Computing paramodular forms

Gustavo Rama and Gonzalo Tornaría

Universidad de la República, Uruguay

ANTS 2020

1 Quadratic spaces and p-neighbors

Orthogonal modular forms

3 Orthogonal modular forms with weight

Definition

Let K be a field with $car(K) \neq 2$, a K-quadratic space is a finite dimensional K-vector space with a function $\phi: V \to K$ such that

- $\blacktriangleright \phi(x\mathbf{v}) = x^2\phi(\mathbf{v}), \mathbf{v} \in V \ x \in K.$
- $ightharpoonup \phi(\mathbf{v}, \mathbf{v}') = \phi(\mathbf{v} + \mathbf{v}') \phi(\mathbf{v}) \phi(\mathbf{v}')$ is a symetric bilinear form.

If $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V, then

$$q(x_1,...,x_n) = \phi\left(\sum_j x_j \mathbf{v}_j\right)$$
$$= \sum_{i,j} x_i x_j \phi(\mathbf{v}_i, \mathbf{v}_j)$$

is a K-quadratic form. Different bases gives K-equivalent quadratic forms.

The discriminant of V is

$$\operatorname{disc}(V) := \frac{1}{2} \operatorname{det}(\phi(\mathbf{v}_i, \mathbf{v}_j)_{i,j}).$$

Definition

An autometry of the quadratic space (V,ϕ) is a linear map

$$\sigma: V \to V$$
,

such that

$$\phi(\sigma(\mathbf{v})) = \phi(\mathbf{v}), \ \mathbf{v} \in V.$$

The autometries of (V, ϕ) form a group with the composition as product. This group is called the orthogonal group and denoted by O(V).

If $\sigma \in O(V)$ then $\det \sigma = \pm 1$. If $\det \sigma = +1$, we say that the autometry is proper. The proper autometries form a subgroup of O(V) and we denote it by $O^+(V)$.

A lattice in (V, ϕ) is free maximal \mathbb{Z} -module Λ $(\Lambda \simeq \mathbb{Z}^{\dim(V)})$. The lattice is integral if $\phi(\Lambda) \subset \mathbb{Z}$.

The lattices Λ and Γ are properly equivalent, and we denote it by $\Lambda \sim \Gamma,$ if

$$\sigma\Lambda = \Gamma$$
, for some $\sigma \in O^+(V)$.

We denote the proper equivalence class of Λ by $[\Lambda]$. The genus of Λ is

$$Gen(\Lambda) := \{ \Gamma | \text{lattice} : \Lambda_p \sim \Gamma_p \text{ for all } p \}.$$

The class set $Cl(\Lambda)$ is the set of the proper equivalence classes in $Gen(\Lambda)$, and $\# Cl(\Lambda) < \infty$.

Definition

Let Λ , Γ be integral lattices in a positive definite quadratic space (V,ϕ) , a prime p and $k\geq 1$. We say that Λ and Γ are p^k -neighbors if $\Lambda_q=\Gamma_q$ for all prime $q\neq p$ and

$$\Lambda/(\Lambda \cap \Gamma) \cong \Gamma/(\Lambda \cap \Gamma) \cong (\mathbb{Z}/p\mathbb{Z})^k$$

Theorem

There is a bijection between the set of non-singular projective solutions of

$$\phi(\mathbf{v}) \equiv 0 \pmod{p}, \ \mathbf{v} \in \Lambda$$

and the p-neighbor lattices of Λ .

If $p \nmid \operatorname{disc}(\Lambda)$, then the number of p^k -neighbors of Λ is $O(p^{k(4-k)})$, for the quinary case.

1 Quadratic spaces and p-neighbors

2 Orthogonal modular forms

3 Orthogonal modular forms with weight

The space of orthogonal modular forms for Λ (with trivial weight) is

$$M(O(\Lambda)) := Fun(Cl(\Lambda), \mathbb{Q}).$$

In the basis of characteristic functions for $Cl(\Lambda)$ we have $M(O(\Lambda)) \cong \mathbb{Q}^h$ with $h = \# Cl(\Lambda)$. For $p \nmid \operatorname{disc}(\Lambda)$, we define the Hecke operator

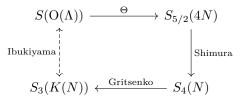
$$T_{p,k}: M(O(\Lambda)) \to M(O(\Lambda))$$
 $f \mapsto T_{p,k}(f)$
 $T_{p,k}(f)([\Lambda']) := \sum_{\Gamma'} f([\Gamma']),$

Where we sum over all the p^k -neighbors of Λ' .

The operators $T_{p,k}$ commute and are self-adjoint with respect to some inner product.

We denote $S(O(\Lambda))$ the orthogonal complement of the constant functions and we call it the cuspidal subspace.

Let Λ be a quinary lattice of discriminant N. We define the map $\Theta: S(\Lambda) \to S_{5/2}(4N)$, as $\Theta(\sum_i a_i[\Lambda_i]) = \sum_i a_i \Theta(\Lambda_i)$. If $f \in S(\Lambda)$ is a Hecke eigenform, with $\Theta(f) \neq 0$, then the Shimura lift of $\Theta(f)$ is a modular form of weight 4 whose Gristenko lift should correspond to f, as in the following diagram



Hein, Ladd and Tornaría conjectured that, if $\Theta(f) = 0$ and N is prime, then f corresponds to a paramodular form that it is not a Gritsenko lift.

Example

Let $V=\mathbb{Q}^5$, $\phi=x^2+xy-xt+y^2-yt+z^2+2w^2-wt+3t^2$ quadratic form of discriminant 61, and $\Lambda=\mathbb{Z}^5$. This is the first example of prime discriminant in O(5) for which the theta series map on the genus has a kernel. We have

$$\#\operatorname{Cl}(\Lambda) = 8$$
, dim $S_{\Delta}^{-}(\Gamma_{0}(61)) = 6$, and dim(ker(Θ)) = 1.

Let $f \in S(O(\Lambda))$ such that $\Theta(f) = 0$, which is an eigenfunction for the Hecke operators.

Some eigenvalues are, $T_{p,k}(f) = c_{p,k}f$

р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$
2	-7	5	3	11	-4	17	37	23	10
3	-3	7	_9	13	-3	19	-75	29	212

р	<i>c</i> _{<i>p</i>,2}	р	$c_{p,2}$	р	$c_{p,2}$	р	$c_{p,2}$	р	$c_{p,2}$
2	7	5	-9	11	36	17	176	23	76
3	-9	7	-42	13	-57	19	32	29	-66

By Ibukiyama dimension formulas we have

$$\dim S_3(K(61))=\dim S(O(\Lambda))=\dim S_4^-(61)+\dim\ker\Theta.$$

In this case the correspondence from $S(O(\Lambda))$ to $S_3(K(61))$ should be a bijection.

Example

Let $V=\mathbb{Q}^5$ and

$$\phi = x^2 + xy + y^2 + z^2 + xt + zt + t^2 + tw + 34w^2$$

quadratic form with discriminant 167. The genus of $\Lambda = \mathbb{Z}^5$ has 19 other classes, so dim $(S(O(\Lambda)) = 18$.

But dim $S_3(K(167)) = 19$, so the correspondence from $S(O(\Lambda))$ to $S_3(K(167))$ is not a bijection.

Quadratic spaces and p-neighbors

2 Orthogonal modular forms

3 Orthogonal modular forms with weight

Let $\rho: O^+(V) \to GL(W)$ be a representation, with W a finite dimensional \mathbb{Q} -vector space.

Let $\Lambda = \Lambda_1, \dots, \Lambda_h$ be representatives of $Cl(\Lambda)$.

We define the space of orthogonal modular forms for Λ with weight ρ as

$$M(O(\Lambda), \rho) := \{ f : Cl(\Lambda) \to W : f([\Lambda_i]) \in W^{O(\Lambda_i)} \} \cong \bigoplus_{i=1}^n W^{O(\Lambda_i)}.$$

Given $p \nmid \operatorname{disc}(\Lambda)$, for Γ a p^k -neighbor of Λ , we have $\Gamma = \gamma \Lambda_j$ for a unique j and $\gamma \in \operatorname{O}^+(V)$, unique modulo multiplication by $\operatorname{O}^+(\Lambda_j)$. We define the Hecke operator

$$T_{p,k}: M(O(\Lambda), \rho) \to M(O(\Lambda, \rho)$$

 $T_{p,k}(f)([\Lambda']) := \sum_{\Gamma'} \rho(\gamma')(f([\Gamma'])),$

where the sum is over all $\gamma \Lambda_i = \Gamma' p^k$ -neighbors of Λ' .

If $d \mid D$ we define the character $\nu_d : \mathbb{Q}^{\times}_{>0}/(\mathbb{Q}^{\times}_{>0})^2 \to \{\pm 1\}$ defined in primes as

$$u_d(p) := \left\{ \begin{array}{ll} -1 & \text{ si } p \mid d \\ 1 & \text{ si } p \nmid d \end{array} \right.,$$

and the one dimensional representation

$$\rho_d: \mathcal{O}^+(V) \to \{\pm 1\} \subset \mathbb{Q}^{\times} \cong \mathsf{GL}(\mathbb{Q})$$

$$\rho_d(\sigma) := \nu_d(\theta(\sigma)).$$

We return to the quinary example of discriminant 167, in this case, all the classes but one, have an autometry with spinor norm 167. Then $S(O(\Lambda), \rho_{167}) \simeq \mathbb{Q}$.

Let $f \in S(O(\Lambda), \rho_{167})$, $f \neq 0$. Some eigenvalues are, $T_{p,k}(f) = c_{p,k}f$,

р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$	р	$c_{p,1}$
2	-8	5	-4	11	-22	17	-47	23	41
3	-10	7	-14	13	-4	19	-12	29	50

р	<i>c</i> _{<i>p</i>,2}	р	$c_{p,2}$	р	$c_{p,2}$	р	$c_{p,2}$	р	$c_{p,2}$
2	10	5	-44	11	-67	17	260	23	-198
3	11	7	-9	13	-158	19	41	29	-187

For p prime, let Λ_p be a lattice in the unique genus of discriminant p.

Theorem

For p < 7000 we have

$$\dim(S_3(K(p)) = \dim S(O(\Lambda_p)) + \dim S(O(\Lambda_p), \rho_p).$$

Conjecture

For p prime,

$$S_3(K(p)) \simeq S(O(\Lambda_p)) \oplus S(O(\Lambda_p), \rho_p).$$

Also, $S(O(\Lambda_p))$ corresponds to the forms in $S_3(K(p))$ with + sign of the functional equation of its associated L-function, and $S(O(\Lambda_p), \rho_p)$ corresponds to the forms in $S_3(K(p))$ with - sign of the functional equation of its associated L-function.