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Building a database of genus 1 curves over Q

1 Prove modularity

2 Enumerate rational weight 2 newforms by conductor

3 Construct corresponding elliptic curves

4 Enumerate isogeny class

5 Compute L-functions

6 Compute BSD invariants ∗ (all but one of them)

7 Find integer and rational points ∗ (in practice, if not in theory)

8 Compute endomorphism rings and Sato-Tate groups (trivial)

9 Images of Galois representations ∗ (mod-` and mod-2∞)



Building a database of genus 2 curves over Q
1 Prove modularity ×

2 Enumerate rational weight 2 Siegel modular forms by conductor ×

3 Construct corresponding genus 2 curves ×

4 Enumerate isogeny class ×∗ (some progress)

5 Compute L-functions (this is feasible!)

6 Compute BSD invariants ∗ (most of them)

7 Find integer and rational points ∗ (feasible in many cases)

8 Compute endomorphism rings and Sato-Tate groups (rigorous)

9 Compute images of Galois representations ×∗ (some progress)

How do we organize curves if we can’t enumerate them by conductor?
We need small conductors to compute L-functions!



Discriminants

Every hyperelliptic curve X/Q of genus g has a minimal Weierstrass model

y2 + h(x)y = f (x)

with deg f ≤ 2g + 2 and deg h ≤ g + 1. The discriminant of X is then

∆(X ) = 24g disc2g+2(f + h2/4) ∈ Z

The curve X has bad reduction at a prime p if and only if p|∆(X ).

This needn’t apply to Jac(X ), but if p|N(Jac(X )) =: N(X ), then p|∆(X ).

In general, one expects N(X )|∆(X ); this is known for g = 2 (Liu 1994),
and for curves with a rational Weierstrass point (Srinivasan 2015).



The L-functions and modular forms database (LMFDB)

www.lmfdb.org

www.lmfdb.org


Genus 3 curves

The canonical embedding of a genus 3 curve X/k into P2 is either:
1 a degree-2 cover of a smooth conic

(a) with a k-rational point (hyperelliptic model y2 + h(x)y = f (x)),
(b) with no k-rational points (no hyperelliptic model over k).

2 a smooth plane quartic (the generic case).

Efficient implementations of average polynomial-time algorithm for
computing L(X , s) :=

∑
ann−s are available in all three cases:

rational hyperelliptic model [Harvey-S ANTS XI];
no rational hyperelliptic model [Harvey-Massierer-S ANTS XII];
smooth plane quartic [Harvey-S ANTS XIII (real soon now!)].

In all three cases we can compute an for n ≤ B in time O(B(logB)3),
and any particular Euler factor in O(p1/2+o(1)) time.

B = 230 is feasible, so we can handle conductors up to 250 or so.



Discriminants of smooth plane curves

Let Td denote the set of ternary forms f (x0, x1, x2) of degree d > 1;
it is a C-vector space of dimension nd :=

(2d+2
2
)
.

The discriminant ∆d is the unique polynomial in nd variables
corresponding to coefficients of f ∈ Td such that:

∆d (f ) = 0 if and only if f (x0, x1, x2) = 0 is a singular curve;
∆d is irreducible, integral, and has content 1;
∆d (xd

0 + xd
1 + xd

2 ) < 0.

∆d is homogeneous of degree 3(d − 1)2. For d > 2 it can be computed via

∆d (f ) = −d−d2+3d−3Resd−1(∂0f , ∂1f , ∂2f ) = ±d−d2+3d−3 detΦf ,

where Φf is a (2d2 − 5d + 3)× (2d2 − 5d + 3) matrix with polynomial
entries that can be computed using Sylvester’s resultant formula.



The discriminant polynomial ∆4
The size of ∆d grows rapidly with d :

∆2 = a200a2
011 + a2

101a020 + a2
110a002 − a110a101a011 − 4a200a020a002.

∆3 is a degree 12 polynomial in 10 variables with 2940 terms and
largest coefficient 26 244.
∆4 is a degree 27 polynomial in 15 variables with 50 767 957 terms
and largest coefficient 9 393 093 476 352.

∆4 = I27 is the largest of the Dixmier-Ohno invariants

I3, I6, I9, I12, I15, I18, I27, J9, J12, J15, J18, I21, J21,

which generate the full ring of invariants of ternary quartic forms.

Efficient algorithms to compute invariants of a given f ∈ T4 are known
[Girard-Kohel ANTS VII], [Elsenhans 15], [Lercier-Ritzenthaler-Sijsling 16],
but do not provide a feasible method to compute the polynomial ∆4.

We used partial evaluation of Sylvester’s formula and interpolation.



Evaluating multivariate polynomials with monomial trees

Suppose we want to evaluate a polynomial P(x1, . . . , xn) at every point in
a box A1 × · · · × An ⊂ Zn. We use a monomial tree with

nodes at level n (leaves): monomials of P(x1, . . . , xn).
nodes at level n − 1: monomials of P(x1, . . . , xn−1, an).
. . .
nodes at level 1: monomials of P(x1, a2, . . . , an) = P1(x1).

Nodes at level m + 1 are connected to those at level m via an edge
corresponding to the substitution xm+1 = am+1. We store a coefficient
value at each node that is updated whenever we make a substitution.

At level 1 we evaluate a univariate polynomial P ′(x1) of degree degx1(P).

We can efficiently enumerate values of P1(x1) using finite differences
(as in [Kedlaya-S ANTS VIII]), or using a hard-wired straight-line program.



Monomial tree example
Consider the polynomial

g(a0, a1, a2) := a3
0a2 + 3a2

0a2
1 − 4a2

0a1a2 − 5a0a2
1a2 + 2a4

1 + 7a3
1a2.

A monomial tree for g(a0, a1, a2).
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A better monomial tree for g(a0, a1, a2).
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Monomial tree for g(2, a1, a2).
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Monomial tree for g(2,−1, a2).
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Monomial trees in practice
Discriminant monomial trees for hyperelliptic curves y2 + h(x)y = f (x)
with h(x) fixed (we can assume coefficients of h are 0 or 1).

For g = 2, we get 246 terms and 703 nodes in our monomial tree.
For g = 3, we get 5247 terms and 19916 nodes in our monomial tree.

For nonhyperelliptic curves of genus 3 the monomial tree for ∆4 has
50 767 957 terms and 246 798 254 nodes (for suitably ordered variables).

Enumerating ternary quartics of bounded naïve height with their
discriminants using this monomial tree is not only feasible, but
dramatically faster than computing discriminants individually.

In our computations with a height bound of Bc := 9 the inner loop reduces
to four 64-bit multiplications and six 64-bit additions, and uses 22 Haswell
clock cycles (under 10ns); about 2/3 total time is spent in the inner loop.



Parallel computation
The computation was parallelized by dividing boxes into sub-boxes then
run on Google’s Cloud Platform. We spread the load across 24 data
centers in nine geographic zones.

For the smooth plane quartic search we used a total of approximately
19,000 pre-emptible 32-vCPU compute instances. At peak usage we had
580,000 vCPUs running at full load (a new record).

This 300 vCPU-year computation took about 10 hours.

https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html


The boxes we searched and what we found therein

For genus 3 hyperelliptic curves y2 + h(x)y = f (x) we used a flat box with
hi ∈ {0, 1} and |fi | ≤ 31, yielding approximately 3× 1017 equations.

For smooth plane quartics f (x , y , z) = 0 we used a flat box with |fi | ≤ 9,
more than 1019 equations, but after taking advantage of the 48
symmetries the number we considered was approximately 3× 1017.

In both cases we used a discriminant bound of 107 (versus 106 in genus 2).
We found about two million hyperelliptic and ten million nonhyperelliptic
curve equations with discriminants below this bound.

Among the hyperelliptic curves we found 67,879 non-isomorphic curves in
(at least) 67,830 isogeny classes of Jacobians.

Among the nonhyperelliptic curves we found 82,241 non-isomorphic curves
in (at least) 82,201 isogeny classes of Jacobians.



Isomorphism testing
Among the ten million nonhyperelliptic curve equations there are many
isomorphisms (average isomorphism class size ≈ 100, several over 1000).

Pairwise isomorphism testing is slow (and unreliable!).

Instead, we use efficiently computable geometric and isogeny invariants to
partition curve equations into equivalence classes that we know must be
unions of isomorphism classes. We obtain 82,240 equivalence classes.

We then try to prove each equivalence class actually is an isomorphism
class by exploring the GL3(Z )-orbit of a chosen representative using a
pruned Cayley-search (a breadth-first search using a fixed set of generators
that is restricted to forms of small height). This succeeds for all but one
equivalence class, containing the non-isomorphic curves:

x3y + x3z + x2y 2 − 2x2yz − 4x2z2 − 4xy 3 + xz3 + 2y 4 − 2yz3 + z4 = 0,

x4 + x3y + 2x3z + 4x2y 2 − xy 3 − 2xy 2z + y 4 + 3y 3z + 5y 2z2 + 4yz3 + 2z4 = 0.



A few highlights
Smallest hyperelliptic conductor found is 3993 for the curve:

y2 + (x4 + x2 + 1)y = x7 + x6 + x5 + x3 + x2 + x ,

which is isogenous (but not isomorphic) to X0(33).

Smallest nonhyperelliptic conductor is 2940, for the curve

−x3y +x2y2+5x2yz−x2z2+4xy3+5xy2z+xyz2+4xz3+2y4+y2z2+3z4 = 0

Smallest nonhyperelliptic prime conductor 8233 arises for the curve

x3z − x2y2 + 2x2yz − x2z2 − xy3 + 2xy2z − yz3.

This is also the smallest hyperelliptic prime conductor for the curve

y2 + (x4 + x3 + x2 + 1)y = x7 − 8x5 − 4x4 + 18x3 − 3x2 − 16x + 8.

In fact, the two Jacobians are isogenous.


