Cryptanalysis of the generalised Legendre pseudorandom function

Novak Kaluderovic, Thorsten Kleinjung, Dusan Kostic July 3, 2020

EPFL

Background

Legendre PRF

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

$$\mathcal{O}_k(x) = \left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_p$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

$$\mathcal{O}_f(x) = \left(\frac{f(x)}{p}\right), \quad f \in \mathbb{F}_p[x]_r$$

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Orders of magnitude slower than cryptographic PRFs. Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation. Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain. Orders of magnitude slower than cryptographic PRFs. Grassi et al., 2016 [GRR⁺16]: Suitable for multiparty computation. Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain. Ethereum, 2019 [Fei19]: Online challenges to break the function.

Problem Given access to \mathcal{O}_f , find f.

Problem Given access to \mathcal{O}_f , find f.

Solution Table-based collision search. **Problem** Given access to \mathcal{O}_f , find f.

Solution Table-based collision search.

General case Table: $O(p^3)$, Search: $O(p^{r-3})$

Problem Given access to \mathcal{O}_f , find f.

Solution Table-based collision search.

General case Table: $O(p^3)$, Search: $O(p^{r-3})$

Limited query case Table: $O(M^2/\log p)$, Search: $O(p^r \log p/M^2)$

Limited query case

Khovratovich [Kho19]: Table size: $O(1) \sim O(\frac{M}{\log p})$.

Khovratovich [Kho19]: Table size: $O(1) \sim O(\frac{M}{\log p})$. Beullens et al. [BBUV19]: Table size $O(\frac{M^2}{\log^2 p})$. Khovratovich [Kho19]: Table size: $O(1) \sim O(\frac{M}{\log p})$. Beullens et al. [BBUV19]: Table size $O(\frac{M^2}{\log^2 p})$. Us: Table size $O(\frac{M^2}{\log p})$.

Khovratovich [Kho19]: Linear yield $\sim p$.

Khovratovich [Kho19]: Linear yield $\sim p$. Beullens et al. [BBUV19]: Quadratic yield $\sim p^2$.

Khovratovich [Kho19]: Linear yield $\sim p$. Beullens et al. [BBUV19]: Quadratic yield $\sim p^2$. Us: Cubic yield $\sim p^3$.

Legendre sequence Let $a \in \mathbb{F}_p$ and $L \in \mathbb{N}$,

$$\{a\}_L := \left(\frac{a}{p}\right), \left(\frac{a+1}{p}\right), \left(\frac{a+2}{p}\right), \dots, \left(\frac{a+L-1}{p}\right).$$

Legendre sequence Let $a \in \mathbb{F}_p$ and $L \in \mathbb{N}$,

$$\{a\}_L := \left(\frac{a}{p}\right), \left(\frac{a+1}{p}\right), \left(\frac{a+2}{p}\right), \dots, \left(\frac{a+L-1}{p}\right).$$

Assumption For $L = 2\lfloor \log p \rfloor$ we have

$${a}_L = {b}_L$$
 if and only if $a = b$.

Legendre sequence Let $a \in \mathbb{F}_p$ and $L \in \mathbb{N}$,

$$\{a\}_L := \left(\frac{a}{p}\right), \left(\frac{a+1}{p}\right), \left(\frac{a+2}{p}\right), \dots, \left(\frac{a+L-1}{p}\right).$$

Assumption For $L = \lfloor \log p \log \log p \rfloor$ we have

$${a}_L = {b}_L$$
 if and only if $a = b$.

Generalised Legendre sequence Let $f \in \mathbb{F}_p[x]_r$ and $L \in \mathbb{N}$,

$$\{f\}_L := \left(\frac{f(0)}{p}\right), \left(\frac{f(1)}{p}\right), \left(\frac{f(2)}{p}\right), \ldots, \left(\frac{f(L-1)}{p}\right).$$

Generalised assumption: For $L = r \lfloor \log p \log \log p \rfloor$ we have

$$\{f\}_L = \{g\}_L$$
 if and only if $f = g$.

Algorithm

Table: Make a table with many Legendre sequences $\{f_m\}_L$ such that

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Search:

Generate random g(x) and look for $\{g\}_L$ in the table.

Make a table with many Legendre sequences $\{f_m\}_L$ such that

- The sequence $\{f_m\}_L$ can be computed from \mathcal{O}_f .
- From f_m we can obtain f.

Search:

Generate random g(x) and look for $\{g\}_L$ in the table.

If $\{g\}_L = \{f_m\}_L$ then $g = f_m$, and we can obtain f.

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Rational transformations of \mathbb{P}^1 :

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Action on monic polynomials:

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x)$$

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})$$

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})$$

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)'$$

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)^r$$

$$\varphi_m: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$
$$[x:y] \longmapsto [ax + by: cx + dy],$$

Isomorphic to $PGL_2(\mathbb{F}_p)$ given by $\varphi_m \leftrightarrow m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$m \cdot f(x) = f_m(x) := f(\frac{ax+b}{cx+d})(cx+d)^r / (f(\frac{a}{c})c^r)$$

Alternative point of view:

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$ then

$$f_m(x) = \prod_{i=1}^r (x - m^{-1}\alpha_i) = \prod_{i=1}^r (x - \frac{d\alpha_i - b}{-c\alpha_i + a}).$$

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$ then

$$f_m(x) = \prod_{i=1}^r (x - m^{-1}\alpha_i) = \prod_{i=1}^r (x - \frac{d\alpha_i - b}{-c\alpha_i + a}).$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$ then

$$f_m(x) = \prod_{i=1}^r (x - m^{-1}\alpha_i) = \prod_{i=1}^r (x - \frac{d\alpha_i - b}{-c\alpha_i + a}).$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r$$

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$ then

$$f_m(x) = \prod_{i=1}^r (x - m^{-1}\alpha_i) = \prod_{i=1}^r (x - \frac{d\alpha_i - b}{-c\alpha_i + a}).$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r.$$

Cost per sequence: L + 1 oracle queries and L + 1 Legendre symbol computations $\rightarrow 1$ Legendre sequence.

Alternative point of view: If $f(x) = \prod_{i=1}^{r} (x - \alpha_i)$ then

$$f_m(x) = \prod_{i=1}^r (x - m^{-1}\alpha_i) = \prod_{i=1}^r (x - \frac{d\alpha_i - b}{-c\alpha_i + a}).$$

$$f_m(x) = f(\frac{ax+b}{cx+d})(cx+d)^r/(f(\frac{a}{c})c^r).$$

Computing $\{f_m\}_L$ from \mathcal{O}_f :

$$\left(\frac{f_m(x)}{p}\right) = \mathcal{O}_f\left(\frac{ax+b}{cx+d}\right)\left(\frac{cx+d}{p}\right)^r \mathcal{O}_f\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^r$$

Cost per sequence: L + 1 oracle queries and L + 1 Legendre symbol computations $\rightarrow 1$ Legendre sequence.

Amortised over all $m \in PGL_2(\mathbb{F}_p)$: *p* oracle queries and *p* Legendre symbols $\rightarrow (p^3 - p)$ Legendre sequences.

Lemma

Let $f \in \mathbb{F}_p[x]_r$ be irreducible with $3 \leq r < p$ and consider the action of $PGL_2(\mathbb{F}_p)$ on f. The stabiliser of f is a cyclic group of order $r' \mid \gcd(r, p^2 - 1)$.

Lemma

Let $f \in \mathbb{F}_p[x]_r$ be irreducible with $3 \leq r < p$ and consider the action of $PGL_2(\mathbb{F}_p)$ on f. The stabiliser of f is a cyclic group of order $r' \mid \gcd(r, p^2 - 1)$.

Three polynomial types

- Good: Irreducible and trivial stabiliser
- Bad: Irreducible and non-trivial stabiliser
- Ugly: Reducible

Good polynomials

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Search

Try random g(x) of degree r and compute $\{g\}_L$ until a hit is found.

Create a table T containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

In total $p^3 - p$ sequences.

Search

Try random g(x) of degree r and compute $\{g\}_L$ until a hit is found.

Expected run-time: $O(p^{r-3})$ trials.

Bad polynomials

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

- Trivial: Enumerate $PGL_2(\mathbb{F}_p)$ and isolate matrices that fix f. Cost: $O(p^3)$.

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

- Trivial: Enumerate $PGL_2(\mathbb{F}_p)$ and isolate matrices that fix f. Cost: $O(p^3)$.
- Non-trivial: Enumerate elements of order r' and isolate matrices that fix f. Cost $O(p^2 \log r)$.

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

- Trivial: Enumerate $PGL_2(\mathbb{F}_p)$ and isolate matrices that fix f. Cost: $O(p^3)$.
- Non-trivial: Enumerate elements of order r' and isolate matrices that fix f. Cost $O(p^2 \log r)$.

Precompute a table with O(p) many sequences $\{f_m\}_L$ such that f_m is fixed by a diagonal matrix.

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

- Trivial: Enumerate $PGL_2(\mathbb{F}_p)$ and isolate matrices that fix f. Cost: $O(p^3)$.
- Non-trivial: Enumerate elements of order r' and isolate matrices that fix f. Cost $O(p^2 \log r)$.

Precompute a table with O(p) many sequences $\{f_m\}_L$ such that f_m is fixed by a diagonal matrix.

Search

Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is $O(p^{r/r'})$.

Find the stabiliser of f which we know to by cyclic of order $r' \mid r$.

- Trivial: Enumerate $PGL_2(\mathbb{F}_p)$ and isolate matrices that fix f. Cost: $O(p^3)$.
- Non-trivial: Enumerate elements of order r' and isolate matrices that fix f. Cost $O(p^2 \log r)$.

Precompute a table with O(p) many sequences $\{f_m\}_L$ such that f_m is fixed by a diagonal matrix.

Search

Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is $O(p^{r/r'})$.

Expected run-time: $O(p^{r/r'-1})$ trials.

Ugly polynomials

Precomputation Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Precomputation

Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Table T_2 containing $\{l'\}_L$ for all polynomials l' of degree $r - r_h$.

Precomputation

Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Table T_2 containing $\{l'\}_L$ for all polynomials l' of degree $r - r_h$.

Table T containing $\{f_m\}_L\{l'\}_L$ for all m and l'. Size: $O(p^{3+r-r_h})$.

Precomputation

Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Table T_2 containing $\{l'\}_L$ for all polynomials l' of degree $r - r_h$.

Table T containing $\{f_m\}_L\{l'\}_L$ for all m and l'. Size: $O(p^{3+r-r_h})$.

Search

Try random h'(x) of degree r_h until a hit is found.

Precomputation

Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Table T_2 containing $\{l'\}_L$ for all polynomials l' of degree $r - r_h$.

Table T containing $\{f_m\}_L\{l'\}_L$ for all m and l'. Size: $O(p^{3+r-r_h})$.

Search

Try random h'(x) of degree r_h until a hit is found.

$${h'}_L = {f_m}_L {I'}_L \Rightarrow f(x) = {h'_{m^{-1}}(x)I'_{m^{-1}}(x)}$$

Precomputation

Table T_1 containing $\{f_m\}_L$ for all $m \in PGL_2(\mathbb{F}_p)$.

Table T_2 containing $\{l'\}_L$ for all polynomials l' of degree $r - r_h$.

Table T containing $\{f_m\}_L\{l'\}_L$ for all m and l'. Size: $O(p^{3+r-r_h})$.

Search

Try random h'(x) of degree r_h until a hit is found.

$${h'}_L = {f_m}_L {I'}_L \Rightarrow f(x) = {h'_{m^{-1}}(x)I'_{m^{-1}}(x)}$$

Expected run-time: $O(p^{r_h-3})$ trials.

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

General case run-time: $\tilde{O}(p^3 + p^{r-3})$

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

For r < 6 can be lowered to $ilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed : p

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed : p-o(p/L).

polynomial type	search	precomputation	memory
Good	$p^{r-3}r\log p$	p ³ r log p	p ³ r log p
Bad	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
Ugly	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$

For r < 6 can be lowered to $\tilde{O}(p^{r/2} + p^{r/2})$ by limiting the table.

Oracle queries needed : p-o(p/L).

What if oracle queries are limited?

Limited query and the linear prf

$$G = \left\{ \left(\begin{smallmatrix} d & i \\ 0 & 1 \end{smallmatrix} \right) \middle| d \in \mathbb{F}_{p}^{*}, i \in \mathbb{F}_{p} \right\} \leqslant \mathsf{PGL}_{2}(\mathbb{F}_{p}).$$

$$G = \left\{ \begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \middle| d \in \mathbb{F}_p^*, i \in \mathbb{F}_p \right\} \leq \mathsf{PGL}_2(\mathbb{F}_p),$$
$$\begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \cdot f = f_{i,d}(x) = f(dx+i)/d^r.$$

$$G = \left\{ \begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \middle| d \in \mathbb{F}_p^*, i \in \mathbb{F}_p \right\} \leqslant \mathsf{PGL}_2(\mathbb{F}_p)$$
$$\begin{pmatrix} d & i \\ 0 & 1 \end{pmatrix} \cdot f = f_{i,d}(x) = f(dx+i)/d^r.$$
$$\begin{pmatrix} \frac{f_{i,d}(x)}{p} \end{pmatrix} = \mathcal{O}_f(dx+i) \left(\frac{d}{p}\right)^r.$$

Query \mathcal{O}_f at [0, M).

Query \mathcal{O}_f at [0, M).

In total $\frac{M^2}{I}$ eligible (i, d) values.

Precomputation

Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Precomputation Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Search

Try random polynomials until a hit is found in the table.

Precomputation Query \mathcal{O}_f at [0, M). Make a table T with $O(\frac{M^2}{L})$ sequences.

Search

Try random polynomials until a hit is found in the table.

Expected run-time: $O(\frac{p^r L}{M^2})$ trials.

- Linear PRF keys are all weak. Can we exploit that?

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_L$ do not have to be defined as consecutive symbols.

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_L$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_L$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^1$ and $\mathcal{A} \subseteq PGL_2(\mathbb{F}_p)$ such that

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_L$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^1$ and $\mathcal{A} \subseteq PGL_2(\mathbb{F}_p)$ such that

$$\#\mathcal{L} = L, \quad \#\mathcal{Q} = M, \quad \#\mathcal{A} \sim M^3$$

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_L$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^1$ and $\mathcal{A} \subseteq PGL_2(\mathbb{F}_p)$ such that

$$#\mathcal{L} = L, \quad #\mathcal{Q} = M, \quad #\mathcal{A} \sim M^3$$

and

$$m\mathcal{L} \subseteq \mathcal{Q}$$
 for all $m \in \mathcal{A}$.

Thank you for Your attention!

References i

- Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto, Cryptanalysis of the Legendre PRF and generalizations, Cryptology ePrint Archive, Report 2019/1357, 2019, https://eprint.iacr.org/2019/1357.
- Ivan Damgård, On the randomness of Legendre and Jacobi sequences, Proceedings of the 8th Annual International Cryptology Conference on Advances in Cryptology (London, UK), CRYPTO '88, Springer-Verlag, 1990, pp. 163–172.
- Dankard Feist, Legendre pseudo-random function, 2019, https://legendreprf.org/bounties.

References ii

- Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart, *MPC-friendly symmetric key primitives*, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA), CCS '16, ACM, 2016, pp. 430–443.
- Dmitry Khovratovich, Key recovery attacks on the Legendre PRFs within the birthday bound, Cryptology ePrint Archive, Report 2019/862, 2019, https://eprint.iacr.org/2019/862.
- Alexander Russell and Igor E. Shparlinski, Classical and quantum function reconstruction via character evaluation, Journal of Complexity 20 (2004), no. 2-3, 404–422 (English).

- 5 Linear Legendre PRF challenges

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148
- Given $M = 2^{20}$ symbols of sequence $\{f\}_M$.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148
- Given $M = 2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148
- Given $M = 2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L = 64.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148
- Given $M = 2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L = 64.
- Tables contained 2³⁴ sequences.

- 5 Linear Legendre PRF challenges
- Primes p of 64, 74, 84, 100 and 148
- Given $M = 2^{20}$ symbols of sequence $\{f\}_M$.
- Goal to find f = x + k.
- For each challenge we used L = 64.
- Tables contained 2³⁴ sequences.
- About 2.2e6 trials per core-second.

Table 1: Results and estimates for solving the Legendre PRF challenges. In all cases $M = 2^{20}$ consecutive queries are given.

Challenge	Prime	Expected	Observed	Expected	Observed
	bit size	# trials	# trials	core-hours	core-hours
0	64	2 ³⁰	2 ^{30.78}	290 sec	490 sec
1	74	2 ⁴⁰	2 ^{39.53}	82	59
2	84	2 ⁵⁰	2 ^{46.97}	1.4e5	1.72e4
3	100	2 ⁶⁶	-	9.1e9	-
4	148	2 ¹¹⁴	-	2.5e24	-

Khovratovich [Kho19]: Group G with d = 1. Table size:O(1). Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{M^2}{L^2}$. Us: Full group G. Table size $\frac{M^2}{L}$. Khovratovich [Kho19]: Group G with d = 1. Table size:O(1). Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{M^2}{L^2}$. Us: Full group G. Table size $\frac{M^2}{L}$.

Algorithm	expected $\#$ trials	precomputation	memory
Khovratovich	plogp M	М	log p
Beullens et al.	$\frac{p \log^2 p}{M^2}$	M^2	$\frac{M^2}{\log p}$
Our algorithm	$\frac{p \log p}{M^2}$	$\frac{M^2}{\log p}$	M^2

Khovratovich [Kho19]:Group G with d = 1. Table size:O(1). Beullens et al. [BBUV19]: Group G with i < d. Table size $\frac{p^2}{L^2}$. Us: Full group $PGL_2(\mathbb{F}_p)$. Table size $p^3 - p$.

General case

good polynomials	search	precomputation	memory
Khovratovich	$p^{r-1}r\log p$	r log p	r log p
Beullens et al.	$p^{r-2}r^2\log^2 p$	<i>p</i> ²	<i>p</i> ²
Our algorithm	$p^{r-3}r\log p$	p^3	$p^3 r \log p$
bad polynomials	search	precomputation	memory
Khovratovich	$p^{r-1}r\log p$	r log p	r log p
Beullens et al.	$p^{r-2}r^2\log^2 p$	<i>p</i> ²	$p^{r-r_h}r\log p$
Our algorithm	$p^{r/r'-1}r''r\log p$	$p^2 r \log p$	$(p/r'')r\log p$
ugly polynomials	search	precomputation	memory
Khovratovich	$p^{r-1}r\log p$	r log p	r log p
Beullens et al.	$p^{r_h}r\log p$	$p^{r-r_h}r\log p$	$p^{r-r_h}r\log p$
Our algorithm	$p^{r_h-3}r\log p$	$p^{r-r_h+3}r\log p$	$p^{r-r_h+3}r\log p$