Post-critically finite cubic polynomials

Jacqueline Anderson, Michelle Manes, and Bella Tobin*

Oklahoma State University bella.tobin@okstate.edu

Algorithmic Number Theory Symposium

1 July, 2020

Let K be a number field and $f \in K(z)$ a rational function (morphism of \mathbb{P}^1). Define the orbit of a point $\alpha \in \mathbb{P}^1$ for f as

$$\mathcal{O}_f(\alpha) = \{f^n(\alpha) \colon n \geq 0\},\$$

where

$$f^n = f \circ f \circ \ldots \circ f$$
.

We classify points based on their behavior under iteration of f. Let $\alpha \in \mathbb{P}^1$

- We say α is periodic of period m for f if $f^m(\alpha) = \alpha$.
- We say α is preperiodic of period (k, m) for f if $f^k(\alpha) = f^{k+m}(\alpha)$.
- We say α is a *wandering point* for f if the orbit of α is not finite.

Example

$$f(z) = z^2 - 1$$

We say that $f \in K$ is \bar{K} -conjugate to g if $g = f^{\phi}$ for some $\phi \in PGL_2(\bar{K})$, where

$$f^{\phi} = \phi \circ f \circ \phi^{-1}.$$

If α is preperiodic of period (k, m) for f the $\phi(\alpha)$ is preperiodic of period (k, m) for f^{ϕ} .

$$[f] = \{ f^{\phi} : \phi \in \mathsf{PGL}_2(\bar{K}) \}$$

Let $Crit(f) = \{critical points of f\}.$

Definition

f is post-critically finite (PCF) if every element of Crit(f) has finite forward orbit.

Example

$$f(z) = 2z^3 - 3z^2 + \frac{1}{2}$$

Ingram, 2011

Theorem

The set of conjugacy classes of post-critically finite polynomials of degree d with coefficients of algebraic degree at most B is a finite and effectively computable set.

Application

If $f(z) = z^3 + Az + B$ has coefficients in \mathbb{Q} and is post-critically finite, then

$$\begin{split} (\textit{A},\textit{B}) \in \left\{ (-3,0), \left(-\frac{3}{2},0\right), \left(-\frac{3}{4},\frac{3}{4}\right), \\ \left(-\frac{3}{4},-\frac{3}{4}\right), (0,0), \left(\frac{3}{2},0\right), (3,0) \right\}. \end{split}$$

Missing some cubic PCF polynomials

Example

$$f(z) = 2z^3 - 3z^2 + \frac{1}{2}$$

Conjugate by $\phi(z)=\sqrt{2}z-\frac{1}{\sqrt{2}}$ so f^{ϕ} is in the monic-centered form

$$f^{\phi}(z)=z^3-rac{3}{2}z-rac{1}{\sqrt{2}}
ot\in\mathbb{Q}$$

Missing some cubic PCF polynomials

Example

$$f(z) = 2z^3 - 3z^2 + \frac{1}{2}$$

Conjugate by $\phi(z)=\sqrt{2}z-\frac{1}{\sqrt{2}}$ so f^{ϕ} is in the monic-centered form

$$f^{\phi}(z)=z^3-\frac{3}{2}z-\frac{1}{\sqrt{2}}\not\in\mathbb{Q}$$

Problem: Monic centered form $f(z) = z^3 + Az + B$ does not preserve field of definition.

ρ

Motivation

Question

Can we use Ingram's techniques and a different normal form to find **all** PCF cubic polynomials defined over \mathbb{Q} (up to conjugacy over \mathbb{Q})?

q

All cubic PCF polynomials

Theorem

There are exactly fifteen $\bar{\mathbb{Q}}$ conjugacy classes of cubic PCF polynomials defined over 0:

(1)
$$z^3$$

(2)
$$-z^3+1$$

(2)
$$-z^3+1$$
 (3) $-2z^3+3z^2+\frac{1}{2}$

(4)
$$-2z^3+3z^2$$

(4)
$$-2z^3 + 3z^2$$
 (5) $-z^3 + \frac{3}{2}z^2 - 1$ (6) $2z^3 - 3z^2 + 1$

(6)
$$2z^3 - 3z^2 + 1$$

(7)
$$2z^3 - 3z^2 + \frac{1}{2}$$
 (8) $z^3 - \frac{3}{2}z^2$ (9) $-3z^3 + \frac{9}{2}z^2$

8)
$$z^3 - \frac{3}{2}z^2$$

(9)
$$-3z^3 + \frac{9}{2}z^2$$

(10)
$$-4z^3 + 6z^2 - \frac{1}{2}$$
 (11) $4z^3 - 6z^2 + \frac{3}{2}$ (12) $3z^3 - \frac{9}{2}z^2 + 1$

)
$$4z^3 - 6z^2 + \frac{3}{2}$$

12)
$$3z^3 - \frac{9}{2}z^2 + 1$$

(13)
$$-z^3 + \frac{3}{2}z^2 - 1$$

(14)
$$-\frac{1}{4}z^3 + \frac{3}{2}z + 2$$

(13)
$$-z^3 + \frac{3}{2}z^2 - 1$$
 (14) $-\frac{1}{4}z^3 + \frac{3}{2}z + 2$ (15) $-\frac{1}{28}z^3 - \frac{3}{4}z + \frac{7}{2}$

All cubic PCF polynomials

Theorem

There are exactly fifteen $\bar{\mathbb{Q}}$ conjugacy classes of cubic PCF polynomials defined over 0:

(1)
$$z^3$$

(2)
$$-z^3+1$$

(2)
$$-z^3+1$$
 (3) $-2z^3+3z^2+\frac{1}{2}$

$$(4) - 2z^3 + 3z^2$$

(4)
$$-2z^3 + 3z^2$$
 (5) $-z^3 + \frac{3}{2}z^2 - 1$ (6) $2z^3 - 3z^2 + 1$

(6)
$$2z^3 - 3z^2 + 1$$

(7)
$$2z^3 - 3z^2 + \frac{1}{2}$$
 (8) $z^3 - \frac{3}{2}z^2$ (9) $-3z^3 + \frac{9}{2}z^2$

(8)
$$z^3 - \frac{3}{2}z^2$$

(9)
$$-3z^3 + \frac{9}{2}z^2$$

(10)
$$-4z^3 + 6z^2 - \frac{1}{2}$$
 (11) $4z^3 - 6z^2 + \frac{3}{2}$ (12) $3z^3 - \frac{9}{2}z^2 + 1$

$$4z^3-6z^2+\frac{3}{2}$$

(12)
$$3z^3 - \frac{9}{2}z^2 + 1$$

(13)
$$-z^3 + \frac{3}{2}z^2 - 1$$

(14)
$$-\frac{1}{4}z^3 + \frac{3}{2}z + 2$$

(13)
$$-z^3 + \frac{3}{2}z^2 - 1$$
 (14) $-\frac{1}{4}z^3 + \frac{3}{2}z + 2$ (15) $-\frac{1}{28}z^3 - \frac{3}{4}z + \frac{7}{2}$

Strategy

- Find normal forms that respect the field of definition.
- For a map to be PCF, it must be post-critically bounded in each absolute value. Find archimedean and p-adic bounds on the coefficients for maps in the normal forms to be post-critically bounded.
- Use the bounds in 2 to create a finite search space of possibly PCF maps.
- For each map in the finite search space, test if it is PCF or not.

Normal Form for Unicritical Cubics

Let K be a number field, and let $f(z) \in K[z]$ be a cubic polynomial. Then there are 3 possibilities.

- i. f has exactly one critical point, $\gamma \in K$.
- ii. f has two distinct critical points, $\gamma_1 \neq \gamma_2$, both K-rational.
- iii. f has two distinct critical points, $\gamma_1 \neq \gamma_2$ with $K(\gamma_1) = K(\gamma_2)$ a quadratic extension of K.

Unicritical polynomials

Theorem

Let $f(z) \in K[z]$ be a degree 3 unicritical polynomial. Then either f(z) is \bar{K} -conjugate to z^3 , or f is conjugate to a unique polynomial of the form

$$az^3 + 1 \in K[z].$$

Unicritical polynomials

Theorem

Let $f(z) \in K[z]$ be a degree d unicritical polynomial. Then either f(z) is \bar{K} -conjugate to z^d , or f is conjugate to a unique polynomial of the form

$$az^d + 1 \in K[z].$$

Unicritical polynomials

Theorem

Let $f(z) = az^d + 1 \in \mathbb{Q}[z]$ and $d \ge 2$. For d even, f is PCF if and only if $a \in \{-2, -1\}$. For d odd, f is PCF if and only if a = -1.

Rational critical points

Proposition

Let $f \in K[z]$ be a cubic polynomial with two K-rational critical points, γ_1 and γ_2 . Then there exists $\phi \in PGL_2$ such that $f^{\phi}(z) = a(-2z^3 + 3z^2) + c$ for some $a, c \in K$.

Dynamical Belyi Polynomials

Dynamical Belyi polynomials

A dynamical Belyi polynomial of degree d is a map on \mathbb{P}^1 with fixed critical points 0 and 1. Let $\mathcal{B}_{d,k}$ denote a dynamical Belyi polynomial of degree d with ramification index d-k at 1.

$$\mathcal{B}_{d,k}(z) = \left(\frac{1}{k!} \prod_{j=0}^{k} (d-j)\right) x^{d-k} \sum_{i=1}^{k} \frac{(-1)^{i}}{(d-k+i)} {k \choose i} x^{i}.$$

Proposition

Let $g \in K[z]$ be a bicritical polynomial of degree $d \geq 3$ with $Crit(g) = \{\gamma_1, \gamma_2\} \subseteq K$. There exists an element $\phi \in PGL_2(K)$ such that $g^{\phi} = a\mathcal{B}_{d,k} + c$ for some $k \in \mathbb{N}$ and some $a, c \in K$.

Rational critical points

Theorem

If $f(z) \in \mathbb{Q}[z]$ is a cubic bicritical PCF polynomial with rational critical points, then f(z) is conjugate to $f_{a,c}(z) = a(-2z^3 + 3z^2) + c$ where

$$(a,c) \in \left\{ (1,0), \left(\pm 1, \frac{1}{2}\right), \left(\frac{1}{2}, \pm 1\right), \left(2, -\frac{1}{2}\right), \left(\frac{3}{2}, 0\right), \right.$$
$$\left. (-1,1), \left(-2, \frac{3}{2}\right), \left(-\frac{3}{2}, 1\right), \left(-\frac{1}{2}, 0\right) \right\}.$$

Irrational critical points

Proposition

If $f \in K[z]$ is a bicritical cubic polynomials with critical points γ_1, γ_2 such that $K(\gamma_1) = K(\gamma_2)$ are quadratic extensions of K then there exists $\phi \in PGL_2$ such that

$$f^{\phi}(z) = a\left(rac{z^3}{3} - Dz
ight) + c$$

where $a, c \in K$ and $D \in \mathcal{O}_K^{\times}/\mathcal{O}_K^2$.

Irrational critical points

Irrational critical points

Let \mathcal{P} be a map of degree d with a fixed point at 0 and critical points at $\pm\sqrt{D}$. Then \mathcal{P} is of the form

$$\mathcal{P}_{d,D}(z) = \sum_{j=0}^{\frac{d-1}{2}} (-D)^{\frac{d-1}{2}-j} {\binom{\frac{d-1}{2}}{j}} \frac{z^{2j+1}}{2j+1}.$$

Proposition

Let $g(z) \in K[z]$ be a bicritical polynomial of degree $d \geq 3$. Suppose that $Crit(g) = \{\gamma_1, \gamma_2\} \not\subset K$. Then g is conjugate to a map of the form $a\mathcal{P}_{d,D}(z) + c$ for some $a, c \in K$ and some $D \in \mathcal{O}_K^{\times}/\mathcal{O}_K^2$.

Irrational critical points

Theorem

If $f(z) \in \mathbb{Q}[z]$ is a cubic bicritical PCF polynomial that is not conjugate to a polynomial with rational critical points, then f(z) is conjugate to $f_{D,a,c}(z) = a(\frac{z^3}{3} - Dz) + c$ where

$$(D,a,c) \in \left\{ \left(2,-\frac{3}{4},2\right), \left(-7,-\frac{3}{28},\frac{7}{2}\right) \right\}.$$

$$a\left(\frac{z^3}{2}-Dz\right)+c$$

All cubic PCF polynomials

Theorem

There are exactly fifteen $\bar{\mathbb{Q}}$ conjugacy classes of cubic PCF polynomials defined over 0:

(1)
$$z^3$$

(2)
$$-z^3+1$$

(2)
$$-z^3+1$$
 (3) $-2z^3+3z^2+\frac{1}{2}$

(4)
$$-2z^3+3z^2$$

(4)
$$-2z^3 + 3z^2$$
 (5) $-z^3 + \frac{3}{2}z^2 - 1$ (6) $2z^3 - 3z^2 + 1$

(6)
$$2z^3 - 3z^2 + 1$$

(7)
$$2z^3 - 3z^2 + \frac{1}{2}$$
 (8) $z^3 - \frac{3}{2}z^2$ (9) $-3z^3 + \frac{9}{2}z^2$

8)
$$z^3 - \frac{3}{2}z^2$$

(9)
$$-3z^3 + \frac{9}{2}z^2$$

(10)
$$-4z^3 + 6z^2 - \frac{1}{2}$$
 (11) $4z^3 - 6z^2 + \frac{3}{2}$ (12) $3z^3 - \frac{9}{2}z^2 + 1$

1)
$$4z^3 - 6z^2 + \frac{3}{2}$$

12)
$$3z^3 - \frac{9}{2}z^2 + 1$$

(13)
$$-z^3 + \frac{3}{2}z^2 - \frac{3}{2}z^2$$

(14)
$$-\frac{1}{4}z^3 + \frac{3}{2}z + 2$$

(13)
$$-z^3 + \frac{3}{2}z^2 - 1$$
 (14) $-\frac{1}{4}z^3 + \frac{3}{2}z + 2$ (15) $-\frac{1}{28}z^3 - \frac{3}{4}z + \frac{7}{2}$

The details will be presented at UTC 18:00 on 1 July, 2020.

Thank you!