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Damg̊ard, 1988 [Dam90]: The Legendre PRF
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Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF
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Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.
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Results

Problem
Given access to Of , find f .

Solution
Table-based collision search.

General case
Table:O(p3), Search:O(pr−3)

Limited query case
Table:O(M2/ log p), Search:O(pr log p/M2)
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Limited query case

Khovratovich [Kho19]: Table size:O(1) ∼ O( M
log p ).

Beullens et al. [BBUV19]: Table size O( M2

log2 p
).

Us: Table size O( M2

log p ).
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General case

Khovratovich [Kho19]: Linear yield ∼ p.

Beullens et al. [BBUV19]: Quadratic yield ∼ p2.

Us: Cubic yield ∼ p3.
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Legendre Sequences

Legendre sequence
Let a ∈ Fp and L ∈ N,

{a}L ..=


a

p


,


a+ 1

p


,


a+ 2

p


, . . . ,


a+ L− 1

p


.

Assumption
For L = 2⌊log p⌋ we have

{a}L = {b}L if and only if a = b.
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Legendre Sequences

Generalised Legendre sequence
Let f ∈ Fp[x ]r and L ∈ N,

{f }L ..=


f (0)

p


,


f (1)

p


,


f (2)

p


, . . . ,


f (L− 1)

p


.

Generalised assumption:
For L = r⌊log p log log p⌋ we have

{f }L = {g}L if and only if f = g .
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Algorithm



Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .
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Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y ] −→ [ax + by : cx + dy ],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d


.

Action on monic polynomials:

m · f (x) = fm(x) ..= f ( ax+b
cx+d )(cx + d)r/(f ( ac )c

r )
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Möbius transformations

Alternative point of view:

If f (x) =
r

i=1(x − αi ) then

fm(x) =
r

i=1

(x −m−1αi ) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f ( ax+b
cx+d )(cx + d)r/(f ( ac )c

r ).

Computing {fm}L from Of :

fm(x)

p


= Of


ax + b

cx + d


cx + d

p

r

Of

a
c


c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.
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Polynomial types

Lemma
Let f ∈ Fp[x ]r be irreducible with 3 ≤ r < p and consider the

action of PGL2(Fp) on f . The stabiliser of f is a cyclic group of

order r ′ | gcd(r , p2 − 1).

Three polynomial types

- Good: Irreducible and trivial stabiliser

- Bad: Irreducible and non-trivial stabiliser

- Ugly: Reducible
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Good polynomials

Precomputation
Create a table T containing {fm}L for all m ∈ PGL2(Fp).

In total p3 − p sequences.

Search
Try random g(x) of degree r and compute {g}L until a hit is

found.

Expected run-time: O(pr−3) trials.
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Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.
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Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.
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Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.
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Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?
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Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =


d i
0 1

d ∈ F∗
p, i ∈ Fp


 PGL2(Fp).


d i
0 1


· f = fi ,d(x) = f (dx + i)/d r .


fi ,d(x)

p


= Of (dx + i)


d

p

r

.
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Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.
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Limited query and the linear prf

Precomputation
Query Of at [0,M). Make a table T with O(M

2

L ) sequences.

Search
Try random polynomials until a hit is found in the table.

Expected run-time: O(p
rL

M2 ) trials.
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Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.
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The end

Thank you for Your attention!
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Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.
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Results

Table 1: Results and estimates for solving the Legendre PRF challenges.

In all cases M = 220 consecutive queries are given.

Challenge Prime Expected Observed Expected Observed

bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec

1 74 240 239.53 82 59

2 84 250 246.97 1.4e5 1.72e4

3 100 266 - 9.1e9 -

4 148 2114 - 2.5e24 -
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Comparison

Khovratovich [Kho19]: Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d . Table size M2

L2
.

Us: Full group G . Table size M2

L .

Algorithm expected # trials precomputation memory

Khovratovich p log p
M M log p

Beullens et al. p log2 p
M2 M2 M2

log p

Our algorithm p log p
M2

M2

log p M2
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General case

Khovratovich [Kho19]:Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d . Table size p2

L2
.

Us: Full group PGL2(Fp). Table size p3 − p.
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General case

good polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. pr−2r2 log2 p p2 p2

Our algorithm pr−3r log p p3 p3r log p

bad polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. pr−2r2 log2 p p2 pr−rhr log p

Our algorithm pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

ugly polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. prhr log p pr−rhr log p pr−rhr log p

Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p
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