Cryptanalysis of the generalised Legendre pseudorandom function

Novak Kaluderovic, Thorsten Kleinjung, Dusan Kostic July 2, 2020

EPFL

Background

Pseudorandom functions

Pseudorandom functions

Set of functions $\{\mathcal{O}_k\}_k$ with the same domain and codomain such that a function chosen randomly over the set of keys k cannot be distinguished from a random function.

Pseudorandom functions

Set of functions $\{\mathcal{O}_k\}_k$ with the same domain and codomain such that a function chosen randomly over the set of keys k cannot be distinguished from a random function.

Legendre symbol

Pseudorandom functions

Set of functions $\{\mathcal{O}_k\}_k$ with the same domain and codomain such that a function chosen randomly over the set of keys k cannot be distinguished from a random function.

Legendre symbol

Let p be an odd prime.

$$\left(\frac{x}{p}\right) = \left\{ \begin{array}{cc} 1 & \text{if } x \in \mathbb{F}_p \text{ is a square} \\ -1 & \text{if } x \in \mathbb{F}_p \text{ is not a square.} \end{array} \right.$$

Pseudorandom functions

Set of functions $\{\mathcal{O}_k\}_k$ with the same domain and codomain such that a function chosen randomly over the set of keys k cannot be distinguished from a random function.

Legendre symbol

Let p be an odd prime.

$$\left(\frac{x}{p}\right) = \left\{ \begin{array}{cc} 1 & \text{if } x \in \mathbb{F}_p \text{ is a square} \\ -1 & \text{if } x \in \mathbb{F}_p \text{ is not a square}. \end{array} \right.$$

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

Damgård, 1988 [Dam90]: The Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Damgård, 1988 [Dam90]: The Legendre PRF

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

$$\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right), \quad f \in \mathbb{F}_p[x]_r$$

Orders of magnitude slower than cryptographic PRFs.

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

Legendre sequence

Let $a \in \mathbb{F}_p$ and $L \in \mathbb{N}$,

$$\{a\}_L := \left(\frac{a}{p}\right), \left(\frac{a+1}{p}\right), \left(\frac{a+2}{p}\right), \dots, \left(\frac{a+L-1}{p}\right).$$

Legendre sequence

Let $a \in \mathbb{F}_p$ and $L \in \mathbb{N}$,

$$\{a\}_L := \left(\frac{a}{p}\right), \left(\frac{a+1}{p}\right), \left(\frac{a+2}{p}\right), \dots, \left(\frac{a+L-1}{p}\right).$$

Assumption

For $L = 2\lfloor \log p \rfloor$ we have

$${a}_L = {b}_L$$
 if and only if $a = b$.

Generalised Legendre sequence

Let $f \in \mathbb{F}_p[x]_r$ and $L \in \mathbb{N}$,

$$\{f\}_L := \left(\frac{f(0)}{p}\right), \left(\frac{f(1)}{p}\right), \left(\frac{f(2)}{p}\right), \ldots, \left(\frac{f(L-1)}{p}\right).$$

Generalised assumption:

For $L = 2|r\log p|$ we have

$$\{f\}_L = \{g\}_L$$
 if and only if $f = g$.

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Table:

Make a table with many Legendre sequences $\{f_m\}_L$ such that

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Table:

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Table:

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Table:

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Search:

Generate random g(x) and look for $\{g\}_L$ in the table.

Problem: Given access to $\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right)$, find f.

Solution: Table-based collision search

Table:

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Search:

Generate random g(x) and look for $\{g\}_L$ in the table.

If $\{g\}_L = \{f_m\}_L$ then $g = f_m$, and we can obtain f.

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

$$[x:y] \longmapsto [ax + by : cx + dy],$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

$$[x:y] \longmapsto [ax + by : cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x)$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)^r$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)^r$$

7

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

 $[x:y] \longmapsto [ax + by : cx + dy],$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r)$$

7

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r.$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r.$$

Linear cost per sequence: L+1 oracle queries and L+1 Legendre symbol computations $\to 1$ Legendre sequence.

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r.$$

Linear cost per sequence: L+1 oracle queries and L+1 Legendre symbol computations $\to 1$ Legendre sequence.

Amortised for all $m \in PGL_2(\mathbb{F}_p)$: p oracle queries and p Legendre symbols $\to (p^3 - p)$ Legendre sequences.

Precomputation

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Precomputation

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Search

Sample random g(x) of degree r and compute $\{g\}_L$ until a hit is found.

Precomputation

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Search

Sample random g(x) of degree r and compute $\{g\}_L$ until a hit is found.

Expected run-time: $O(p^{r-3})$ trials.

Run-time: $\tilde{O}(p^3 + p^{r-3})$

Run-time:
$$\tilde{O}(p^3 + p^{r-3})$$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Run-time:
$$\tilde{O}(p^3 + p^{r-3})$$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed: p

Run-time:
$$\tilde{O}(p^3 + p^{r-3})$$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed : p-o(p/L).

Run-time:
$$\tilde{O}(p^3 + p^{r-3})$$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed : p-o(p/L).

What if oracle queries are limited?

How many different group actions can we obtain from $M \ll p$ queries?

How many different group actions can we obtain from $M \ll p$ queries?

How many different group actions can we obtain from M << p queries?

$$G = \left\{ \left(\begin{smallmatrix} d & i \\ 0 & 1 \end{smallmatrix} \right) \middle| d \in \mathbb{F}_p^*, i \in \mathbb{F}_p \right\} \leqslant \mathsf{PGL}_2(\mathbb{F}_p).$$

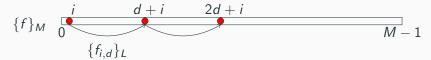
How many different group actions can we obtain from M << p queries?

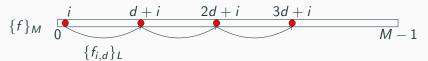
$$G = \left\{ \begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \middle| d \in \mathbb{F}_p^*, i \in \mathbb{F}_p \right\} \leqslant \mathsf{PGL}_2(\mathbb{F}_p).$$
$$\begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \cdot f = f_{i,d}(x) = f(dx+i)/d^r.$$

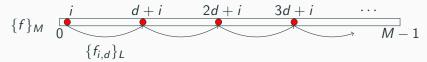
How many different group actions can we obtain from $M \ll p$ queries?

$$G = \left\{ \begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \middle| d \in \mathbb{F}_p^*, i \in \mathbb{F}_p \right\} \leqslant \mathsf{PGL}_2(\mathbb{F}_p).$$
$$\begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \cdot f = f_{i,d}(x) = f(dx+i)/d^r.$$
$$\begin{pmatrix} f_{i,d}(x) \\ p \end{pmatrix} = \mathcal{O}_f(dx+i) \left(\frac{d}{p}\right)^r.$$

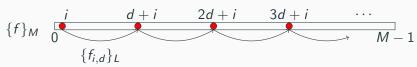
$$\{f\}_M \quad 0 \qquad M-1$$







Query \mathcal{O}_f at [0, M).



In total $\frac{M^2}{L}$ eligible (i, d) values.

Precomputation

Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Precomputation

Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Search

Try random polynomials until a hit is found in the table.

Precomputation

Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Search

Try random polynomials until a hit is found in the table.

Expected run-time: $O(\frac{p^rL}{M^2})$ trials.

Khovratovich [Kho19]: Group G with d = 1. Table size: O(1).

Khovratovich [Kho19]: Group G with d = 1. Table size: O(1).

Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{M^2}{L^2}$.

Khovratovich [Kho19]: Group G with d = 1. Table size: O(1).

Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{M^2}{L^2}$.

Us: Full group G. Table size $\frac{M^2}{L}$.

Comparison

Khovratovich [Kho19]: Group G with d = 1. Table size: O(1).

Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{M^2}{L^2}$.

Us: Full group G. Table size $\frac{M^2}{L}$.

Algorithm	expected # trials	precomputation	memory
Khovratovich	<u>p log p</u> M	М	log p
Beullens et al.	<u>p log² p</u> M²	M^2	$\frac{M^2}{\log p}$
Our algorithm	<u>p log p</u> M²	$\frac{M^2}{\log p}$	M^2

Khovratovich [Kho19]:Group G with d = 1. Table size:O(1).

Khovratovich [Kho19]:Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{p^2}{L^2}$.

Khovratovich [Kho19]:Group G with d=1. Table size:O(1). Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{p^2}{L^2}$. Us: Full group $PGL_2(\mathbb{F}_p)$. Table size p^3-p .

Khovratovich [Kho19]:Group G with d=1. Table size:O(1). Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{p^2}{L^2}$. Us: Full group $PGL_2(\mathbb{F}_p)$. Table size p^3-p .

Algorithm	search	precomputation	memory
Khovratovich	$p^{r-1}r\log p$	r log p	r log p
Beullens et al.	$p^{r-2}r^2\log^2 p$	p^2	p^2
Our algorithm	$p^{r-3}r\log p$	$p^3 r \log p$	$p^3 r \log p$

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits
- Given $M=2^{20}$ symbols of sequence $\{f\}_M$.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits
- Given $M=2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits
- Given $M=2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L=64.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits
- Given $M=2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L=64.
- Tables contained 2^{34} sequences.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148 bits
- Given $M=2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L=64.
- Tables contained 2³⁴ sequences.
- About 2.2e6 trials per core-second.

Results

Table 1: Results and estimates for solving the Legendre PRF challenges. In all cases $M=2^{20}$ consecutive queries are given.

Challenge	Prime	Expected	Observed	Expected	Observed
	bit size	# trials	# trials	core-hours	core-hours
0	64	2 ³⁰	230.78	290 sec	490 sec
1	74	2 ⁴⁰	2 ^{39.53}	82	59
2	84	2^{50}	2 ^{46.97}	1.4e5	1.72e4
3	100	2 ⁶⁶	-	9.1e9	-
4	148	2 ¹¹⁴	-	2.5e24	-

The end

Thank you for Your attention!

References i

- Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto, *Cryptanalysis of the Legendre PRF and generalizations*, Cryptology ePrint Archive, Report 2019/1357, 2019, https://eprint.iacr.org/2019/1357.
- Ivan Damgård, On the randomness of Legendre and Jacobi sequences, Proceedings of the 8th Annual International Cryptology Conference on Advances in Cryptology (London, UK), CRYPTO '88, Springer-Verlag, 1990, pp. 163–172.
- Dankard Feist, Legendre pseudo-random function, 2019, https://legendreprf.org/bounties.

References ii

- Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart, *MPC-friendly symmetric key primitives*, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA), CCS '16, ACM, 2016, pp. 430–443.
- Dmitry Khovratovich, Key recovery attacks on the Legendre PRFs within the birthday bound, Cryptology ePrint Archive, Report 2019/862, 2019, https://eprint.iacr.org/2019/862.
- Alexander Russell and Igor E. Shparlinski, *Classical and quantum function reconstruction via character evaluation*, Journal of Complexity **20** (2004), no. 2-3, 404–422 (English).