Post-critically finite cubic polynomials

Jacqueline Anderson, Michelle Manes, and Bella Tobin*

Oklahoma State University

bella.tobin@okstate.edu

ANTS XIV

1 July, 2020

Definitions

- Let K be a number field,
- $f \in K(z)$ a rational function (morphism of \mathbb{P}^{1}).
- Orbit of a point $\alpha \in \mathbb{P}^{1}$ is $\mathcal{O}_{f}(\alpha)=\left\{f^{n}(\alpha): n \geq 0\right\}$.
- Conjugacy class: $[f]=\left\{\phi \circ f \circ \phi^{-1}: \phi \in \operatorname{PGL}_{2}(\bar{K})\right\}$
- $\operatorname{Crit}(f)=\left\{\alpha: f^{\prime}(\alpha)=0\right\}$

Definition

A map f is post-critically finite (PCF) if every critical point of f has finite forward orbit.

Motivation

Theorem (Ingram, 2011)

The set of conjugacy classes of post-critically finite polynomials of degree d with coefficients of algebraic degree at most B is a finite and effectively computable set.

Question

Can we use Ingram's techniques and a different normal form to find all PCF cubic polynomials defined over \mathbb{Q} (up to conjugacy over $\overline{\mathbb{Q}})$?

Main Result

Theorem

There are exactly fifteen $\overline{\mathbb{Q}}$ conjugacy classes of cubic PCF polynomials defined over \mathbb{Q} :
(1) z^{3}
(2) $-z^{3}+1$
(3) $-2 z^{3}+3 z^{2}+\frac{1}{2}$
(4) $-2 z^{3}+3 z^{2}$
(5) $-z^{3}+\frac{3}{2} z^{2}+1$
(6) $2 z^{3}-3 z^{2}+1$
(7) $2 z^{3}-3 z^{2}+\frac{1}{2}$
(8) $z^{3}-\frac{3}{2} z^{2}$
(9) $-3 z^{3}+\frac{9}{2} z^{2}$
(10) $-4 z^{3}+6 z^{2}-\frac{1}{2}$
(11) $4 z^{3}-6 z^{2}+\frac{3}{2}$
(12) $3 z^{3}-\frac{9}{2} z^{2}+1$
(13) $-z^{3}+\frac{3}{2} z^{2}-1$
(14) $-\frac{1}{4} z^{3}+\frac{3}{2} z+2$
(15) $-\frac{1}{28} z^{3}-\frac{3}{4} z+\frac{7}{2}$

Strategy

(1) Find normal forms that respect the field of definition.
(2) For a map to be PCF, it must be post-critically bounded in each absolute value. Find archimedean and p-adic bounds on the coefficients for maps in the normal forms to be post-critically bounded.
(3) Use the bounds in (3) to create a finite search space of possibly PCF maps.
(9) For each map in the finite search space, test if it is PCF or not.

Normal Form for Unicritical Cubics

Let K be a number field, and let $f(z) \in K[z]$ be a cubic polynomial. Then there are 3 possibilities.
(i.) f has exactly one critical point, $\gamma \in K$.
(ii.) f has two distinct critical points, $\gamma_{1} \neq \gamma_{2}$, both K-rational.
(iii.) f has two distinct critical points, $\gamma_{1} \neq \gamma_{2}$ with
$K\left(\gamma_{1}\right)=K\left(\gamma_{2}\right)$ a quadratic extension of K.
In case (i.) we say that f is unicritical, and in cases (ii.) and (iii.)
we say f is bicritical.

Notation

From Ingram:

$$
\begin{aligned}
f(z) & =a_{d} z^{d}+a_{d-1} z^{d-1}+\cdots+a_{1} z+a_{0} \in K[z] \\
(2 d)_{\nu} & = \begin{cases}1 & \nu \text { is non-archimedean } \\
2 d & \nu \text { is archimedean }\end{cases} \\
C_{f, \nu} & =(2 d)_{\nu} \max _{0 \leq i<d}\left\{1,\left|\frac{a_{i}}{a_{d}}\right|_{\nu}^{\frac{1}{d-i}},\left|a_{d}\right|_{\nu}^{-\frac{1}{d-1}}\right\}
\end{aligned}
$$

Lemma

Let $f(z) \in \mathbb{Q}[z]$ be a polynomial of degree $d \geq 2$. For $\alpha \in \mathbb{Q}$, if there exists $\nu \in M_{\mathbb{Q}}$ and $n \in \mathbb{N}$ such that $\left|f^{n}(\alpha)\right|_{\nu}>C_{f, \nu}$, then α must be a wandering point for f.

Unicritical polynomials

Theorem

Let $f(z)=a z^{d}+1 \in \mathbb{Q}[z]$ and $d \geq 2$. For d even, f is PCF if and only if $a \in\{-2,-1\}$. For d odd, f is PCF if and only if $a=-1$.

For any prime $p, C_{f, p}=\left\{1,|a|_{p}^{-1 /(d-1)}\right\}$.
Note $f^{2}(0)=a+1$, so require

$$
|a+1|_{p} \leq \max \left\{|a|_{p}, 1\right\} \leq C_{f, p} \text { for all primes } p
$$

This gives that $|a|_{p} \leq 1$ for all primes p. In the archimedean place we see that $|a| \leq 2$, so $a= \pm 1, \pm 2$. We can check to see if f is PCF in each of those cases.

Rational critical points

Theorem

If $f(z) \in \mathbb{Q}[z]$ is a cubic bicritical PCF polynomial with rational critical points, then $f(z)$ is conjugate to $f_{a, c}(z)=a\left(-2 z^{3}+3 z^{2}\right)+c$ where

$$
\begin{aligned}
(a, c) \in\left\{(1,0),\left(\pm 1, \frac{1}{2}\right),\right. & \left(\frac{1}{2}, \pm 1\right),\left(2,-\frac{1}{2}\right),\left(\frac{3}{2}, 0\right) \\
& \left.(-1,1),\left(-2, \frac{3}{2}\right),\left(-\frac{3}{2}, 1\right),\left(-\frac{1}{2}, 0\right)\right\} .
\end{aligned}
$$

Sketch of Proof

Let $f(z)=a\left(-2 z^{3}+3 z^{2}\right)+c \in \mathbb{Q}[z]$.
For any prime p, if f is PCF,

$$
|f(1)|=|a+c|_{p} \leq C_{f, p} \quad \text { and } \quad|f(0)|=|c|_{p} \leq C_{f, p}
$$

So, $\max \left\{|a|_{p},|c|_{p}\right\} \leq C_{f, p}$.
For the archimedean place, $|a|<4$ and $|c| \leq 2$.

Proposition

$$
\text { If } f_{a, c}(z)=a\left(-2 z^{3}+3 z^{2}\right)+c \in \mathbb{Q}[z] \text { is PCF, then }
$$

$$
\pm a \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}\right\} \text { and } \pm c \in\left\{0,1, \frac{1}{2}, \frac{3}{2}, 2\right\}
$$

This gives us 126 possible PCF maps. We can test each map using Sage.

Irrational critical points

Theorem

If $f(z) \in \mathbb{Q}[z]$ is a cubic bicritical PCF polynomial that is not conjugate to a polynomial with rational critical points, then $f(z)$ is conjugate to $f_{D, a, c}(z)=a\left(\frac{z^{3}}{3}-D z\right)+c$ where

$$
(D, a, c) \in\left\{\left(2,-\frac{3}{4}, 2\right),\left(-7,-\frac{3}{28}, \frac{7}{2}\right)\right\} .
$$

Irrational critical points

Lemma

Let $f(z)=a\left(z^{3} / 3-D z\right)+c \in \mathbb{Q}[z]$. If f is PCF, then

$$
\pm a D \in\left\{\frac{3}{4}, \frac{3}{2}, \frac{9}{4}, 3, \frac{15}{4}, \frac{9}{2}, \frac{21}{4}\right\} .
$$

Lemma

Let $f(z)=a\left(z^{3} / 3-D z\right)+c \in \mathbb{Q}[z]$. If f is PCF then $|c|^{2}<11|D|$.

Lemma

Let $f(z)=a\left(z^{3} / 3-D z\right)+c \in \mathbb{Q}[z]$. If f is p-adically $P C B$, then

$$
|c \sqrt{a}|_{p} \leq \begin{cases}1 & \text { if } p \geq 5 \\ 3^{-1 / 2} & \text { if } p=3 \\ 2^{3} & \text { if } p=2\end{cases}
$$

Algorithm

Write

$$
f_{D, a, c}(z)=a\left(z^{3} / 3-D z\right)+c
$$

Then $f_{D, a, c}$ is conjugate to $f_{D, a,-c}$ and furthermore, if $c=0$ then $f_{D, a, c}$ is conjugate to a map with rational critical points, so we need only to consider triples with $c>0$.

We will build finite list of positive triples (D, a, c) that satisfy the conditions given. Each triple will correspond to four possible PCF polynomials allowing for negative values of a and D.

Algorithm

We split the algorithm into two cases corresponding to the parity of D.

Step 1 Loop over possible $a D$ values.

$$
\pm a D \in\left\{\frac{3}{4}, \frac{3}{2}, \frac{9}{4}, 3, \frac{15}{4}, \frac{9}{2}, \frac{21}{4}\right\}
$$

Step 2 Compute $|a|_{2}$.
Step 3 Find an upper bound for $|c|_{p}$ for each prime p.

$$
|c \sqrt{a}|_{p} \leq \begin{cases}1 & \text { if } p \geq 5 \\ 3^{-1 / 2} & \text { if } p=3 \\ 2^{3} & \text { if } p=2\end{cases}
$$

So we can find $e \leq 3$ such that $|c|_{2} \leq 2^{e}$, and $|c|_{p} \leq 1$ for each prime $p \geq 3$.

Algorithm

Step 4 Factor D and c. Write $D=m P$ or $D=2 m P$, where m and P are relatively prime odd squarefree integers, m divides numerator of $a D$ and P divides denominator of a. Then P must also divide the numerator of c, so $c=\frac{P k}{2^{e}}$ for some positive integer k.
Step 5 Bound the factors of D and c. Use $|c|^{2}<11|D|$, so $\frac{P^{2} K^{2}}{2^{2 e}}<11 \mathrm{mP}$ or $\frac{P^{2} \kappa^{2}}{2^{2 e}}<22 \mathrm{mP}$. Therefore $P k^{2}<B$ where
$B=11 \mathrm{~m} \cdot 2^{2 e}$ for D odd, or $B=11 \mathrm{~m} \cdot 2^{2 e+1}$ for D even.
Step 6 Loop over P values. For all odd, squarefree integers $P<B$, determine the set of possible k values such that $P k^{2}<B$.

Algorithm

Step 7 Create the triple. Each triple (m, P, k) yields a triple

$$
(D, a, c)=\left(m P, \frac{a D}{m P}, \frac{P k}{2^{e}}\right)
$$

or

$$
(D, a, c)=\left(2 m P, \frac{a D}{2 m P}, \frac{P k}{2^{e}}\right)
$$

Finally, check that $3 \mid a c$ to verify that the triple satisfies the 3 -adic condition. If so, add (D, a, c) to the list of possible PCF triples.

This yields a list of 5,957 triples corresponding to 23,828 possibly PCF polynomials.

Only the two listed in the theorem statement are PCF and are not conjugate to a polynomial already with rational critical points.

Thank you!

Dynamical Belyi Polynomials

Dynamical Belyi polynomials

A dynamical Belyi polynomial of degree d is a map on \mathbb{P}^{1} with fixed critical points 0 and 1 . Let $\mathcal{B}_{d, k}$ denote a dynamical Belyi polynomial of degree d with ramification index $d-k$ at 1 .

$$
\mathcal{B}_{d, k}(z)=\left(\frac{1}{k!} \prod_{j=0}^{k}(d-j)\right) x^{d-k} \sum_{i=1}^{k} \frac{(-1)^{i}}{(d-k+i)}\binom{k}{i} x^{i}
$$

Proposition

Let $g \in K[z]$ be a bicritical polynomial of degree $d \geq 3$ with $\operatorname{Crit}(g)=\left\{\gamma_{1}, \gamma_{2}\right\} \subseteq K$. There exists an element $\phi \in \mathrm{PGL}_{2}(K)$ such that $g^{\phi}=a \mathcal{B}_{d, k}+c$ for some $k \in \mathbb{N}$ and some $a, c \in K$.

Irrational critical points

Irrational critical points

Let \mathcal{P} be a map of degree d with a fixed point at 0 and critical points at $\pm \sqrt{D}$. Then \mathcal{P} is of the form

$$
\mathcal{P}_{d, D}(z)=\sum_{j=0}^{\frac{d-1}{2}}(-D)^{\frac{d-1}{2}-j}\binom{\frac{d-1}{2}}{j} \frac{z^{2 j+1}}{2 j+1} .
$$

Proposition

Let $g(z) \in K[z]$ be a bicritical polynomial of degree $d \geq 3$. Suppose that $\operatorname{Crit}(g)=\left\{\gamma_{1}, \gamma_{2}\right\} \not \subset K$. Then g is conjugate to a map of the form $a \mathcal{P}_{d, D}(z)+c$ for some $a, c \in K$ and some $D \in \mathcal{O}_{K}^{\times} / \mathcal{O}_{K}^{2}$.

