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Supersingular elliptic curves

Let E be an elliptic curve over F,. Then End(E) either has rank 2
or 4 as a Z-module.

Definition

If End(E) is rank 4, E is supersingular.

» If E is supersingular, then End(E) ® Q is a quaternion algebra
ramified at p and oc.

» Moreover, End(E) is a maximal order in End(E) ® Q.



Computing the endomorphism ring of a supersingular
elliptic curve

Theorem (Eisentrager-Hallgren-Leonardiy-M-Park 2020)

Assuming several heuristics (including GRH), there is a
O(p"/?(log p)?) time algorithm for computing the endomorphism
ring of a supersingular elliptic curve.

Steps:
1. Compute two cycles in G(p,2) to get a suborder A C End(E)

2. For each prime q|discrd(A), enumerate the g-maximal orders
containing A ® Zg

3. Combine local superorders to get maximal orders containing
A, check each if it is isomorphic to End(E).



Comparison to previous work

» Previous work (Galbraith-Petit-Shani-Ti): compute cycles in
G(p,2) at E until the cycles generate End(E). Heuristically,
O(log p) many cycles are required.

» Our work: compute a nice enough suborder A C End(E), and
then enumerate maximal orders containing it until finding
End(E). Heuristically, we require a constant number of calls
to a cycle finding algorithm, rather than O(log p) calls.



Supersingular isogeny graphs

Let p, ¢ be distinct primes. Then G(p,{) is the graph with

> Vertices: the isomorphism classes of supersingular elliptic
curves

» Edges: one edge from E to E’ for each /(-isogeny ¢ : E — E’
of degree /.



Properties of G(p, /)

» G(p,?) has roughly p/12
vertices

» this is the number of
supersingular j-invariants
in I,
» G(p,?)is £+ l-regular
» one outgoing edge for
each of the £+ 1 cyclic
subgroups of E[/]
» G(p,?) is connected, with
diameter O(log p)

» In fact, G(p,?) is a
Figure: G(157,3) Ramanujan graph (‘rapid
mixing')




Quaternionic orders from cycles in G(p, /)

» Compose the isogenies along a cycle starting at E to get an
an endomorphism of E

Figure: (1, a, 8, af3) is rank 4.



Step 1: computing a suborder of End(E)

Theorem (EHLMP 2020)

Assuming several heuristics (including GRH), there is a
O(p*/?(log p)?) time (and polylog p storage) algorithm for
computing two cycles in G(p,{) which generate a suborder
A C End(E).



Using the geometry of G(p, ¢) to compute cycles
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» Given E:y2 =x3 4 ax + b,
define E(P) as
E(P) : y2 = x3 4+ aPx + bP.

> if E; is adjacent to Ep, then
El(p) is adjacent to Ez(p)
(Frobenius induces an
automorphism of G(p,{))

» Search for E defined over I,
(so EP) = E), or

» E such that E is adjacent to
E(P)

> This gives a O((log p)/P)
algorithm to compute a
cycle in G(p, ¢)



A zoo of quaternionic orders
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Enumerating local maximal superorders

For any order A € M>(Qg), the set of maximal orders containing A
forms a subtree of the Bruhat-Tits tree. When A is Bass, this
subtree is a path.

Figure: The 3-regular tree of maximal orders in M(Q3)



Enumerating global orders and finding End(E)

Using knowledge of the local data {A' D A® Zq : N is maximal}
for each prime q| discrd(A), and a local-global principle for
quaternion orders, we can enumerate the global maximal orders
containing A

(\”T/ "

Given a maximal order O; D A, we can check if O; ~ End(E)
(Galbraith-Petit-Silva 2017).



Experimental data: how often is A Bass?

Given an order A in B, such that discrd(A) = p [ g, define
N(A) = T1" (e +1). Then N(A) is an upper bound on the
number of maximal orders containing A.

p | orders | Bass orders | average N(A)
30,011 | 90 75 122.37
50,021 | 89 69 56.07
70,001 92 76 122.21
90,001 | 80 67 322.04

100,003 | 81 75 337.59

Figure: Results from computing 100 pairs of cycles in G(p,2) at random
j S sz — Fp.



Number of maximal orders containing A
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Improvements

» When A C End(E) is Bass, and A ® Zg is 'residually inert’,
there is only one maximal order containing A ® Zg. How often
does this happen?

» Suppose we compute an order O O A and a prime g such that
O ® Zg is maximal and O @ Zy = N ® Zy for all ¢’ # q.
» There is a basis of O consisting of Z[g~!]-linear combinations
of the basis elements of A.
» Given a basis element & with v € A, we can check if
o € End(E) by checking whether a(E[¢°]) = 0.
» This lets us check (in time polynomial in
q° = discrd(A ® Zg))) whether O ® Zq = End(E) ® Z,.



Computing endomorphisms using cycles in G(p, ¢)

Theorem (Kohel 1996)

There is a O(p'™¢) algorithm to compute a sub order
N = (1,a,B,apB) C End(E), where E/F . is supersingular.

» Idea: construct a spanning tree in G(p,¢). Then «, 3 arise
from cycles in G(p, ) which begin and end at E.

> Delfs-Galbraith, 2016: O(p'/?) time algorithm for computing
endomorphisms (but not a cycle in G(p, ¢))



