Computing endomorphism rings of supersingular elliptic curves

Travis Morrison

Institute for Quantum Computing, University of Waterloo

ANTS 2020 joint work with Eisenträger, Hallgren, Leonardi, and Park

Supersingular elliptic curves

Let *E* be an elliptic curve over \mathbb{F}_q . Then End(E) either has rank 2 or 4 as a \mathbb{Z} -module.

Definition

If End(E) is rank 2, E is called ordinary. If End(E) is rank 4, E is supersingular.

- If E is ordinary, then End(E) ⊗ Q is isomorphic to an imaginary quadratic field.
- If E is supersingular, then End(E) ⊗ Q is a quaternion algebra ramified at p and ∞. Moreover, End(E) is a maximal order in End(E) ⊗ Q.

Computing the endomorphism ring of an elliptic curve

Suppose *E*/𝔽_q is ordinary and let π denote the Frobenius endomorphism.

$$\mathbb{Z}[\pi] \subseteq \mathsf{End}(E) \subseteq \mathcal{O}_{\mathbb{Q}(\pi)}$$

- Kohel 1996: $O(q^{1/3+\epsilon})$ algorithm
- Bisson-Sutherland 2009: subexponential algorithm
- When E/𝔽_q is supersingular, there are (in general) no obvious quadratic orders ℤ[α] which embed into End(E)
- Moreover, End(E) is rank 4 as a Z-module, so computing End(E) will be very different in the supersingular case

Connection to isogeny-based cryptography

An efficient algorithm for computing End(E) for supersingular E would break many isogeny-based cryptosystems

- The hash function of Charles-Goren-Lauter and de Feo, Jao, and Plût's SIDH
 - Kohel-Lauter-Petit-Tignol 2014, Galbraith-Petit-Shani-Ti 2016, Eisenträger-Hallgren-Lauter-Morrison-Petit 2018
- practical instantiations of Castryck-Lange-Martindale-Panny-Renes's CSIDH
 - Castryck-Panny-Vercauteren 2019

Computing the endomorphism ring of a supersingular elliptic curve

Theorem (Eisenträger-Hallgren-Leonardi-M-Park 2020)

Assuming several heuristics (including GRH), there is a $O(p^{1/2}(\log p)^2)$ time algorithm for computing the endomorphism ring of a supersingular elliptic curve.

Supersingular isogeny graphs

Definition

Let p, ℓ be distinct primes. Then $G(p, \ell)$ is the graph with

- Vertices: the isomorphism classes of supersingular elliptic curves
- Edges: one edge from E to E' for each ℓ-isogeny φ : E → E' of degree ℓ.

Properties of $G(p, \ell)$

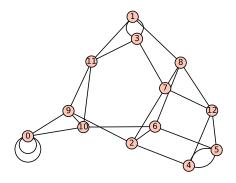


Figure: G(157,3)

- ► G(p, ℓ) has roughly p/12 vertices
 - this is the number of supersingular *j*-invariants in F_p
- $G(p, \ell)$ is $\ell + 1$ -regular
 - ► one outgoing edge for each of the ℓ + 1 cyclic subgroups of E[ℓ]
- ► G(p, ℓ) is connected, with diameter O(log p)
- ► In fact, G(p, ℓ) is a Ramanujan graph ('rapid mixing')

Quaternionic orders from cycles in $G(p, \ell)$

Compose the isogenies along a cycle starting at E to get an an endomorphism of E

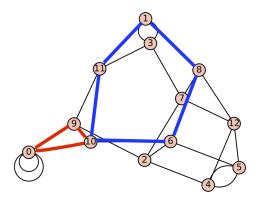


Figure: $\langle 1, \alpha, \beta, \alpha\beta \rangle$ is rank 4.

Computing endomorphisms using cycles in $G(p, \ell)$

Theorem (Kohel 1996)

There is a $\tilde{O}(p^{1+\epsilon})$ algorithm to compute a sub order $\Lambda = \langle 1, \alpha, \beta, \alpha\beta \rangle \subseteq End(E)$, where E/\mathbb{F}_{p^2} is supersingular.

- Idea: construct a spanning tree in G(p, ℓ). Then α, β arise from cycles in G(p, ℓ) which begin and end at E.
- ▶ Delfs-Galbraith, 2016: Õ(p^{1/2}) time algorithm for computing endomorphisms (but not a cycle in G(p, ℓ))

Computing the endomorphism ring of a supersingular elliptic curve

Theorem (Eisenträger-Hallgren-Leonardiy-M-Park 2020)

Assuming several heuristics (including GRH), there is a $O(p^{1/2}(\log p)^2)$ time algorithm for computing the endomorphism ring of a supersingular elliptic curve.

Steps:

- 1. Compute two cycles in G(p,2) to get a suborder $\Lambda \subseteq End(E)$
- 2. For each prime $q|\operatorname{discrd}(\Lambda)$, enumerate the q-maximal orders containing $\Lambda\otimes\mathbb{Z}_q$
- 3. Combine local superorders to get maximal orders containing Λ , check each if it is isomorphic to End(*E*).

Comparison to previous work

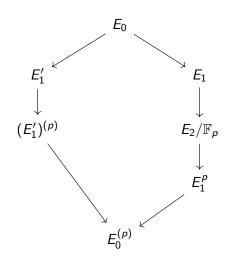
- Previous work (Galbraith-Petit-Shani-Ti): compute cycles in G(p,2) at E until the cycles generate End(E). Heuristically, O(log p) many cycles are required.
- Our work: compute a nice enough suborder A ⊆ End(E), and then enumerate maximal orders containing it until finding End(E). Heuristically, we require a constant number of calls to a cycle finding algorithm, rather than O(log p) calls.

Step 1: computing a suborder of End(E)

Theorem (EHLMP 2020)

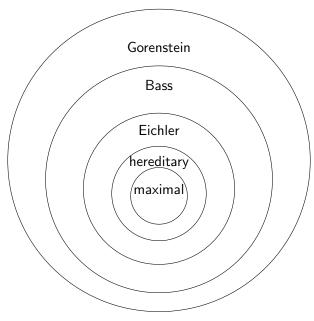
Assuming several heuristics (including GRH), there is a $O(p^{1/2}(\log p)^2)$ time (and polylog p storage) algorithm for computing two cycles in $G(p, \ell)$ which generate a suborder $\Lambda \subseteq End(E)$.

Using the geometry of $G(p, \ell)$ to compute cycles



- ► Given E : y² = x³ + ax + b, define E^(p) as E^(p) : y² = x³ + a^px + b^p.
- if E₁ is adjacent to E₂, then E₁^(p) is adjacent to E₂^(p) (Frobenius induces an automorphism of G(p, ℓ))
- Search for *E* defined over 𝔽_p (so *E*^(p) = *E*), or
- E such that E is adjacent to E^(p)
- ► This gives a O((log p)²√p) algorithm to compute a cycle in G(p, ℓ)

A zoo of quaternionic orders



Enumerating local maximal superorders

For any order $\Lambda \subseteq M_2(\mathbb{Q}_q)$, the set of maximal orders containing Λ forms a subtree of the Bruhat-Tits tree. When Λ is Bass, this subtree is a path.

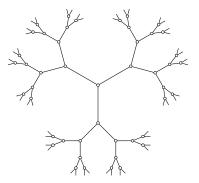
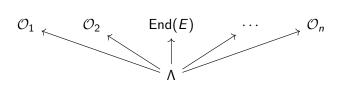


Figure: The 3-regular tree of maximal orders in $M_2(\mathbb{Q}_2)$

Enumerating global orders and finding End(E)

Using knowledge of the local data $\{\Lambda' \supset \Lambda \otimes \mathbb{Z}_q : \Lambda' \text{ is maximal}\}$ for each prime q| discrd(Λ), and a local-global principle for quaternion orders, we can enumerate the global maximal orders containing Λ



Given a maximal order $\mathcal{O}_i \supseteq \Lambda$, we can check if $\mathcal{O}_i \simeq \text{End}(E)$ (Galbraith-Petit-Silva 2017).

Experimental data: how often is Λ Bass?

Given an order Λ in $B_{p,\infty}$ such that discrd $(\Lambda) = p \prod_{i=1}^{m} q_i^{e_i}$, define $N(\Lambda) \coloneqq \prod_{i=1}^{m} (e_i + 1)$. Then $N(\Lambda)$ is an upper bound on the number of maximal orders containing Λ .

р	orders	Bass orders	average $N(\Lambda)$
30,011	90	75	122.37
50,021	89	69	56.07
70,001	92	76	122.21
90,001	80	67	322.04
100,003	81	75	337.59

Figure: Results from computing 100 pairs of cycles in G(p, 2) at random $j \in \mathbb{F}_{p^2} - \mathbb{F}_p$.

Number of maximal orders containing Λ

