
Cryptanalysis of the generalised Legendre

pseudorandom function

Novak Kaluderovic, Thorsten Kleinjung, Dusan Kostic

July 3, 2020

EPFL

Background

Legendre PRF

Damg̊ard, 1988 [Dam90]: The Legendre PRF

Ok(x) =

x + k

p

, k ∈ Fp

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Of (x) =

f (x)

p

, f ∈ Fp[x]r

1

Legendre PRF

Damg̊ard, 1988 [Dam90]: The Legendre PRF

Ok(x) =

x + k

p

, k ∈ Fp

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Of (x) =

f (x)

p

, f ∈ Fp[x]r

1

Legendre PRF

Damg̊ard, 1988 [Dam90]: The Legendre PRF

Ok(x) =

x + k

p

, k ∈ Fp

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Of (x) =

f (x)

p

, f ∈ Fp[x]r

1

Legendre PRF

Damg̊ard, 1988 [Dam90]: The Legendre PRF

Ok(x) =

x + k

p

, k ∈ Fp

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Of (x) =

f (x)

p

, f ∈ Fp[x]r

1

Legendre PRF

Damg̊ard, 1988 [Dam90]: The Legendre PRF

Ok(x) =

x + k

p

, k ∈ Fp

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Of (x) =

f (x)

p

, f ∈ Fp[x]r

1

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

2

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

2

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

2

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

2

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Ethereum, 2019 [Fei19]: Online challenges to break the function.

2

Results

Problem
Given access to Of , find f .

Solution
Table-based collision search.

General case
Table:O(p3), Search:O(pr−3)

Limited query case
Table:O(M2/ log p), Search:O(pr log p/M2)

3

Results

Problem
Given access to Of , find f .

Solution
Table-based collision search.

General case
Table:O(p3), Search:O(pr−3)

Limited query case
Table:O(M2/ log p), Search:O(pr log p/M2)

3

Results

Problem
Given access to Of , find f .

Solution
Table-based collision search.

General case
Table:O(p3), Search:O(pr−3)

Limited query case
Table:O(M2/ log p), Search:O(pr log p/M2)

3

Results

Problem
Given access to Of , find f .

Solution
Table-based collision search.

General case
Table:O(p3), Search:O(pr−3)

Limited query case
Table:O(M2/ log p), Search:O(pr log p/M2)

3

Limited query case

Khovratovich [Kho19]: Table size:O(1) ∼ O(M
log p).

Beullens et al. [BBUV19]: Table size O(M2

log2 p
).

Us: Table size O(M2

log p).

4

Limited query case

Khovratovich [Kho19]: Table size:O(1) ∼ O(M
log p).

Beullens et al. [BBUV19]: Table size O(M2

log2 p
).

Us: Table size O(M2

log p).

4

Limited query case

Khovratovich [Kho19]: Table size:O(1) ∼ O(M
log p).

Beullens et al. [BBUV19]: Table size O(M2

log2 p
).

Us: Table size O(M2

log p).

4

Limited query case

Khovratovich [Kho19]: Table size:O(1) ∼ O(M
log p).

Beullens et al. [BBUV19]: Table size O(M2

log2 p
).

Us: Table size O(M2

log p).

4

General case

Khovratovich [Kho19]: Linear yield ∼ p.

Beullens et al. [BBUV19]: Quadratic yield ∼ p2.

Us: Cubic yield ∼ p3.

5

General case

Khovratovich [Kho19]: Linear yield ∼ p.

Beullens et al. [BBUV19]: Quadratic yield ∼ p2.

Us: Cubic yield ∼ p3.

5

General case

Khovratovich [Kho19]: Linear yield ∼ p.

Beullens et al. [BBUV19]: Quadratic yield ∼ p2.

Us: Cubic yield ∼ p3.

5

Legendre Sequences

Legendre sequence
Let a ∈ Fp and L ∈ N,

{a}L ..=

a

p

,

a+ 1

p

,

a+ 2

p

, . . . ,

a+ L− 1

p

.

Assumption
For L = 2⌊log p⌋ we have

{a}L = {b}L if and only if a = b.

6

Legendre Sequences

Legendre sequence
Let a ∈ Fp and L ∈ N,

{a}L ..=

a

p

,

a+ 1

p

,

a+ 2

p

, . . . ,

a+ L− 1

p

.

Assumption
For L = 2⌊log p⌋ we have

{a}L = {b}L if and only if a = b.

6

Legendre Sequences

Legendre sequence
Let a ∈ Fp and L ∈ N,

{a}L ..=

a

p

,

a+ 1

p

,

a+ 2

p

, . . . ,

a+ L− 1

p

.

Assumption
For L = ⌊log p log log p⌋ we have

{a}L = {b}L if and only if a = b.

6

Legendre Sequences

Generalised Legendre sequence
Let f ∈ Fp[x]r and L ∈ N,

{f }L ..=

f (0)

p

,

f (1)

p

,

f (2)

p

, . . . ,

f (L− 1)

p

.

Generalised assumption:
For L = r⌊log p log log p⌋ we have

{f }L = {g}L if and only if f = g .

7

Algorithm

Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .

8

Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .

8

Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .

8

Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .

8

Table-based collision search

Table:
Make a table with many Legendre sequences {fm}L such that

- The sequence {fm}L can be computed from Of .

- From fm we can obtain f .

Search:
Generate random g(x) and look for {g}L in the table.

If {g}L = {fm}L then g = fm, and we can obtain f .

8

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r/(f (ac)c

r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r/(f (ac)c

r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r/(f (ac)c

r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x)

..= f (ax+b
cx+d)(cx + d)r/(f (ac)c

r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)

(cx + d)r/(f (ac)c
r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)

(cx + d)r/(f (ac)c
r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r

/(f (ac)c
r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r

/(f (ac)c
r)

9

Möbius transformations

Rational transformations of P1:

ϕm : P1 −→ P1

[x : y] −→ [ax + by : cx + dy],

Isomorphic to PGL2(Fp) given by ϕm ↔ m =

a b
c d

.

Action on monic polynomials:

m · f (x) = fm(x) ..= f (ax+b
cx+d)(cx + d)r/(f (ac)c

r)

9

Möbius transformations

Alternative point of view:

If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi)

then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Möbius transformations

Alternative point of view: If f (x) =
r

i=1(x − αi) then

fm(x) =
r

i=1

(x −m−1αi) =
r

i=1

(x − dαi − b

−cαi + a
).

fm(x) = f (ax+b
cx+d)(cx + d)r/(f (ac)c

r).

Computing {fm}L from Of :

fm(x)

p

= Of

ax + b

cx + d

cx + d

p

r

Of

a
c

c

p

r

.

Cost per sequence: L+1 oracle queries and L+1 Legendre symbol

computations → 1 Legendre sequence.

Amortised over all m ∈ PGL2(Fp): p oracle queries and p Legendre

symbols → (p3 − p) Legendre sequences.

10

Polynomial types

Lemma
Let f ∈ Fp[x]r be irreducible with 3 ≤ r < p and consider the

action of PGL2(Fp) on f . The stabiliser of f is a cyclic group of

order r ′ | gcd(r , p2 − 1).

Three polynomial types

- Good: Irreducible and trivial stabiliser

- Bad: Irreducible and non-trivial stabiliser

- Ugly: Reducible

11

Polynomial types

Lemma
Let f ∈ Fp[x]r be irreducible with 3 ≤ r < p and consider the

action of PGL2(Fp) on f . The stabiliser of f is a cyclic group of

order r ′ | gcd(r , p2 − 1).

Three polynomial types

- Good: Irreducible and trivial stabiliser

- Bad: Irreducible and non-trivial stabiliser

- Ugly: Reducible

11

Good polynomials

Precomputation
Create a table T containing {fm}L for all m ∈ PGL2(Fp).

In total p3 − p sequences.

Search
Try random g(x) of degree r and compute {g}L until a hit is

found.

Expected run-time: O(pr−3) trials.

12

Good polynomials

Precomputation
Create a table T containing {fm}L for all m ∈ PGL2(Fp).

In total p3 − p sequences.

Search
Try random g(x) of degree r and compute {g}L until a hit is

found.

Expected run-time: O(pr−3) trials.

12

Good polynomials

Precomputation
Create a table T containing {fm}L for all m ∈ PGL2(Fp).

In total p3 − p sequences.

Search
Try random g(x) of degree r and compute {g}L until a hit is

found.

Expected run-time: O(pr−3) trials.

12

Good polynomials

Precomputation
Create a table T containing {fm}L for all m ∈ PGL2(Fp).

In total p3 − p sequences.

Search
Try random g(x) of degree r and compute {g}L until a hit is

found.

Expected run-time: O(pr−3) trials.

12

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Bad polynomials

Precomputation
Find the stabiliser of f which we know to by cyclic of order r ′ | r .

- Trivial: Enumerate PGL2(Fp) and isolate matrices that fix f .

Cost: O(p3).

- Non-trivial: Enumerate elements of order r ′ and isolate

matrices that fix f . Cost O(p2 log r).

Precompute a table with O(p) many sequences {fm}L such that fm

is fixed by a diagonal matrix.

Search
Try random g(x) of degree r that are fixed by a diagonal matrix.

The number of such polynomials is O(pr/r
′
).

Expected run-time: O(pr/r
′−1) trials.

13

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Ugly polynomials

Let f (x) = l(x)h(x) with rh ≥ r/2 the degree of h(x).

Precomputation
Table T1 containing {fm}L for all m ∈ PGL2(Fp).

Table T2 containing {l ′}L for all polynomials l ′ of degree r − rh.

Table T containing {fm}L{l ′}L for all m and l ′. Size: O(p3+r−rh).

Search
Try random h′(x) of degree rh until a hit is found.

{h′}L = {fm}L{l ′}L ⇒ f (x) = h′m−1(x)l
′
m−1(x)

Expected run-time: O(prh−3) trials.

14

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p

−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

polynomial type search precomputation memory

Good pr−3r log p p3r log p p3r log p

Bad pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

Ugly prh−3r log p pr−rh+3r log p pr−rh+3r log p

General case run-time: Õ(p3 + pr−3)

For r < 6 can be lowered to Õ(pr/2 + pr/2) by limiting the table.

Oracle queries needed : p−o(p/L).

What if oracle queries are limited?

15

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Limited query and the linear prf

How many different group actions can we obtain from M << p

queries?

Affine linear transformations

G =

d i
0 1

d ∈ F∗
p, i ∈ Fp

 PGL2(Fp).

d i
0 1

· f = fi ,d(x) = f (dx + i)/d r .

fi ,d(x)

p

= Of (dx + i)

d

p

r

.

16

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10

{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i

d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i

2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i

3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i

· · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Example

Query Of at [0,M).

{f }M M − 10
{fi ,d}L

i d + i 2d + i 3d + i · · ·

In total M2

L eligible (i , d) values.

17

Limited query and the linear prf

Precomputation
Query Of at [0,M). Make a table T with O(M

2

L) sequences.

Search
Try random polynomials until a hit is found in the table.

Expected run-time: O(p
rL

M2) trials.

18

Limited query and the linear prf

Precomputation
Query Of at [0,M). Make a table T with O(M

2

L) sequences.

Search
Try random polynomials until a hit is found in the table.

Expected run-time: O(p
rL

M2) trials.

18

Limited query and the linear prf

Precomputation
Query Of at [0,M). Make a table T with O(M

2

L) sequences.

Search
Try random polynomials until a hit is found in the table.

Expected run-time: O(p
rL

M2) trials.

18

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

- Sequences {f }L do not have to be defined as consecutive

symbols.

- Cubic yield in the limited query case?

Find L,Q ⊆ P1 and A ⊆ PGL2(Fp) such that

#L = L, #Q = M, #A ∼ M3

and

mL ⊆ Q for all m ∈ A.

19

The end

Thank you for Your attention!

20

References i

Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe

Vitto, Cryptanalysis of the Legendre PRF and generalizations,

Cryptology ePrint Archive, Report 2019/1357, 2019,

https://eprint.iacr.org/2019/1357.

Ivan Damg̊ard, On the randomness of Legendre and Jacobi

sequences, Proceedings of the 8th Annual International

Cryptology Conference on Advances in Cryptology (London,

UK), CRYPTO ’88, Springer-Verlag, 1990, pp. 163–172.

Dankard Feist, Legendre pseudo-random function, 2019,

https://legendreprf.org/bounties.

21

https://eprint.iacr.org/2019/1357
https://legendreprf.org/bounties

References ii

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter

Scholl, and Nigel P. Smart, MPC-friendly symmetric key

primitives, Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security (New York, NY,

USA), CCS ’16, ACM, 2016, pp. 430–443.

Dmitry Khovratovich, Key recovery attacks on the Legendre

PRFs within the birthday bound, Cryptology ePrint Archive,

Report 2019/862, 2019,

https://eprint.iacr.org/2019/862.

Alexander Russell and Igor E. Shparlinski, Classical and

quantum function reconstruction via character evaluation,

Journal of Complexity 20 (2004), no. 2-3, 404–422 (English).

22

https://eprint.iacr.org/2019/862

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

- Primes p of 64, 74, 84, 100 and 148

- Given M = 220 symbols of sequence {f }M .

- Goal to find f = x + k .

- For each challenge we used L = 64.

- Tables contained 234 sequences.

- About 2.2e6 trials per core-second.

23

Results

Table 1: Results and estimates for solving the Legendre PRF challenges.

In all cases M = 220 consecutive queries are given.

Challenge Prime Expected Observed Expected Observed

bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec

1 74 240 239.53 82 59

2 84 250 246.97 1.4e5 1.72e4

3 100 266 - 9.1e9 -

4 148 2114 - 2.5e24 -

24

Comparison

Khovratovich [Kho19]: Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d . Table size M2

L2
.

Us: Full group G . Table size M2

L .

Algorithm expected # trials precomputation memory

Khovratovich p log p
M M log p

Beullens et al. p log2 p
M2 M2 M2

log p

Our algorithm p log p
M2

M2

log p M2

25

Comparison

Khovratovich [Kho19]: Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d . Table size M2

L2
.

Us: Full group G . Table size M2

L .

Algorithm expected # trials precomputation memory

Khovratovich p log p
M M log p

Beullens et al. p log2 p
M2 M2 M2

log p

Our algorithm p log p
M2

M2

log p M2

25

General case

Khovratovich [Kho19]:Group G with d = 1. Table size:O(1).

Beullens et al. [BBUV19]: Group G with i < d . Table size p2

L2
.

Us: Full group PGL2(Fp). Table size p3 − p.

26

General case

good polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. pr−2r2 log2 p p2 p2

Our algorithm pr−3r log p p3 p3r log p

bad polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. pr−2r2 log2 p p2 pr−rhr log p

Our algorithm pr/r
′−1r ′′r log p p2r log p (p/r ′′)r log p

ugly polynomials search precomputation memory

Khovratovich pr−1r log p r log p r log p

Beullens et al. prhr log p pr−rhr log p pr−rhr log p

Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p

27

