (1,2) (1,3) (2,3)
Group G S3 SL(2,F3) Sp(4,F3)× Z/3Z
The invariant algebra
Sym(V )G has generators
in degrees

2 3 4 6 12 18 24 30

V -isotypical piece has
generators in degrees

1 2 1 3 1 7 13 19

V ∗-isotypical piece has
generators in degrees

1 2 3 5 11 17 23 29



Main computation

Let C : y2 = x5 + ax3 + bx2 + cx + d , A = Jac(C ), ∆ = discC .

F The degree 240 polynomial p40(z6) is nicer than the 3-division
polynomial p40(z2). Its splitting field is K (∆1/3) with Galois
group over F given by G = Sp(4,F3)× Z/3Z.

Roots generate the 4-dimensional reflection representation
V = F [z1, z2, z3, z4]1, where we map z4 to a root.

We find covariants αk ∈ F [z1, z2, z3, z4]k for k = 1, 7, 13, 19.

A general covariant α = sα1 + tα7 + uα13 + vα19 gives a
copy of V inside K , by sending z4 7→ α.

The corresponding invariants suitably normalized give
Weierstrass coefficients of our family.



Further remarks

Contravariants parametrize the moduli space Mw∗
2 (ρ) of

Weierstrass curves with an anti-symplectic isomorphism of
three torsion with ρ.

Richelot isogenies swap the two moduli spaces.

Using Shioda’s polynomials for W (E7) and W (E8), one can in
principle tackle versions of this problem for p = 2 and
g = 3, 4, but the results are expected to be huge.



Thank you
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