Cryptanalysis of the generalised Legendre pseudorandom function

Novak Kaluderovic, Thorsten Kleinjung, Dusan Kostic July 3, 2020

EPFL

Background

Legendre PRF

Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

$$
\mathcal{O}_{k}(x)=\left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_{p}
$$

Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

$$
\mathcal{O}_{k}(x)=\left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_{p}
$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

Legendre PRF

Damgård, 1988 [Dam90]: The Legendre PRF

$$
\mathcal{O}_{k}(x)=\left(\frac{x+k}{p}\right), \quad k \in \mathbb{F}_{p}
$$

Russell, Shparlinski, 2004 [RS04]: The Generalised Legendre PRF

$$
\mathcal{O}_{f}(x)=\left(\frac{f(x)}{p}\right), \quad f \in \mathbb{F}_{p}[x]_{r}
$$

Use-cases

Use-cases

Orders of magnitude slower than cryptographic PRFs.

Use-cases

Orders of magnitude slower than cryptographic PRFs.
Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.

Use-cases

Orders of magnitude slower than cryptographic PRFs.
Grassi et al., 2016 [GRR+16]: Suitable for multiparty computation.
Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.

Use-cases

Orders of magnitude slower than cryptographic PRFs.
Grassi et al., 2016 [GRR ${ }^{+}$16]: Suitable for multiparty computation.
Ethereum, 2019 [Fei19]: Plans to incorporate it in the blockchain.
Ethereum, 2019 [Fei19]: Online challenges to break the function.

Results

Problem
Given access to \mathcal{O}_{f}, find f.

Results

Problem
Given access to \mathcal{O}_{f}, find f.
Solution
Table-based collision search.

Results

Problem

Given access to \mathcal{O}_{f}, find f.
Solution
Table-based collision search.
General case
Table: $O\left(p^{3}\right)$, Search: $O\left(p^{r-3}\right)$

Results

Problem

Given access to \mathcal{O}_{f}, find f.

Solution

Table-based collision search.
General case
Table: $O\left(p^{3}\right)$, Search: $O\left(p^{r-3}\right)$
Limited query case
Table: $O\left(M^{2} / \log p\right), \quad$ Search: $O\left(p^{r} \log p / M^{2}\right)$

Limited query case

Khovratovich [Kho19]: Table size: $O(1) \sim O\left(\frac{M}{\log p}\right)$.

Limited query case

Khovratovich [Kho19]: Table size: $O(1) \sim O\left(\frac{M}{\log p}\right)$.
Beullens et al. [BBUV19]: Table size $O\left(\frac{M^{2}}{\log ^{2} p}\right)$.

Limited query case

Khovratovich [Kho19]: Table size: $O(1) \sim O\left(\frac{M}{\log p}\right)$.
Beullens et al. [BBUV19]: Table size $O\left(\frac{M^{2}}{\log ^{2} p}\right)$.
Us: Table size $O\left(\frac{M^{2}}{\log p}\right)$.

General case

Khovratovich [Kho19]: Linear yield $\sim p$.

General case

Khovratovich [Kho19]: Linear yield $\sim p$.
Beullens et al. [BBUV19]: Quadratic yield $\sim p^{2}$.

General case

Khovratovich [Kho19]: Linear yield $\sim p$.
Beullens et al. [BBUV19]: Quadratic yield $\sim p^{2}$.
Us: Cubic yield $\sim p^{3}$.

Legendre Sequences

Legendre sequence
Let $a \in \mathbb{F}_{p}$ and $L \in \mathbb{N}$,

$$
\{a\}_{L}:=\left(\frac{a}{p}\right),\left(\frac{a+1}{p}\right),\left(\frac{a+2}{p}\right), \ldots,\left(\frac{a+L-1}{p}\right) .
$$

Legendre Sequences

Legendre sequence
Let $a \in \mathbb{F}_{p}$ and $L \in \mathbb{N}$,

$$
\{a\}_{L}:=\left(\frac{a}{p}\right),\left(\frac{a+1}{p}\right),\left(\frac{a+2}{p}\right), \ldots,\left(\frac{a+L-1}{p}\right) .
$$

Assumption

 For $L=2\lfloor\log p\rfloor$ we have$$
\{a\}_{L}=\{b\}_{L} \text { if and only if } a=b
$$

Legendre Sequences

Legendre sequence
Let $a \in \mathbb{F}_{p}$ and $L \in \mathbb{N}$,

$$
\{a\}_{L}:=\left(\frac{a}{p}\right),\left(\frac{a+1}{p}\right),\left(\frac{a+2}{p}\right), \ldots,\left(\frac{a+L-1}{p}\right) .
$$

Assumption

 For $L=\lfloor\log p \log \log p\rfloor$ we have$$
\{a\}_{L}=\{b\}_{L} \text { if and only if } a=b
$$

Legendre Sequences

Generalised Legendre sequence
Let $f \in \mathbb{F}_{p}[x]_{r}$ and $L \in \mathbb{N}$,

$$
\{f\}_{L}:=\left(\frac{f(0)}{p}\right),\left(\frac{f(1)}{p}\right),\left(\frac{f(2)}{p}\right), \ldots,\left(\frac{f(L-1)}{p}\right) .
$$

Generalised assumption:
For $L=r\lfloor\log p \log \log p\rfloor$ we have

$$
\{f\}_{L}=\{g\}_{L} \text { if and only if } f=g .
$$

Algorithm

Table-based collision search

Table:
Make a table with many Legendre sequences $\left\{f_{m}\right\} L$ such that

Table-based collision search

Table:
Make a table with many Legendre sequences $\left\{f_{m}\right\}_{L}$ such that

- The sequence $\left\{f_{m}\right\}_{L}$ can be computed from \mathcal{O}_{f}.

Table-based collision search

Table:
Make a table with many Legendre sequences $\left\{f_{m}\right\} L$ such that

- The sequence $\left\{f_{m}\right\}_{L}$ can be computed from \mathcal{O}_{f}.
- From f_{m} we can obtain f.

Table-based collision search

Table:
Make a table with many Legendre sequences $\left\{f_{m}\right\}_{L}$ such that

- The sequence $\left\{f_{m}\right\}_{L}$ can be computed from \mathcal{O}_{f}.
- From f_{m} we can obtain f.

Search:
Generate random $g(x)$ and look for $\{g\}_{L}$ in the table.

Table-based collision search

Table:
Make a table with many Legendre sequences $\left\{f_{m}\right\} L$ such that

- The sequence $\left\{f_{m}\right\}_{L}$ can be computed from \mathcal{O}_{f}.
- From f_{m} we can obtain f.

Search:
Generate random $g(x)$ and look for $\{g\}_{L}$ in the table.
If $\{g\}_{L}=\left\{f_{m}\right\}_{L}$ then $g=f_{m}$, and we can obtain f.

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
& \varphi_{m}: \mathbb{P}^{1} \\
& {[x: y] } \longmapsto \mathbb{P}^{1} \\
& {[x a x+b y: c x+d y] }
\end{aligned}
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
& \varphi_{m}: \mathbb{P}^{1} \\
& {[x: y] } \longmapsto \mathbb{P}^{1} \\
& {[x a x+b y: c x+d y] }
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x)
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x):=f\left(\frac{a x+b}{c x+d}\right)
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x):=f\left(\frac{a x+b}{c x+d}\right)
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x):=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r}
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x):=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r}
$$

Möbius transformations

Rational transformations of \mathbb{P}^{1} :

$$
\begin{aligned}
\varphi_{m}: \mathbb{P}^{1} & \longrightarrow \mathbb{P}^{1} \\
{[x: y] } & \longmapsto[a x+b y: c x+d y]
\end{aligned}
$$

Isomorphic to $P G L_{2}\left(\mathbb{F}_{p}\right)$ given by $\varphi_{m} \leftrightarrow m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Action on monic polynomials:

$$
m \cdot f(x)=f_{m}(x):=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r} /\left(f\left(\frac{a}{c}\right) c^{r}\right)
$$

Möbius transformations

Alternative point of view:

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$ then

$$
f_{m}(x)=\prod_{i=1}^{r}\left(x-m^{-1} \alpha_{i}\right)=\prod_{i=1}^{r}\left(x-\frac{d \alpha_{i}-b}{-c \alpha_{i}+a}\right)
$$

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$ then

$$
\begin{aligned}
& f_{m}(x)=\prod_{i=1}^{r}\left(x-m^{-1} \alpha_{i}\right)=\prod_{i=1}^{r}\left(x-\frac{d \alpha_{i}-b}{-c \alpha_{i}+a}\right) \\
& f_{m}(x)=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r} /\left(f\left(\frac{a}{c}\right) c^{r}\right)
\end{aligned}
$$

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$ then

$$
\begin{aligned}
& f_{m}(x)=\prod_{i=1}^{r}\left(x-m^{-1} \alpha_{i}\right)=\prod_{i=1}^{r}\left(x-\frac{d \alpha_{i}-b}{-c \alpha_{i}+a}\right) \\
& f_{m}(x)=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r} /\left(f\left(\frac{a}{c}\right) c^{r}\right)
\end{aligned}
$$

Computing $\left\{f_{m}\right\}_{L}$ from \mathcal{O}_{f} :

$$
\left(\frac{f_{m}(x)}{p}\right)=\mathcal{O}_{f}\left(\frac{a x+b}{c x+d}\right)\left(\frac{c x+d}{p}\right)^{r} \mathcal{O}_{f}\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^{r} .
$$

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$ then

$$
\begin{aligned}
& f_{m}(x)=\prod_{i=1}^{r}\left(x-m^{-1} \alpha_{i}\right)=\prod_{i=1}^{r}\left(x-\frac{d \alpha_{i}-b}{-c \alpha_{i}+a}\right) \\
& f_{m}(x)=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r} /\left(f\left(\frac{a}{c}\right) c^{r}\right)
\end{aligned}
$$

Computing $\left\{f_{m}\right\}_{L}$ from \mathcal{O}_{f} :

$$
\left(\frac{f_{m}(x)}{p}\right)=\mathcal{O}_{f}\left(\frac{a x+b}{c x+d}\right)\left(\frac{c x+d}{p}\right)^{r} \mathcal{O}_{f}\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^{r}
$$

Cost per sequence: $L+1$ oracle queries and $L+1$ Legendre symbol computations $\rightarrow 1$ Legendre sequence.

Möbius transformations

Alternative point of view: If $f(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$ then

$$
\begin{aligned}
& f_{m}(x)=\prod_{i=1}^{r}\left(x-m^{-1} \alpha_{i}\right)=\prod_{i=1}^{r}\left(x-\frac{d \alpha_{i}-b}{-c \alpha_{i}+a}\right) \\
& f_{m}(x)=f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{r} /\left(f\left(\frac{a}{c}\right) c^{r}\right)
\end{aligned}
$$

Computing $\left\{f_{m}\right\}_{L}$ from \mathcal{O}_{f} :

$$
\left(\frac{f_{m}(x)}{p}\right)=\mathcal{O}_{f}\left(\frac{a x+b}{c x+d}\right)\left(\frac{c x+d}{p}\right)^{r} \mathcal{O}_{f}\left(\frac{a}{c}\right)\left(\frac{c}{p}\right)^{r}
$$

Cost per sequence: $L+1$ oracle queries and $L+1$ Legendre symbol computations $\rightarrow 1$ Legendre sequence.

Amortised over all $m \in P G L_{2}\left(\mathbb{F}_{p}\right): p$ oracle queries and p Legendre symbols $\rightarrow\left(p^{3}-p\right)$ Legendre sequences.

Polynomial types

Lemma

Let $f \in \mathbb{F}_{p}[x]_{r}$ be irreducible with $3 \leq r<p$ and consider the action of $P G L_{2}\left(\mathbb{F}_{p}\right)$ on f. The stabiliser of f is a cyclic group of order $r^{\prime} \mid \operatorname{gcd}\left(r, p^{2}-1\right)$.

Polynomial types

Lemma

Let $f \in \mathbb{F}_{p}[x]_{r}$ be irreducible with $3 \leq r<p$ and consider the action of $P G L_{2}\left(\mathbb{F}_{p}\right)$ on f. The stabiliser of f is a cyclic group of order $r^{\prime} \mid \operatorname{gcd}\left(r, p^{2}-1\right)$.

Three polynomial types

- Good: Irreducible and trivial stabiliser
- Bad: Irreducible and non-trivial stabiliser
- Ugly: Reducible

Good polynomials

Good polynomials

Precomputation

 Create a table T containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.In total $p^{3}-p$ sequences.

Good polynomials

Precomputation

Create a table T containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
In total $p^{3}-p$ sequences.
Search
Try random $g(x)$ of degree r and compute $\{g\}_{L}$ until a hit is found.

Good polynomials

Precomputation

Create a table T containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
In total $p^{3}-p$ sequences.

Search

Try random $g(x)$ of degree r and compute $\{g\}_{L}$ until a hit is found.

Expected run-time: $O\left(p^{r-3}\right)$ trials.

Bad polynomials

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

- Trivial: Enumerate $P G L_{2}\left(\mathbb{F}_{p}\right)$ and isolate matrices that fix f. Cost: $O\left(p^{3}\right)$.

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

- Trivial: Enumerate $P G L_{2}\left(\mathbb{F}_{p}\right)$ and isolate matrices that fix f. Cost: $O\left(p^{3}\right)$.
- Non-trivial: Enumerate elements of order r^{\prime} and isolate matrices that fix f. Cost $O\left(p^{2} \log r\right)$.

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

- Trivial: Enumerate $P G L_{2}\left(\mathbb{F}_{p}\right)$ and isolate matrices that fix f. Cost: $O\left(p^{3}\right)$.
- Non-trivial: Enumerate elements of order r^{\prime} and isolate matrices that fix f. Cost $O\left(p^{2} \log r\right)$.

Precompute a table with $O(p)$ many sequences $\left\{f_{m}\right\}_{L}$ such that f_{m} is fixed by a diagonal matrix.

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

- Trivial: Enumerate $P G L_{2}\left(\mathbb{F}_{p}\right)$ and isolate matrices that fix f. Cost: $O\left(p^{3}\right)$.
- Non-trivial: Enumerate elements of order r^{\prime} and isolate matrices that fix f. Cost $O\left(p^{2} \log r\right)$.

Precompute a table with $O(p)$ many sequences $\left\{f_{m}\right\}_{L}$ such that f_{m} is fixed by a diagonal matrix.

Search
Try random $g(x)$ of degree r that are fixed by a diagonal matrix.
The number of such polynomials is $O\left(p^{r / r^{\prime}}\right)$.

Bad polynomials

Precomputation

Find the stabiliser of f which we know to by cyclic of order $r^{\prime} \mid r$.

- Trivial: Enumerate $P G L_{2}\left(\mathbb{F}_{p}\right)$ and isolate matrices that fix f. Cost: $O\left(p^{3}\right)$.
- Non-trivial: Enumerate elements of order r^{\prime} and isolate matrices that fix f. Cost $O\left(p^{2} \log r\right)$.

Precompute a table with $O(p)$ many sequences $\left\{f_{m}\right\}_{L}$ such that f_{m} is fixed by a diagonal matrix.

Search

Try random $g(x)$ of degree r that are fixed by a diagonal matrix.
The number of such polynomials is $O\left(p^{r / r^{\prime}}\right)$.
Expected run-time: $O\left(p^{r / r^{\prime}-1}\right)$ trials.

Ugly polynomials

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.
Precomputation
Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Precomputation

Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
Table T_{2} containing $\left\{I^{\prime}\right\}_{L}$ for all polynomials I^{\prime} of degree $r-r_{h}$.

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Precomputation

Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
Table T_{2} containing $\left\{I^{\prime}\right\}_{L}$ for all polynomials I^{\prime} of degree $r-r_{h}$.
Table T containing $\left\{f_{m}\right\}_{L}\left\{l^{\prime}\right\}_{L}$ for all m and I^{\prime}. Size: $O\left(p^{3+r-r_{h}}\right)$.

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Precomputation

Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
Table T_{2} containing $\left\{I^{\prime}\right\}_{L}$ for all polynomials I^{\prime} of degree $r-r_{h}$.
Table T containing $\left\{f_{m}\right\}_{L}\left\{l^{\prime}\right\}_{L}$ for all m and I^{\prime}. Size: $O\left(p^{3+r-r_{h}}\right)$.
Search
Try random $h^{\prime}(x)$ of degree r_{h} until a hit is found.

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Precomputation

Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
Table T_{2} containing $\left\{I^{\prime}\right\}_{L}$ for all polynomials I^{\prime} of degree $r-r_{h}$.
Table T containing $\left\{f_{m}\right\}_{L}\left\{l^{\prime}\right\}_{L}$ for all m and I^{\prime}. Size: $O\left(p^{3+r-r_{h}}\right)$.
Search
Try random $h^{\prime}(x)$ of degree r_{h} until a hit is found.

$$
\left\{h^{\prime}\right\}_{L}=\left\{f_{m}\right\}_{L}\left\{I^{\prime}\right\}_{L} \Rightarrow f(x)=h_{m^{-1}}^{\prime}(x) I_{m^{-1}}^{\prime}(x)
$$

Ugly polynomials

Let $f(x)=I(x) h(x)$ with $r_{h} \geq r / 2$ the degree of $h(x)$.

Precomputation

Table T_{1} containing $\left\{f_{m}\right\}_{L}$ for all $m \in P G L_{2}\left(\mathbb{F}_{p}\right)$.
Table T_{2} containing $\left\{I^{\prime}\right\}_{L}$ for all polynomials I^{\prime} of degree $r-r_{h}$.
Table T containing $\left\{f_{m}\right\}_{L}\left\{l^{\prime}\right\}_{L}$ for all m and I^{\prime}. Size: $O\left(p^{3+r-r_{h}}\right)$.
Search
Try random $h^{\prime}(x)$ of degree r_{h} until a hit is found.

$$
\left\{h^{\prime}\right\}_{L}=\left\{f_{m}\right\}_{L}\left\{I^{\prime}\right\}_{L} \Rightarrow f(x)=h_{m^{-1}}^{\prime}(x) I_{m^{-1}}^{\prime}(x)
$$

Expected run-time: $O\left(p^{r_{h}-3}\right)$ trials.

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

General case run-time: $\tilde{O}\left(p^{3}+p^{r-3}\right)$

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

General case run-time: $\tilde{O}\left(p^{3}+p^{r-3}\right)$
For $r<6$ can be lowered to $\tilde{O}\left(p^{r / 2}+p^{r / 2}\right)$ by limiting the table.

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

General case run-time: $\tilde{O}\left(p^{3}+p^{r-3}\right)$
For $r<6$ can be lowered to $\tilde{O}\left(p^{r / 2}+p^{r / 2}\right)$ by limiting the table.
Oracle queries needed : p

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

General case run-time: $\tilde{O}\left(p^{3}+p^{r-3}\right)$
For $r<6$ can be lowered to $\tilde{O}\left(p^{r / 2}+p^{r / 2}\right)$ by limiting the table.
Oracle queries needed : $p-o(p / L)$.

Limited query and the linear prf

polynomial type	search	precomputation	memory
Good	$p^{r-3} r \log p$	$p^{3} r \log p$	$p^{3} r \log p$
Bad	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
Ugly	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

General case run-time: $\tilde{O}\left(p^{3}+p^{r-3}\right)$
For $r<6$ can be lowered to $\tilde{O}\left(p^{r / 2}+p^{r / 2}\right)$ by limiting the table.
Oracle queries needed : $p-o(p / L)$.
What if oracle queries are limited?

Limited query and the linear prf

Limited query and the linear prf

How many different group actions can we obtain from $M \ll p$ queries?

Limited query and the linear prf

How many different group actions can we obtain from $M \ll p$ queries?

Affine linear transformations

Limited query and the linear prf

How many different group actions can we obtain from $M \ll p$ queries?

Affine linear transformations

$$
G=\left\{\left.\left(\begin{array}{ll}
d & i \\
0 & 1
\end{array}\right) \right\rvert\, d \in \mathbb{F}_{p}^{*}, i \in \mathbb{F}_{p}\right\} \leqslant \mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right) .
$$

Limited query and the linear prf

How many different group actions can we obtain from $M \ll p$ queries?

Affine linear transformations

$$
\begin{gathered}
G=\left\{\left.\left(\begin{array}{ll}
d & i \\
0 & 1
\end{array}\right) \right\rvert\, d \in \mathbb{F}_{p}^{*}, i \in \mathbb{F}_{p}\right\} \leqslant \mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right) . \\
\left(\begin{array}{ll}
d & i \\
0 & 1
\end{array}\right) \cdot f=f_{i, d}(x)=f(d x+i) / d^{r} .
\end{gathered}
$$

Limited query and the linear prf

How many different group actions can we obtain from $M \ll p$ queries?

Affine linear transformations

$$
\begin{gathered}
G=\left\{\left.\left(\begin{array}{ll}
d & i \\
0 & 1
\end{array}\right) \right\rvert\, d \in \mathbb{F}_{p}^{*}, i \in \mathbb{F}_{p}\right\} \leqslant \mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right) . \\
\left(\begin{array}{ll}
d & i \\
0 & 1
\end{array}\right) \cdot f=f_{i, d}(x)=f(d x+i) / d^{r} . \\
\left(\frac{f_{i, d}(x)}{p}\right)=\mathcal{O}_{f}(d x+i)\left(\frac{d}{p}\right)^{r} .
\end{gathered}
$$

Example

Query \mathcal{O}_{f} at $[0, M)$.

Example

Query \mathcal{O}_{f} at $[0, M)$.
$\{f\}_{M} \square M-1$

Example

Query \mathcal{O}_{f} at $[0, M)$.
$\{f\}_{M}{ }_{\left\{f_{i, d}\right\}_{L}} M-1$

Example

Query \mathcal{O}_{f} at $[0, M)$.
$\left.\{f\}_{M} \stackrel{i}{\stackrel{i}{0}}{ }_{0}^{(}\right) M-1$
$\left\{f_{i, d}\right\}\llcorner$

Example

Query \mathcal{O}_{f} at $[0, M)$.

In total $\frac{M^{2}}{L}$ eligible (i, d) values.

Limited query and the linear prf

Precomputation

Query \mathcal{O}_{f} at $[0, M)$. Make a table T with $O\left(\frac{M^{2}}{L}\right)$ sequences.

Limited query and the linear prf

Precomputation

Query \mathcal{O}_{f} at $[0, M)$. Make a table T with $O\left(\frac{M^{2}}{L}\right)$ sequences.
Search
Try random polynomials until a hit is found in the table.

Limited query and the linear prf

Precomputation

Query \mathcal{O}_{f} at $[0, M)$. Make a table T with $O\left(\frac{M^{2}}{L}\right)$ sequences.
Search
Try random polynomials until a hit is found in the table.
Expected run-time: $O\left(\frac{p^{r} L}{M^{2}}\right)$ trials.

Conclusions

Conclusions

- Linear PRF keys are all weak. Can we exploit that?

Conclusions

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_{L}$ do not have to be defined as consecutive symbols.

Conclusions

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_{L}$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Conclusions

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_{L}$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^{1}$ and $\mathcal{A} \subseteq P G L_{2}\left(\mathbb{F}_{p}\right)$ such that

Conclusions

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_{L}$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^{1}$ and $\mathcal{A} \subseteq P G L_{2}\left(\mathbb{F}_{p}\right)$ such that

$$
\# \mathcal{L}=L, \quad \# \mathcal{Q}=M, \quad \# \mathcal{A} \sim M^{3}
$$

Conclusions

- Linear PRF keys are all weak. Can we exploit that?
- Sequences $\{f\}_{L}$ do not have to be defined as consecutive symbols.
- Cubic yield in the limited query case?

Find $\mathcal{L}, \mathcal{Q} \subseteq \mathbb{P}^{1}$ and $\mathcal{A} \subseteq P G L_{2}\left(\mathbb{F}_{p}\right)$ such that

$$
\# \mathcal{L}=L, \quad \# \mathcal{Q}=M, \quad \# \mathcal{A} \sim M^{3}
$$

and

$$
m \mathcal{L} \subseteq \mathcal{Q} \quad \text { for all } m \in \mathcal{A}
$$

The end

Thank you for Your attention!

References i

Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto, Cryptanalysis of the Legendre PRF and generalizations, Cryptology ePrint Archive, Report 2019/1357, 2019, https://eprint.iacr.org/2019/1357.

庫 Ivan Damgård, On the randomness of Legendre and Jacobi sequences, Proceedings of the 8th Annual International Cryptology Conference on Advances in Cryptology (London, UK), CRYPTO '88, Springer-Verlag, 1990, pp. 163-172.

Dankard Feist, Legendre pseudo-random function, 2019, https://legendreprf.org/bounties.

References ii

嗇 Lorenzo Grassi，Christian Rechberger，Dragos Rotaru，Peter Scholl，and Nigel P．Smart，MPC－friendly symmetric key primitives，Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security（New York，NY， USA），CCS＇16，ACM，2016，pp．430－443．
目 Dmitry Khovratovich，Key recovery attacks on the Legendre PRFs within the birthday bound，Cryptology ePrint Archive， Report 2019／862，2019，
https：／／eprint．iacr．org／2019／862．
居 Alexander Russell and Igor E．Shparlinski，Classical and quantum function reconstruction via character evaluation， Journal of Complexity 20 （2004），no．2－3，404－422（English）．

Challenges

Ethereum research challenges [Fei19]:

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148
- Given $M=2^{20}$ symbols of sequence $\{f\}_{M}$.

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148
- Given $M=2^{20}$ symbols of sequence $\{f\}_{M}$.
- Goal to find $f=x+k$.

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148
- Given $M=2^{20}$ symbols of sequence $\{f\}_{M}$.
- Goal to find $f=x+k$.
- For each challenge we used $L=64$.

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148
- Given $M=2^{20}$ symbols of sequence $\{f\}_{M}$.
- Goal to find $f=x+k$.
- For each challenge we used $L=64$.
- Tables contained 2^{34} sequences.

Challenges

Ethereum research challenges [Fei19]:

- 5 Linear Legendre PRF challenges
- Primes p of $64,74,84,100$ and 148
- Given $M=2^{20}$ symbols of sequence $\{f\}_{M}$.
- Goal to find $f=x+k$.
- For each challenge we used $L=64$.
- Tables contained 2^{34} sequences.
- About 2.2e6 trials per core-second.

Results

Table 1: Results and estimates for solving the Legendre PRF challenges. In all cases $M=2^{20}$ consecutive queries are given.

Challenge	Prime bit size	Expected \# trials	Observed \# trials	Expected core-hours	Observed core-hours
0	64	2^{30}	$2^{30.78}$	290 sec	490 sec
1	74	2^{40}	$2^{39.53}$	82	59
2	84	2^{50}	$2^{46.97}$	1.4 e 5	1.72 e 4
3	100	2^{66}	-	9.1 e 9	-
4	148	2^{114}	-	2.5 e 24	-

Comparison

Khovratovich [Kho19]: Group G with $d=1$. Table size: $O(1)$. Beullens et al. [BBUV19]: Group G with $i<d$. Table size $\frac{M^{2}}{L^{2}}$. Us: Full group G. Table size $\frac{M^{2}}{L}$.

Comparison

Khovratovich [Kho19]: Group G with $d=1$. Table size: $O(1)$. Beullens et al. [BBUV19]: Group G with $i<d$. Table size $\frac{M^{2}}{L^{2}}$. Us: Full group G. Table size $\frac{M^{2}}{L}$.

Algorithm	expected \# trials	precomputation	memory
Khovratovich	$\frac{p \log p}{M}$	M	$\log p$
Beullens et al.	$\frac{p \log ^{2} p}{M^{2}}$	M^{2}	$\frac{M^{2}}{\log p}$
Our algorithm	$\frac{p \log p}{M^{2}}$	$\frac{M^{2}}{\log p}$	M^{2}

General case

Khovratovich [Kho19]:Group G with $d=1$. Table size: $O(1)$.
Beullens et al. [BBUV19]: Group G with $i<d$. Table size $\frac{p^{2}}{L^{2}}$.
Us: Full group $P G L_{2}\left(\mathbb{F}_{p}\right)$. Table size $p^{3}-p$.

General case

good polynomials	search	precomputation	memory
Khovratovich	$p^{r-1} r \log p$	$r \log p$	$r \log p$
Beullens et al.	$p^{r-2} r^{2} \log ^{2} p$	p^{2}	p^{2}
Our algorithm	$p^{r-3} r \log p$	p^{3}	$p^{3} r \log p$
bad polynomials	search	precomputation	memory
Khovratovich	$p^{r-1} r \log p$	$r \log p$	$r \log p$
Beullens et al.	$p^{r-2} r^{2} \log ^{2} p$	p^{2}	$p^{r-r_{h} r \log p}$
Our algorithm	$p^{r / r^{\prime}-1} r^{\prime \prime} r \log p$	$p^{2} r \log p$	$\left(p / r^{\prime \prime}\right) r \log p$
ugly polynomials	search	precomputation	memory
Khovratovich	$p^{r-1} r \log p$	$r \log p$	$r \log p$
Beullens et al.	$p^{r_{h}} r \log p$	$p^{r-r_{h}} r \log p$	$p^{r-r_{h} r \log p}$
Our algorithm	$p^{r_{h}-3} r \log p$	$p^{r-r_{h}+3} r \log p$	$p^{r-r_{h}+3} r \log p$

