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Introduction: Genus-2 isogeny cryptography

Isogenies of supersingular elliptic curves give computationally intractable problems
even against quantum computers, and based on them, isogeny-based cryptosystems
(CGL, SIDH, SIKE, CSIDH, ...) are now widely studied as one candidate for
post-quantum cryptography.

Recently, genus-2 isogeny cryptography has been studied by several authors
[Tak17, FT19, CDS19, CS20].
Castryck, Decru, and Smith [CDS19] showed that superspecial genus-2 curves and
their isogeny graphs give a correct foundation for genus-2 isogeny cryptography.
Costello and Smith [CS20] employed the subgraph whose vertices consist of
decomposed principally polarized abelian surfaces in their recent cryptanalysis.

3 / 23



Introduction: Genus-2 isogeny cryptography

Isogenies of supersingular elliptic curves give computationally intractable problems
even against quantum computers, and based on them, isogeny-based cryptosystems
(CGL, SIDH, SIKE, CSIDH, ...) are now widely studied as one candidate for
post-quantum cryptography.
Recently, genus-2 isogeny cryptography has been studied by several authors
[Tak17, FT19, CDS19, CS20].

Castryck, Decru, and Smith [CDS19] showed that superspecial genus-2 curves and
their isogeny graphs give a correct foundation for genus-2 isogeny cryptography.
Costello and Smith [CS20] employed the subgraph whose vertices consist of
decomposed principally polarized abelian surfaces in their recent cryptanalysis.

3 / 23



Introduction: Genus-2 isogeny cryptography

Isogenies of supersingular elliptic curves give computationally intractable problems
even against quantum computers, and based on them, isogeny-based cryptosystems
(CGL, SIDH, SIKE, CSIDH, ...) are now widely studied as one candidate for
post-quantum cryptography.
Recently, genus-2 isogeny cryptography has been studied by several authors
[Tak17, FT19, CDS19, CS20].
Castryck, Decru, and Smith [CDS19] showed that superspecial genus-2 curves and
their isogeny graphs give a correct foundation for genus-2 isogeny cryptography.

Costello and Smith [CS20] employed the subgraph whose vertices consist of
decomposed principally polarized abelian surfaces in their recent cryptanalysis.

3 / 23



Introduction: Genus-2 isogeny cryptography

Isogenies of supersingular elliptic curves give computationally intractable problems
even against quantum computers, and based on them, isogeny-based cryptosystems
(CGL, SIDH, SIKE, CSIDH, ...) are now widely studied as one candidate for
post-quantum cryptography.
Recently, genus-2 isogeny cryptography has been studied by several authors
[Tak17, FT19, CDS19, CS20].
Castryck, Decru, and Smith [CDS19] showed that superspecial genus-2 curves and
their isogeny graphs give a correct foundation for genus-2 isogeny cryptography.
Costello and Smith [CS20] employed the subgraph whose vertices consist of
decomposed principally polarized abelian surfaces in their recent cryptanalysis.

3 / 23



Introduction: Superspecial Richelot isogeny graphs in cryptography

Castryck et al. [CDS19] also presented concrete algebraic formulas for computing
(2, 2)-isogenies by using the Richelot construction (cf. [Tak17] etc.).

Richelot isogenies may have decomposed principally polarized abelian surfaces as
codomain, and we call them decomposed Richelot isogenies.

Theorem 3 in [CDS19] states that the number of
decomposed Richelot isogenies outgoing from a
superspecial genus-2 curve C is at most 6,
but they do not precisely determine this number.
Moreover, their proof is computer-aided.
Therefore, we revisit the isogeny counting problem based
on an intrinsic algebraic geometric characterization.
Our starting point is an explicit counting of superspecial
genus-2 curves by Ibukiyama, Katsura, and Oort [IKO86].

COUNTING RICHELOT ISOGENIES BETWEEN
SUPERSPECIAL ABELIAN SURFACES

TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

ABSTRACT.

0.1. Examples in characteristic 13.
Therefore, outgoing from super-
special curves of genus 2, we
have, in total, 1 + 2 + 1 =
4 decomposed Richelot isogenies
up to isomorphism by Proposition
??. On the other hand, outgo-
ing from the unique decomposed
principally polarized abelian sur-
face (E × E,E + E), we have
5 non-decomposed Richelot iso-
genies (not up to isomorphism)
(cf. Igusa [?] and Castryck–Decru–
Smith [?, Figure 1]). Using the
method in Castryck–Decru–Smith
[?, Subsection 3.3], as the images of
5 non-decomposed Richelot isoge-
nies, we have the following super-
special curves of genus 2:

Superspecial Richelot isogeny graph 
for p = 13
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Our results

1 We give a new characterization of decomposed Richelot isogenies outgoing from a
nonsingular genus-2 curve C in terms of “long” elements (of order 2) in the reduced
group of automorphisms RA(C).

2 Based on the characterization, we give a precise count of (decomposed) Richelot
isogenies up to isomorphism for each reduced group RA(C).

It not only implies another algebraic geometric proof of Theorem 3 in [CDS19], but also
shows the number of decomposed Richelot isogenies up to isomorphism is at most 2.

3 We also count the total number of Richelot isogenies up to isomorphism between
principally polarized superspecial abelian surfaces.

While [IKO86] counts the total number of vertices of the superspecial Richelot isogeny
graphs, the above result is related to the edge counting in the graphs of cryptographic
interest (see [JZ20] for their connectivity).
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Superspecial abelian surfaces

Let k be an algebraically closed field of characteristic p > 5.
An abelian surface A defined over k is said to be superspecial if A is isomorphic to
E1 × E2 with Ei supersingular elliptic curves (i = 1, 2).

Since we have an isomorphism E1 × E2
∼= E3 × E4 for any supersingular elliptic

curves Ei (i = 1, 2, 3, 4) (cf. [Shi79]), this notion does not depend on the choice of
supersingular elliptic curves.
For a nonsingular projective curve C of genus 2 over k, we denote by J(C) the
(canonically polarized) Jacobian variety of C.
The curve C is said to be superspecial if the Jacobian variety J(C) is superspecial
as an abelian surface (without polarization).
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Reduced groups of automorphisms

Let ι ∈ Aut(C) be the hyperelliptic involution. We put RA(C) = Aut(C)/〈ι〉 and we
call it the reduced group of automorphisms of C and an element of RA(C) a reduced
automorphism of C, respectively.
For σ ∈ RA(C), σ̃ is an element of Aut(C) such that σ̃ mod 〈ι〉 = σ.

Definition (Long and short elements, cf. Katsura–Oort [KO87])
An element σ ∈ RA(C) of order 2 is said to be long if σ̃ is of order 2.
Otherwise, it is said to be short.

This definition does not depend on the choice of σ̃.

The structure of RA(C) is classified as follows:

(0) 0, (1)Z/2Z, (2)S3, (3)Z/2Z× Z/2Z, (4)D12, (5)S4, (6)Z/5Z.
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Counting superspecial curves of genus 2 [IKO86]

We denote by ni the number of superspecial curves C of genus 2 whose RA(C) is
isomorphic to the group (i), and n the total number of such curves.
(0) n0 = (p− 1)(p2 − 35p+ 346)/2880− {1− (−1p )}/32− {1− (−2p )}/8 −{1− (−3p )}/9

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
−1/5 if p ≡ 4 (mod 5),

(1) n1 = (p− 1)(p− 17)/48 + {1− (−1p )}/8 + {1− (−2p )}/2 + {1− (−3p )}/2,
(2) n2 = (p− 1)/6− {1− (−2p )}/2− {1− (−3p )}/3,
(3) n3 = (p− 1)/8− {1− (−1p )}/8− {1− (−2p )}/4− {1− (−3p )}/2,

(4) n4 = {1− (−3p )}/2, (5) n5 = {1− (−2p )}/2, (6) n6 =

{
0 if p ≡ 1, 2 or 3 (mod 5),
1 if p ≡ 4 (mod 5).

n = n0 + n1 + n2 + n3 + n4 + n5 + n6
= (p− 1)(p2 + 25p+ 166)/2880− {1− (−1p )}/32 + {1− (−2p )}/8

+{1− (−3p )}/18 +
{

0 if p ≡ 1, 2 or 3 (mod 5),
4/5 if p ≡ 4 (mod 5).
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Richelot isogenies

Let A be an abelian surface with a principal polarization C.
There are two cases for such (A,C) (shown by A. Weil).

1 There exists a nonsingular curve C of genus 2 in A s.t. A ∼= J(C) and C is the divisor
with self-intersection C2 = 2. In this case, (J(C), C) is said to be non-decomposed.

2 There exist two elliptic curves E1, E2 in A with (E1 · E2) = 1 s.t.A ∼= E1 × E2 and
C = E1 × {0}+ {0} × E2 is a divisor with self-intersection 2. In this case, (A,C) is said
to be decomposed. We denote by E1 + E2 the divisor E1 × {0}+ {0} × E2.

Let G ∼= Z/2Z× Z/2Z be a maximal isotropic subgroup of A[2] with respect to the
Weil pairing. We have a quotient homomorphism π : A −→ A/G.
By the standard descent theorem, there exists a divisor C ′ on A/G s.t. 2C ∼ π∗C ′.
We see that C ′ is a principal polarization on A/G and that C ′ is either a nonsingular
curve of genus 2 or E′1 + E′2 with elliptic curves E′1, E

′
2 and (E′1 · E′2) = 1.

• D ∼ D′ means linear equivalence for divisors D and D′.
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Richelot isogenies

Definition (Richelot isogenies)
The correspondence from (A,C) to (A/G,C ′) is called a Richelot isogeny. It is called
decomposed if C ′ consists of two elliptic curves. Otherwise, it is called non-decomposed.

If there exists a Richelot isogeny from (A,C) to (A/G,C ′), then there exists a
Richelot isogeny from (A/G,C ′) to (A,C).
Since π is separable, when A is superspecial, A/G is also superspecial.

Definition (Isomorphism of Richelot isogenies)

Let (A,C), (A′, C ′) and (A′′, C ′′) be principally polarized abelian sur-
faces. The Richelot isogeny π : A −→ A′ is said to be isomorphic
to the Richelot isogeny $ : A −→ A′′ if there exist an automorphism
σ ∈ Aut(A) with σ∗C ≈ C and an isomorphism g : A′ −→ A′′ with
g∗C ′′ ≈ C ′ s.t. the right diagram commutes:

A
σ−→ A

π ↓ ↓ $
A′

g−→ A′′

• D ≈ D′ means numerical equivalence for divisors D and D′.
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Definition (Isomorphism of Richelot isogenies)

Let (A,C), (A′, C ′) and (A′′, C ′′) be principally polarized abelian sur-
faces. The Richelot isogeny π : A −→ A′ is said to be isomorphic
to the Richelot isogeny $ : A −→ A′′ if there exist an automorphism
σ ∈ Aut(A) with σ∗C ≈ C and an isomorphism g : A′ −→ A′′ with
g∗C ′′ ≈ C ′ s.t. the right diagram commutes:

A
σ−→ A

π ↓ ↓ $
A′

g−→ A′′

• D ≈ D′ means numerical equivalence for divisors D and D′.
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Characterization of decomposed Richelot isog. by long elements

Proposition (Characterization of decomposed Richelot isog. by long elements)

For a nonsingular projective curve C of genus 2, the following 3 conditions are equivalent.

1 C has a decomposed Richelot isogeny outgoing from J(C).
2 RA(C) has an element of order 2.
3 RA(C) has a long element of order 2.

Proposition

Let C be a nonsingular projective superspecial curve of genus 2. Among 15 Richelot
isogenies outgoing from J(C), the number of decomposed Richelot isogenies is equal to
the number of long elements of RA(C) of order 2.

We denote the set of long elements in RA(C) by L(C).
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Classification of long elements L(C) for each RA(C)

Long elements f ∈ L(C) (⊂ RA(C)) are given by the action f : x 7→ f(x) on x-coord.
This result #L(C) ≤ 6 coincides with Theorem 3 in [CDS19].

RA(C) genus-2 curve C #L(C) f(x)

0 — 0 —
Z/2Z y2 = (x2 − 1)(x2 − a2)(x2 − b2) 1 f(x) = −x
S3 y2 = (x3 − 1)(x3 − a3) 3 f(x) = a

x , ωax , ω
2a
x

Z/2Z× Z/2Z y2 = x(x2 − 1)(x2 − a2) 2 f(x) = a
x , −ax

D12 y2 = x6 − 1 4 f(x) = −x, ζx , ζ
3

x , ζ
5

x

S4 y2 = x(x4 − 1) 6
f(x) = x+1

x−1 , −x−1
x+1 , i(x+i)x−i ,

i
x ,− i

x ,− i(x−i)
x+i

Z/5Z y2 = x5 − 1 0 —

Here, we denote by ω, i, ζ a primitive cube, fourth, sixth root of unity, respectively.
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Counting Richelot isogenies up to isomorphism in characteristic 7

Two different Richelot isogenies may be isomorphic to each other by an automorphism.

Assume the characteristic p = 7.

only one supersingular E2 : y2 = x3 − x (RA(E2) ∼= Z/2Z),
only one superspecial C : y2 = x(x4 − 1) (RA(C) ∼= S4).

The number of Richelot isogenies up to isomorphism
outgoing from C: 4 Richelot isogenies, 1 decomposed one,
local type: (1× 1, 4× 2)(6× 1).
(1× 1, 4× 2)(6× 1) means that there exist
for non-decomposed Richelot isogenies,

1 orbit which contains 1 element
2 orbits which contain 4 elements and

for decomposed Richelot isogenies,
1 orbit which contains 6 elements.

2 TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

0.2. Examples in characteristic 11.
Assume the characteristic p = 11.
Over k we have two supersingular
elliptic curves E2,E3 and two su-
perspecial curves C1, C2 of genus
2 with RA(C1) ∼= S3, RA(C2) ∼=
D12, respectively (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]). In
characteristic 11, we know

h(z) = 10(z3 + 5z2 + 5z + 1),

and the roots are −1, 3 and 4. Using
this fact, we know that the curves
above are given by the following
equations:

p = 11

C1 C2

E2 × E2 E3 × E3 E2 × E3

3 3
3 6

3 2

4

3

3

13

6

4
9

4
3

1

1

1
1

2

3

6

0.3. Examples in characteristic 7. Assume the characteristic
p = 7. Over k we have only one supersingular elliptic curve E2

and only one superspecial curves C of genus 2, which has the
reduced group RA(C) ∼= S4 of automorphisms (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]).
They are given by the following equations:
(1) E2: y2 = x3 − x (Aut(E2) ∼= Z/2Z),
(2) C: y2 = x(x4 − 1) (RA(C1) ∼= S4).
We have only one decomposed principally polarized abelian sur-
faces E2×E2. Therefore, outgoing from the superspecial curves
of genus 2 we have only one decomposed Richelot isogenies
up to isomorphism. From the decomposed principally polarized
abelian surface, we have also only one non-decomposed Riche-
lot isogenies up to isomorphism (cf. Castryck–Decru–Smith [?,
Subsections 3.2 and 3.3]). For the decomposed principally po-
larized abelian surface E2 × E2 the image of the only one non-
decomposed Richelot isogeny is given by C.

p = 7

C

E2 × E2

6

4

4

1 4

1
24

4

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, MEGURO-KU, TOKYO

153-8914, JAPAN

E-mail address: tkatsura@ms.u-tokyo.ac.jp

INFORMATION TECHNOLOGY R&D CENTER, MITSUBISHI ELECTRIC, KAMAKURA-SHI, KANAGAWA 247-
8501, JAPAN

E-mail address: Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

13 / 23



Counting Richelot isogenies up to isomorphism in characteristic 7

Two different Richelot isogenies may be isomorphic to each other by an automorphism.

Assume the characteristic p = 7.

only one supersingular E2 : y2 = x3 − x (RA(E2) ∼= Z/2Z),
only one superspecial C : y2 = x(x4 − 1) (RA(C) ∼= S4).

The number of Richelot isogenies up to isomorphism
outgoing from C: 4 Richelot isogenies, 1 decomposed one,
local type: (1× 1, 4× 2)(6× 1).
(1× 1, 4× 2)(6× 1) means that there exist
for non-decomposed Richelot isogenies,

1 orbit which contains 1 element
2 orbits which contain 4 elements and

for decomposed Richelot isogenies,
1 orbit which contains 6 elements.

2 TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

0.2. Examples in characteristic 11.
Assume the characteristic p = 11.
Over k we have two supersingular
elliptic curves E2,E3 and two su-
perspecial curves C1, C2 of genus
2 with RA(C1) ∼= S3, RA(C2) ∼=
D12, respectively (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]). In
characteristic 11, we know

h(z) = 10(z3 + 5z2 + 5z + 1),

and the roots are −1, 3 and 4. Using
this fact, we know that the curves
above are given by the following
equations:

p = 11

C1 C2

E2 × E2 E3 × E3 E2 × E3

3 3
3 6

3 2

4

3

3

13

6

4
9

4
3

1

1

1
1

2

3

6

0.3. Examples in characteristic 7. Assume the characteristic
p = 7. Over k we have only one supersingular elliptic curve E2

and only one superspecial curves C of genus 2, which has the
reduced group RA(C) ∼= S4 of automorphisms (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]).
They are given by the following equations:
(1) E2: y2 = x3 − x (Aut(E2) ∼= Z/2Z),
(2) C: y2 = x(x4 − 1) (RA(C1) ∼= S4).
We have only one decomposed principally polarized abelian sur-
faces E2×E2. Therefore, outgoing from the superspecial curves
of genus 2 we have only one decomposed Richelot isogenies
up to isomorphism. From the decomposed principally polarized
abelian surface, we have also only one non-decomposed Riche-
lot isogenies up to isomorphism (cf. Castryck–Decru–Smith [?,
Subsections 3.2 and 3.3]). For the decomposed principally po-
larized abelian surface E2 × E2 the image of the only one non-
decomposed Richelot isogeny is given by C.

p = 7

C

E2 × E2

6

4

4

1 4

1
24

4

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, MEGURO-KU, TOKYO

153-8914, JAPAN

E-mail address: tkatsura@ms.u-tokyo.ac.jp

INFORMATION TECHNOLOGY R&D CENTER, MITSUBISHI ELECTRIC, KAMAKURA-SHI, KANAGAWA 247-
8501, JAPAN

E-mail address: Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

13 / 23



Counting Richelot isogenies up to isomorphism in characteristic 7

Two different Richelot isogenies may be isomorphic to each other by an automorphism.

Assume the characteristic p = 7.

only one supersingular E2 : y2 = x3 − x (RA(E2) ∼= Z/2Z),
only one superspecial C : y2 = x(x4 − 1) (RA(C) ∼= S4).

The number of Richelot isogenies up to isomorphism
outgoing from C: 4 Richelot isogenies, 1 decomposed one,
local type: (1× 1, 4× 2)(6× 1).
(1× 1, 4× 2)(6× 1) means that there exist
for non-decomposed Richelot isogenies,

1 orbit which contains 1 element
2 orbits which contain 4 elements and

for decomposed Richelot isogenies,
1 orbit which contains 6 elements.

2 TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

0.2. Examples in characteristic 11.
Assume the characteristic p = 11.
Over k we have two supersingular
elliptic curves E2,E3 and two su-
perspecial curves C1, C2 of genus
2 with RA(C1) ∼= S3, RA(C2) ∼=
D12, respectively (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]). In
characteristic 11, we know

h(z) = 10(z3 + 5z2 + 5z + 1),

and the roots are −1, 3 and 4. Using
this fact, we know that the curves
above are given by the following
equations:

p = 11

C1 C2

E2 × E2 E3 × E3 E2 × E3

3 3
3 6

3 2

4

3

3

13

6

4
9

4
3

1

1

1
1

2

3

6

0.3. Examples in characteristic 7. Assume the characteristic
p = 7. Over k we have only one supersingular elliptic curve E2

and only one superspecial curves C of genus 2, which has the
reduced group RA(C) ∼= S4 of automorphisms (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]).
They are given by the following equations:
(1) E2: y2 = x3 − x (Aut(E2) ∼= Z/2Z),
(2) C: y2 = x(x4 − 1) (RA(C1) ∼= S4).
We have only one decomposed principally polarized abelian sur-
faces E2×E2. Therefore, outgoing from the superspecial curves
of genus 2 we have only one decomposed Richelot isogenies
up to isomorphism. From the decomposed principally polarized
abelian surface, we have also only one non-decomposed Riche-
lot isogenies up to isomorphism (cf. Castryck–Decru–Smith [?,
Subsections 3.2 and 3.3]). For the decomposed principally po-
larized abelian surface E2 × E2 the image of the only one non-
decomposed Richelot isogeny is given by C.

p = 7

C

E2 × E2

6

4

4

1 4

1
24

4

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, MEGURO-KU, TOKYO

153-8914, JAPAN

E-mail address: tkatsura@ms.u-tokyo.ac.jp

INFORMATION TECHNOLOGY R&D CENTER, MITSUBISHI ELECTRIC, KAMAKURA-SHI, KANAGAWA 247-
8501, JAPAN

E-mail address: Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

13 / 23



Counting Richelot isogenies from irreducible genus-2 curves

Proposition

The number of Richelot isogenies up to isomorphism in each case and the number of
elements in each orbit are listed as follows.

(0) RA(C) ∼= {0} : 15 Richelot isogenies. No decomposed one. (1× 15)(0).
(1) Z/2Z : 11 Richelot isogenies. 1 decomposed one. (1× 6, 2× 4)(1× 1).
(2) S3 : 7 Richelot isogenies. 1 decomposed one. (1× 3, 3× 3)(3× 1).
(3) Z/2Z× Z/2Z : 8 Richelot isogenies. 2 decomposed ones. (1× 1, 2× 4, 4× 1)(1× 2).
(4) D12 : 5 Richelot isogenies. 2 decomposed ones. (2× 1, 3× 1, 6× 1)(1× 1, 3× 1).
(5) S4 : 4 Richelot isogenies. 1 decomposed one. (1× 1, 4× 2)(6× 1).
(6) Z/5Z : 3 Richelot isogenies. No decomposed one. (5× 3)(0).
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The total number of Richelot isog. from irreducible genus-2 curves

Let Nnd→d (resp.Nnd→nd) be the total number of decomposed (resp. non-decomposed)
Richelot isogenies up to isomorphism outgoing from the irreducible superspecial curves of
genus 2, and Nnd = Nnd→d +Nnd→nd the total number of such Richelot isog. up to isom.

Theorem (The total number of Richelot isogenies from J(C))

Nnd = 15n0 + 11n1 + 7n2 + 8n3 + 5n4 + 4n5 + 3n6

=
(p− 1)(p+ 2)(p+ 7)

192
− 3{1− (

−1
p

)}/32 + {1− (
−2
p

)}/8,
Nnd→d = n1 + n2 + 2n3 + 2n4 + n5

=
(p− 1)(p+ 3)

48
− {1− (

−1
p

)}/8 + {1− (
−3
p
)}/6.

We also give the number of Richelot isogenies up to isomorphism outgoing from a
decomposed pp superspecial abelian surface, the number of elements in each orbit, and
the total number of such Richelot isog. up to isom.
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Concluding remark

Our results clarified a concrete situation on decomposed Richelot isogenies, and it
gave a firm understanding of the isogeny graphs in genus-2 isogeny cryptography.
Further application of our results to cryptography is left as an open problem.

For example, a very recent cryptanalytic algorithm by Costello and Smith [CS20] is
an interesting target. They proposed a new isogeny path-finding algorithm in the
superspecial Richelot isogeny graphs.
We hope that our new characterization can be applied to analysing and/or improving
the Costello–Smith attack.

Thank you for your attention !
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Counting Richelot isogenies from products of elliptic curves

Let E2 : y
2 = x3 − x (p ≡ 3 (mod 4)), E3 : y

2 = x3 − 1 (p ≡ 2 (mod 3)) and E, E′ be two
non-isomorphic supersingular elliptic curves which are neither isomorphic to E2 nor to E3.

Proposition

The number of Richelot isog. up to isom. outgoing from a decomposed pp superspecial
abelian surface and the number of elements in each orbit are listed as follows.

(i) E × E′ : 15 Richelot isogenies, 6 non-decomposed ones. (1× 6)(1× 9).
(ii) E ×E : 11 Richelot isogenies, 4 non-decomposed ones. (1× 3, 2× 1)(1× 4, 2× 3).
(iii) E×E2 : 9 Richelot isog., 3 non-decomp. ones (p ≡ 3 (mod 4)). (2× 3)(1× 3, 2× 3).
(iv) E × E3 : 5 Richelot isog., 2 non-decomp. ones (p ≡ 2 (mod 3)). (3× 2)(3× 3).
(v) E2×E2 : 5 Richelot isog., 1 non-decomp. one (p ≡ 3 (4)). (4× 1)(1×1, 2×1, 4×2).
(vi) E3 ×E3 : 3 Richelot isog., 1 non-decomp. one (p ≡ 2 (mod 3)). (3× 1)(3× 1, 9× 1).
(vii) E2 × E3 : 3 Richelot isog., 1 non-decomp. one (p ≡ 11 (12)). (6× 1)(3× 1, 6× 1).
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The total number of Richelot isog. from products of elliptic curves

Theorem (The total number of Richelot isogenies from elliptic curve products)

The total number of non-decomposed Richelot isogenies Nd→nd (resp. decomposed
Richelot isogenies Nd→d) up to isomorphism outgoing from decomposed principally
polorized superspecial abelian surfaces is equal to

Nd→nd =
(p− 1)(p+ 3)

48
− {1− (

−1
p

)}/8 + {1− (
−3
p
)}/6,

Nd→d =
(p− 1)(3p+ 17)

96
+ (p+ 6){1− (

−1
p

)}/16 + {1− (
−3
p
)}/3.

Remark
The number of decomposed Richelot isogenies Nnd→d from irreducible curves
= the number of non-decomposed Richelot isogenies Nd→nd from elliptic curve products
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Example in characteristic 13

Assume the characteristic p = 13.
C1: y2 = (x3 − 1)(x3 + 4−

√
2) (RA(C1) ∼= S3),

type of R. isog. outgoing from C1 :
(1× 3, 3× 3)(3× 1).

C2: y2 = x(x2 − 1)(x2 + 5 + 2
√
6)

(RA(C2) ∼= Z/2Z× Z/2Z),
type of R. isog. outgoing from C2 :
(1× 1, 2× 4, 4× 1)(1× 2).
C3: y2 = x(x4 − 1) (RA(C3) ∼= S4),
(1× 1, 4× 2)(6× 1).
E: y2 = x(x− 1)(x− 3 + 2

√
2) (RA(E) ∼= {0}),

type of R. isog. outgoing from E × E :
(1× 3, 2× 1)(1× 4, 2× 3).

COUNTING RICHELOT ISOGENIES BETWEEN
SUPERSPECIAL ABELIAN SURFACES

TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

ABSTRACT.

0.1. Examples in characteristic 13.
Therefore, outgoing from super-
special curves of genus 2, we
have, in total, 1 + 2 + 1 =
4 decomposed Richelot isogenies
up to isomorphism by Proposition
??. On the other hand, outgo-
ing from the unique decomposed
principally polarized abelian sur-
face (E × E,E + E), we have
5 non-decomposed Richelot iso-
genies (not up to isomorphism)
(cf. Igusa [?] and Castryck–Decru–
Smith [?, Figure 1]). Using the
method in Castryck–Decru–Smith
[?, Subsection 3.3], as the images of
5 non-decomposed Richelot isoge-
nies, we have the following super-
special curves of genus 2:

p = 13

C3

C1

C2

E × E

4
1

3

2
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2
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Example in characteristic 11

C1: y2 = (x3 − 1)(x3 − 3) (RA(C1) ∼= S3),
type of R. isog. outgoing from C1 :
(1× 3, 3× 3)(3× 1).
C2: y2 = x6 − 1 (RA(C2) ∼= D12),
type of R. isog. outgoing from C2 :
(2× 1, 3× 1, 6× 1)(1× 1, 3× 1).

E2: y2 = x3 − x and E3: y2 = x3 − 1.
type of R. isog. outgoing from E2 × E2 :
(4× 1)(1× 1, 2× 1, 4× 2).
type of R. isog. outgoing from E3 × E3 :
(3× 1)(3× 1, 6× 1).
type of R. isog. outgoing from E2 × E3 :
(6× 1)(3× 1, 6× 1).

2 TOSHIYUKI KATSURA AND KATSUYUKI TAKASHIMA

0.2. Examples in characteristic 11.
Assume the characteristic p = 11.
Over k we have two supersingular
elliptic curves E2,E3 and two su-
perspecial curves C1, C2 of genus
2 with RA(C1) ∼= S3, RA(C2) ∼=
D12, respectively (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]). In
characteristic 11, we know

h(z) = 10(z3 + 5z2 + 5z + 1),

and the roots are −1, 3 and 4. Using
this fact, we know that the curves
above are given by the following
equations:

p = 11

C1 C2

E2 × E2 E3 × E3 E2 × E3

3 3
3 6

3 2

4

3

3

13

6

4
9

4
3

1

1

1
1

2

3

6

0.3. Examples in characteristic 7. Assume the characteristic
p = 7. Over k we have only one supersingular elliptic curve E2

and only one superspecial curves C of genus 2, which has the
reduced group RA(C) ∼= S4 of automorphisms (cf. Ibukiyama–
Katsura–Oort [?, Remark 3.4]).
They are given by the following equations:
(1) E2: y2 = x3 − x (Aut(E2) ∼= Z/2Z),
(2) C: y2 = x(x4 − 1) (RA(C1) ∼= S4).
We have only one decomposed principally polarized abelian sur-
faces E2×E2. Therefore, outgoing from the superspecial curves
of genus 2 we have only one decomposed Richelot isogenies
up to isomorphism. From the decomposed principally polarized
abelian surface, we have also only one non-decomposed Riche-
lot isogenies up to isomorphism (cf. Castryck–Decru–Smith [?,
Subsections 3.2 and 3.3]). For the decomposed principally po-
larized abelian surface E2 × E2 the image of the only one non-
decomposed Richelot isogeny is given by C.

p = 7

C

E2 × E2
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