Divisor Class Group Arithmetic on Non-hyperelliptic Genus 3 Curves

Evan MacNeil Michael J. Jacobson, Jr. Renate Scheidler

University of Calgary

macneil.evan@ucalgary.ca jacobs@ucalgary.ca rscheidl@ucalgary.ca

June 30, 2020

What We Did

- ullet Produced fast explicit formulas fully describing $C_{3,4}$ curve arithmetic
- Formulas existed already for adding any two reduced divisors¹
- Faster formulas existed, specialized to the "typical" case²³
- We have improved upon both sets of formulas

¹Arita, "An Addition Algorithm in Jacobian of $C_{3,4}$ Curve".

 $^{^2}$ F. Abu Salem and Khuri-Makdisi, "Fast Jacobian group operations for $C_{3,4}$ curves over a large finite field" .

³Khuri-Makdisi, "On Jacobian group arithmetic for typical divisors on curves".

Why?

- Part of an ongoing project at UofC to fully describe divisor arithmetic on genus 3 curves
- Testing generalizations of elliptic curve conjectures to genus 3
 - Sato-Tate Conjecture
 - Birch and Swinnerton-Dyer Conjecture
 - and more ...
- L-series computations

Previous Work

Arita (2005)⁴

- Inputs: any two reduced divisors D, D'
- Output: the reduced divisor equivalent to D + D'
- Represent a divisor by the reduced Gröbner basis (RGB) of a polynomial ideal
- \bullet Classification of divisors of degree ≤ 6 into 20 types according to their RGB
- Very general, assumes $K = \mathbb{F}_q$ is large
- Might not terminate for some very small q
- Slow, computes redundant or unnecessary values

⁴Arita, "An Addition Algorithm in Jacobian of $C_{3,4}$ Curve".

Previous Work

Flon et al. $(2008, preprint in 2004)^5$

- Inputs: two reduced, "typical", disjoint divisors D + D'
- ullet Output: the reduced divisor equivalent to D+D', or error
- \bullet Assumes $K=\mathbb{F}_q$ is large and $\operatorname{char} K>5$

Khuri-Makdisi and Abu Salem (2007)⁶ and Khuri-Makdisi (2018)⁷

- Improvement over above, and with $\operatorname{char} K > 3$
- Represent a divisor by two ideal generators (not an RGB)
- Previous state-of-the-art for typical case

⁵Flon, Oyono, and Ritzenthaler, "Fast addition on non-hyperelliptic genus 3 curves".

⁶F. K. Abu Salem and Khuri-Makdisi, "Fast Jacobian Group Operations for C3,4 Curves over a Large Finite Field".

⁷Khuri-Makdisi, "On Jacobian group arithmetic for typical divisors on curves".

$C_{3,4}$ Curves

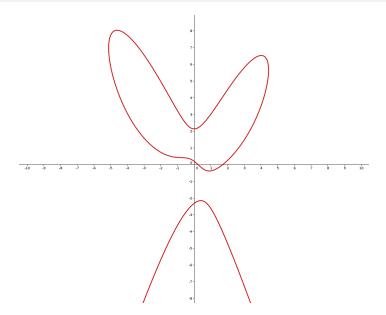
 $C_{3,4}$ **curve**: a non-singular algebraic plane curve over a (perfect) field K defined by a polynomial

$$F = y^3 + x^4 + c_8xy^2 + c_7x^2y + c_6x^3 + c_5y^2 + c_4xy + c_3x^2 + c_2y + c_1x + c_0.$$

There is a single projective point $P_{\infty} = (0:1:0)$ "at infinity".

Short form in $\operatorname{char} K \neq 2, 3$:

$$F = y^3 + x^4 + c_7 x^2 y + c_4 x y + c_3 x^2 + c_2 y + c_1 x + c_0.$$



Divisors

- A divisor D on C is a formal sum of points that is fixed under Galois automorphisms on \overline{K} .
- In the (degree zero) divisor class group ${\rm Div}^0_K(C)$, every divisor is linearly equivalent to one of the form

$$D = P_1 + \dots + P_n - nP_{\infty},$$

where the P_i 's are finite points.

- For simplicity, we refer to $n = \deg(D)$ as its degree.
- A divisor is reduced if n is minimal in its class.
- Each class has a unique reduced divisor.

Operations on Divisors

Divisor class group of $C \simeq \operatorname{Ideal}$ class group of K[C]

$$D \longleftrightarrow I_D$$

Represent a divisor D by the unique RGB of I_D .

where f_{I_A} is the "smallest" element in the RGB of I_A .

lcm and gcd satisfy

$$A + B = \operatorname{lcm}(A, B) + \gcd(A, B).$$

The reduction of A is $\overline{\overline{A}}$.

High-level Algorithm

Given ideals I_D and $I_{D'}$, to compute the ideal of the reduced divisor D'' equivalent to D+D',

- Compute a RGB for $J = I_D I_{D'}$.
- ② Compute a RGB for $J^* = f_J : J$.
- **3** Compute a RGB for $J^{**} = f_{J^*} : J^*$.

Then $J^{**} = I_{D''}$.

One can do two flips for less than the cost of one!8

⁸Khuri-Makdisi, "On Jacobian group arithmetic for typical divisors on curves".

Addition

We generalize the previous state of the art to non-disjoint divisors.

- Khuri-Makdisi : $D+D^\prime$ is retrieved by computing the kernel of a quotient of Riemann-Roch spaces.
- This works when D and D' are disjoint.
- ullet More generally, the kernel gives $\operatorname{lcm}(D,D')$
- We handle non-disjoint cases by also computing $\gcd(D,D')$ via the image of the quotient and recursively computing

$$D+D'\equiv \overline{\overline{\mathrm{lcm}(D,D')}}+\mathrm{gcd}(D,D').$$

• We show that this recursion terminates.

Addition

We generalize to handle atypical divisors as well.

- We allow the size of the Riemann-Roch spaces to vary.
- Lower degree divisors may be represented by smaller spaces.
- Atypical divisors require larger spaces, relative to their degree.
- We derived explicit formulas for all atypical cases, including over finite fields of characteristic 2 and 3.

Addition

We also get runtime improvements in the typical case:

- We avoid computing two unnecessary values.
- We use an additional polynomial to represent I_D , a time-space tradeoff.
- We save an inversion operation at the cost of some multiplications.

Doubling and Reducing

Doubling:

- The addition framework fails when adding identical divisors, D + D.
- We show how to find a suitable divisor $A \equiv D$ and add D + A instead.
- A is quickly computed thanks to our RGB representation.
- All cases, including atypical cases and $\operatorname{char} K = 2, 3$, are handled explicitly.

Reducing:

- Khuri-Makdisi⁹ shows how to efficiently reduce a typical degree 6 divisor.
- We generalize this to all divisors.

⁹Khuri-Makdisi, "On Jacobian group arithmetic for typical divisors on curves".

Improvements over Prior Work

Assuming $\operatorname{char} K > 5$, typical case

	Addition				Doubling			
	I	М	S	Α	I	М	S	Α
Arita	5	204	_	_	5	284	_	_
Flon et al.	2	148	15	_	2	165	20	_
Khuri-Makdisi	2	97	1	132	2	107	3	155
This work	1	111	3	99	1	127	4	112

Benchmark Methodology

We implemented our and Khuri-Makdisi's formulas in Sage and ran benchmark tests to see how many divisors each set of formulas could compute in 10 minutes.

Fix a prime p and randomly choose a $C_{3,4}$ curve C over \mathbb{F}_p . Randomly choose two divisors A,B on C.

Addition benchmark:

• Compute the Fibonacci-like sequence $D_1 = A$, $D_2 = B$, $D_{i+2} = D_{i+1} + D_i$, $i \ge 1$.

Doubling benchmark:

• Compute the sequence $D_1 = A$, $D_{i+i} = 2D_i$, $i \ge 1$.

Benchmark Results

We ran these benchmarks over several curves over byte-sized, word-sized, and large primes and totaled the results.

			Add	itions (mi	llions)	Doublings (millions)			
	р	#Trials	Us	K-M	Speedup	Us	K-M	Speedup	
_	$\approx 2^8$	10	53.67	31.69	69.38%	48.16	39.15	23.00%	
	$\approx 2^{32}$	23	126.31	112.04	12.74%	120.83	108.49	11.37%	
	$pprox 2^{255}$	11	63.15	52.19	21.01%	56.80	48.40	17.36%	

Conclusion

Main contributions

- Combine ideas from Arita/Khuri-Makdisi/Abu Salem
- Generalize to atypical cases
- Improvement in typical case
- Relax assumptions on C to handle $\operatorname{char} K = 2, 3$.
- ullet Neatly handle non-disjointness with ${
 m lcm}$ and ${
 m gcd}$

Future Work

- Still possible to eliminate an inversion in some atypical cases.
- Ongoing work at UofC shows Shank's NUCOMP algorithm achieves savings in genus 3 hyperelliptic curve arithmetic.
- Can something NUCOMP-like be applied to $C_{3,4}$ curve arithmetic?

Thank You

Details and Sage implementation available at github.com/emmacneil/c34-curves

- Abu Salem, Fatima K. and Kamal Khuri-Makdisi. "Fast Jacobian Group Operations for C3,4 Curves over a Large Finite Field". In: *LMS Journal of Computation and Mathematics* 10 (2007), pp. 307–328.
- Abu Salem, Fatima and Kamal Khuri-Makdisi. "Fast Jacobian group operations for $C_{3,4}$ curves over a large finite field". In: LMS Journal of Computation and Mathematics 10 (Nov. 2006).
- Arita, Seigo. "An Addition Algorithm in Jacobian of $C_{3,4}$ Curve". In: *IEICE Trans. Fundamentals* E88-A, NO.6 (2005), pp. 1589–1598.
- Flon, Stephane, Roger Oyono, and Christophe Ritzenthaler. "Fast addition on non-hyperelliptic genus 3 curves". In: *Algebraic Geometry and Its Applications*, pp. 1–28.
- Khuri-Makdisi, Kamal. "On Jacobian group arithmetic for typical divisors on curves". In: *Research in Number Theory* 4.1 (Jan. 2018), p. 3. ISSN: 2363-9555