Abelian surfaces with fixed three torsion

Shiva Chidambaram
University of Chicago
shivac@uchicago.edu

Joint work with Frank Calegari and David P. Roberts

Fourteenth Algorithmic Number Theory Symposium

$$
\text { June 30, } 2020
$$

Introduction

- C - smooth curve over \mathbb{Q} of genus g.
- $A=\operatorname{Jac}(C)$ is a principally polarised abelian variety of dimension g.
- $\bar{\rho}: G_{\mathbb{Q}} \longrightarrow \operatorname{GSp}\left(2 g, \mathbb{F}_{p}\right)$ is the Galois representation on the p-torsion subgroup $A[p]$. The similitude character corresponds to the $\bmod p$ cyclotomic character under $\bar{\rho}$.

Conversely...
Given $\bar{\rho}$ with cyclotomic similitude character, can we find all ppavs A whose p-torsion is given by $\bar{\rho}$? What is this moduli space?

Genus 1

$X(p)$ - modular curve with full level p-structure. It corresponds to $\bar{\rho}_{0}=\mathbb{Z} / p \oplus \mu_{p}$.
$X(p)$ has genus 0 only for $p=2,3,5$. Moreover, for these values of p, it is isomorphic to \mathbf{P}^{1} over \mathbb{Q}.

For general $\bar{\rho}$ with cyclotomic determinant, the moduli space $X(\bar{\rho})$ of pairs (E, i) where E is an elliptic curve and $i: E[p] \xrightarrow{\simeq} \bar{\rho}$ is a symplectic isomorphism, is a twist of $X(p)$.

Theorem (Rubin-Silverberg)

$X(\bar{\rho})$ is rational for $p=2,3,5$. The Magma command RubinSilverbergPolynomials (n, j) describes the family.

Prior work in genus 2

Theorem (Bruin-Nasserden)

The moduli space $\mathcal{A}_{2}(3)$ is rational, and there is an explicit description of the universal curve over this space.

Theorem (Calegari-C)

The moduli space $\mathcal{A}_{2}(\bar{\rho})$ is not rational in general. But it always has a unirational cover of degree at most 6 .

Theorem (Boxer-Calegari-Gee-Pilloni)

The moduli space $\mathcal{M}_{2}^{w}(\bar{\rho})$ of genus 2 curves with a Weierstrass point and three torsion isomorphic to $\bar{\rho}$ is rational.

Main result

$$
\text { Let } C: y^{2}=x^{5}+a x^{3}+b x^{2}+c x+d \text { be a smooth genus } 2 \text { curve. }
$$

Theorem (Calegari-C-Roberts)

There are explicit polynomials $A, B, C, D \in \mathbb{Q}[a, b, c, d, s, t, u, v]$ homogenous of degrees $12,18,24,30$ in the variables s, t, u, v parametrizing all Weierstrass curves giving rise to same 3-torsion.

$$
\mathbf{P}^{3}(\mathbb{Q}) \ni(s: t: u: v) \mapsto C^{\prime}: y^{2}=x^{5}+A x^{3}+B x^{2}+C x+D .
$$

- The curve corresponding to the point $(1: 0: 0: 0)$ is C.
- This describes the universal curve over $\mathcal{M}_{2}^{w}(\bar{\rho})$.
- The polynomials A, B, C and D have respectively $14604,112763,515354$ and 1727097 terms.
- The coefficients are in fact in $\mathbb{Z}\left[\frac{1}{5}\right]$.

Transferring modularity

Corollary

Suppose C has good ordinary reduction at 3 , and $A=\operatorname{Jac}(C)$ satisfies the conditions of [BCGP18 Prop. 10.1.1. and 10.1.3.] so that C is modular. Then, if C^{\prime} is a curve in the above family and has good reduction at $3, C^{\prime}$ is also modular.

One can thus produce infinitely many modular abelian surfaces, by considering $(s: t: u: v) \in \mathbf{P}^{3}(\mathbb{Q})$ which reduce to $(1: 0: 0: 0) \in \mathbf{P}^{3}\left(\mathbb{F}_{3}\right)$.

Example (Calegari-C-Ghitza)

$$
\begin{aligned}
& C: y^{2}=\left(x^{2}+2 x+2\right)\left(x^{2}+2\right) x ;(a, b, c, d)=\left(\frac{12}{5}, \frac{12}{5^{2}}, \frac{292}{5^{3}}, \frac{-3672}{5^{5}}\right) . \\
& C^{\prime}: y^{2}=\left(2 x^{4}+2 x^{2}+1\right)(2 x+3) ;(A, B, C, D)=\left(\frac{2^{7}}{5}, \frac{2^{11} 57}{5^{2}}, \frac{-2^{12} 503}{5^{3}}, \frac{2^{17} 17943}{5^{5}}\right) .
\end{aligned}
$$

We realize these as occuring in a family, with C given by $(1: 0: 0: 0)$ and C^{\prime} given by $\left(\frac{129}{125}, \frac{11}{25}, \frac{3}{100}, \frac{1}{20}\right)$.

Questions?

Subrepresentations in torsion field

- Write down a division polynomial that cuts out an extension $K \mid \mathbb{Q}$ with Galois group G that is generically $\operatorname{GSp}\left(2 g, \mathbb{F}_{p}\right)$.
- $K=\mathbb{Q}[G]$ as a G-representation and the roots of this polynomial generate a representation V inside $\mathbb{Q}[G]$ of small dimension.
- For the small (g, p) we consider, this V is irreducible.

This process is reversible and any copy of V inside K gives an abelian variety with the same p-torsion. Since the isotypical component is $V \otimes V^{*}$, this identifies the moduli space with $\mathbf{P}\left(V^{*}\right)$.

Computational problem

Given V inside $K=\mathbb{Q}[G]$, how to find the "other" copies of it inside K explicitly?

Remark. Usually V is defined over $F=\mathbb{Q}\left(\zeta_{p}\right)$. So we work with $G=\operatorname{Gal}(K \mid F)$ and keep track of descent.

Invariant theory of reflection groups

A map $V \rightarrow K$ of representations induces a map $\operatorname{Sym}(V) \rightarrow K$. So it is enough to find the V-isotypical piece inside $\operatorname{Sym}(V)$.

Theorem (Chevalley-Shephard-Todd)

A pair (G, V) consisting of a finite group G with a representation V is a complex reflection group if and only if $\operatorname{Sym}(V)^{G}$ is a polynomial algebra.

The isotypical piece of an irrep π inside $\operatorname{Sym}(V)$ is a free module over the invariant algebra $\operatorname{Sym}(V)^{G}$ of rank equal to $\operatorname{dim} \pi$.

We are (almost) in this situation, and so we exploit the invariant theory of complex reflection groups.

Invariants, covariants and contravariants

$\mathbf{(g , p)}$	$\mathbf{(1 , 2)}$	$\mathbf{(1 , 3)}$	$\mathbf{(2 , 3)}$					
Group G	S_{3}	$\mathrm{SL}\left(2, \mathbb{F}_{3}\right)$	$\mathrm{Sp}\left(4, \mathbb{F}_{3}\right) \times \mathbb{Z} / 3 \mathbb{Z}$					
The invariant algebra Sym $(V)^{G}$ has generators in degrees	2	3	4	6	12	18	24	30
V-isotypical piece has generators in degrees	1	2	1	3	1	7	13	19
V^{*}-isotypical piece has generators in degrees	1	2	3	5	11	17	23	29

Main computation

Let $C: y^{2}=x^{5}+a x^{3}+b x^{2}+c x+d, A=\operatorname{Jac}(C), \Delta=\operatorname{disc} C$.
\star The degree 240 polynomial $p_{40}\left(z^{6}\right)$ is nicer than the 3-division polynomial $p_{40}\left(z^{2}\right)$. Its splitting field is $K\left(\Delta^{1 / 3}\right)$ with Galois group over F given by $G=\operatorname{Sp}\left(4, \mathbb{F}_{3}\right) \times \mathbb{Z} / 3 \mathbb{Z}$.

- Roots generate the 4-dimensional reflection representation $V=F\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{1}$, where we map z_{4} to a root.
- We find covariants $\alpha_{k} \in F\left[z_{1}, z_{2}, z_{3}, z_{4}\right]_{k}$ for $k=1,7,13,19$.
- A general covariant $\alpha=s \alpha_{1}+t \alpha_{7}+u \alpha_{13}+v \alpha_{19}$ gives a copy of V inside K, by sending $z_{4} \mapsto \alpha$.
- The corresponding invariants suitably normalized give Weierstrass coefficients of our family.

Further remarks

- Contravariants parametrize the moduli space $\mathcal{M}_{2}^{w *}(\bar{\rho})$ of Weierstrass curves with an anti-symplectic isomorphism of three torsion with $\bar{\rho}$.
- Richelot isogenies swap the two moduli spaces.
- Using Shioda's polynomials for $W\left(E_{7}\right)$ and $W\left(E_{8}\right)$, one can in principle tackle versions of this problem for $p=2$ and $g=3,4$, but the results are expected to be huge.

Thank you

References

國
George Boxer, Frank Calegari, Toby Gee, and Vincent Pilloni. (2018)
Abelian surfaces over totally real fields are potentially modular.
Preprint. arXiv:1812.09269 [math.NT]

Nils Bruin and Brett Nasserden. (2018)
Arithmetic aspects of the Burkhardt quartic threefold.
J. Lond. Math. Soc. (2), 98(3) : 536-556.

Frank Calegari and Shiva Chidambaram. (2020)
Rationality of twists of $\mathcal{A}_{2}(3)$.
Preprint.Tom Fisher. (2012)
The Hessian of a genus one curve.
Proceedings of the London Mathematical Society, 104(3): 613-648.

K. Rubin and A. Silverberg. (1995)

Families of elliptic curves with constant mod p representations.
Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), Ser.
Number Theory, I, 148-161. Int. Press, Cambridge, MA.

Tetsuji Shioda. (1991)
Construction of elliptic curves with high rank via the invariants of the Weyl groups.
J. Math. Soc. Japan, 43(4) : 673-719.

