GOLDFELD’S CONJECTURE AND CONGRUENCES BETWEEN HEEGNER POINTS

DANIEL KRIZ AND CHAO LI

Abstract. Given an elliptic curve \(E \) over \(\mathbb{Q} \), a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this conjecture holds whenever \(E \) has a rational 3-isogeny. We also prove the analogous result for the sextic twists of \(j \)-invariant 0 curves. For a more general elliptic curve \(E \), we show that the number of quadratic twists of \(E \) up to twisting discriminant \(X \) of analytic rank 0 (resp. 1) is \(\gg X/\log^{7/6} X \), improving the current best general bound towards Goldfeld’s conjecture due to Ono–Skinner (resp. Perelli–Pomykalı). To prove these results, we establish a congruence formula between \(p \)-adic logarithms of Heegner points, and apply it in the special cases \(p = 3 \) and \(p = 2 \) to construct the desired twists explicitly. As a by-product, we also prove the corresponding \(p \)-part of the Birch and Swinnerton-Dyer conjecture for these explicit twists.

1. Introduction

1.1. Goldfeld’s conjecture. Let \(E \) be an elliptic curve over \(\mathbb{Q} \). We denote by \(r_{\text{an}}(E) \) its analytic rank. By the theorem of Gross–Zagier and Kolyvagin, the rank part of the Birch and Swinnerton-Dyer conjecture holds whenever \(r_{\text{an}}(E) \in \{0, 1\} \). One can ask the following natural question: how is \(r_{\text{an}}(E) \) distributed when \(E \) varies in families? The simplest (1-parameter) family is given by the quadratic twists family of a given curve \(E \). For a fundamental discriminant \(d \), we denote by \(E^{(d)} \) the quadratic twist of \(E \) by \(\mathbb{Q}(\sqrt{d}) \). The celebrated conjecture of Goldfeld [Gol79] asserts that \(r_{\text{an}}(E^{(d)}) \) tends to be as low as possible (compatible with the sign of the function equation). Namely in the quadratic twists family \(\{E^{(d)}\} \), \(r_{\text{an}} \) should be 0 (resp. 1) for 50\% of \(d \)'s. Although \(r_{\text{an}} \geq 2 \) occurs infinitely often, its occurrence should be sparse and accounts for only 0\% of \(d \)'s. More precisely,

Conjecture 1.1 (Goldfeld). Let

\[
N_r(E, X) = \{ |d| < X : r_{\text{an}}(E^{(d)}) = r \}.
\]

Then for \(r \in \{0, 1\} \),

\[
N_r(E, X) \sim \frac{1}{2} \sum_{|d| < X} 1, \quad X \to \infty.
\]

Here \(d \) runs over all fundamental discriminants.

Goldfeld’s conjecture is widely open: we do not yet know a single example \(E \) for which Conjecture 1.1 is valid. One can instead consider the following weaker version (replacing 50\% by any positive proportion):

Conjecture 1.2 (Weak Goldfeld). For \(r \in \{0, 1\} \), \(N_r(E, X) \gg X \).
Remark 1.3. Heath-Brown (HB04 Thm. 4) proved Conjecture 1.2 conditional on GRH. Recently, Smith [Smi17] has announced a proof (conditional on BSD) of Conjecture 1.1 for curves with full rational 2-torsion by vastly generalizing the works of Heath-Brown [HB94] and Kane [Kan13].

Remark 1.4. Katz–Sarnak [KS99] conjectured the analogue of Conjecture 1.1 for the 2-parameter family \(\{E_{A,B} : y^2 = x^3 + Ax + B\} \) of all elliptic curves over \(\mathbb{Q} \). The weak version in this case is now known unconditionally due to the recent work of Bhargava–Skinner–W. Zhang [BSZ14]. However, their method does not directly apply to quadratic twists families.

In the next two subsections, we describe our unconditional theorems concerning Goldfeld’s conjecture, for both special and general elliptic curves.

1.2. **Goldfeld’s conjecture for special** \(E \). The curve \(E = X_0(19) \) is the first known example for which Conjecture 1.2 is valid (see James [Jam98] for \(r = 0 \) and Vatsal [Vat98] for \(r = 1 \)). Later many authors have verified Conjecture 1.2 for infinitely many curves \(E \) (see [Vat99], [BJK09] and [Kri16]) using various methods. However, all these examples are a bit special, as they are all covered by our first main result:

Theorem 1.5. The weak Goldfeld Conjecture is true for any \(E \) with a rational 3-isogeny.

Remark 1.6. Theorem 1.5 gives so far the most general results for Conjecture 1.2. There is only one known example for which Conjecture 1.2 is valid and is not covered by Theorem 1.5: the congruent number curve \(E : y^2 = x^3 - x \) (due to the recent work of Smith [Smi16] and Tian–Yuan–S. Zhang [TYZ14]).

Remark 1.7. For explicit lower bounds for the proportion in Theorems 1.5, see the more precise statements in Theorems 9.4, 9.5, Proposition 9.7, and Example 9.9.

For an elliptic curve \(E \) of \(j \)-invariant 0 (resp. 1728), one can also consider its cubic or sextic (resp. quartic) twists family. The weak Goldfeld conjecture in these cases asserts that for \(r \in \{0, 1\} \), a positive proportion of (higher) twists should have analytic rank \(r \). Our second main result verifies the weak Goldfeld conjecture for the sextic twists family. More precisely, consider the elliptic curve

\[
E = X_0(27) : y^2 = x^3 - 432
\]

of \(j \)-invariant 0 (isomorphic to the Fermat cubic \(X^3 + Y^3 = 1 \)). For a 6th-power-free integer \(d \), we denote by

\[
E_d : y^2 = x^3 - 432d
\]

the \(d \)-th sextic twist of \(E \).

Theorem 1.8 (Corollary 10.8). The weak Goldfeld conjecture is true for the sextic twists family \(\{E_d\} \). In fact, \(E_d \) has analytic rank 0 (resp. 1) for at least \(1/6 \) of fundamental discriminants \(d \).

Remark 1.9. For a wide class of elliptic curves of \(j \)-invariant 0, we can also construct many (in fact \(\gg X/\log^{7/8} X \)) cubic twists of analytic rank 0 (resp. 1). However, these cubic twists do not have positive density. See the more precise statement in Theorem 11.1 and Example 11.3.

Remark 1.10. In a recent work, Bhargava–Elkies–Shnidman [BES16] prove the analogue of Theorem 1.8 for 3-Selmer ranks 0,1, by determining the exact average size of 3-isogeny Selmer groups (its boundness was first proved by Fouvry [Fou93]). The same method also works for quadratic twists family of any elliptic curve with a 3-isogeny ([BKL]). We remark that their method however does
Remark 1.11. Recently, Browning \cite{Bro17} has used Theorem 1.8 as key input in his argument to show that a positive proportion (when ordered by height) of smooth projective cubic surfaces of the form \(f(x_0, x_1) = g(x_2, x_3) \), where \(f, g \) are binary cubic forms over \(\mathbb{Q} \), have a \(\mathbb{Q} \)-rational point. This result drastically increases the set of known cases of cubic surfaces which have a \(\mathbb{Q} \)-rational point, and gives a very uniform family of such examples.

1.3. Goldfeld’s conjecture for general \(E \). When \(r = 0 \), the best general result towards Goldfeld’s conjecture is due to Ono–Skinner \cite{OS98}: they showed that for any elliptic curve \(E/\mathbb{Q} \),

\[
N_0(E, X) \gg \frac{X}{\log X}
\]

When \(E(\mathbb{Q})[2] = 0 \), Ono \cite{Ono01} improved this result to

\[
N_0(E, X) \gg \frac{X}{\log^{1-\alpha} X}
\]

for some \(0 < \alpha < 1 \) depending on \(E \). When \(r = 1 \), even less is known. The best general result is due to Perelli–Pomykala \cite{PP97} using analytic methods: they showed that for any \(\varepsilon > 0 \),

\[
N_1(E, X) \gg X^{1-\varepsilon}.
\]

Our third main result improves both bounds, under a technical assumption on the 2-adic logarithm of the associated Heegner point on \(E \).

Let us be more precise. Let \(E/\mathbb{Q} \) be an elliptic curve of conductor \(N \). Throughout this article, we will use \(K = \mathbb{Q}(\sqrt{d_K}) \) to denote an imaginary quadratic field of fundamental discriminant \(d_K \) satisfying the Heegner hypothesis for \(N \):

each prime factor \(\ell \) of \(N \) is split in \(K \).

We denote by \(P \in E(K) \) the corresponding Heegner point, defined up to sign and torsion with respect to a fixed modular parametrization \(\pi_E : X_0(N) \rightarrow E \) (see \cite{Gro84}). Let

\[
f(q) = \sum_{n=1}^{\infty} a_n(E) q^n \in S_2^{\text{new}}(\Gamma_0(N))
\]

be the normalized newform associated to \(E \). Let \(\omega_E \in \Omega_{E/\mathbb{Q}}^{1} := H^0(E/\mathbb{Q}, \Omega^1) \) such that

\[
\pi_E^*(\omega_E) = f(q) \cdot \frac{dq}{q}.
\]

We denote by \(\log_{\omega_E} \) the formal logarithm associated to \(\omega_E \). Notice \(\omega_E \) may differ from the Néron differential by a scalar when \(E \) is not the optimal curve in its isogeny class.

Now we are ready to state our third main result.

Theorem 1.12. Suppose \(E/\mathbb{Q} \) is an elliptic curve with \(E(\mathbb{Q})[2] = 0 \). Suppose there exists an imaginary quadratic field \(K \) be satisfying the Heegner hypothesis for \(N \) such that

\[(\star) \quad 2 \text{ splits in } K \text{ and } \frac{|\tilde{E}^{\text{ns}}(F_2)| \cdot \log_{\omega_E}(P)}{2} \not\equiv 0 \pmod{2}.
\]
Then for \(r \in \{0, 1\} \), we have

\[
N_r(E, X) \gg \begin{cases}
\frac{X}{\log 5/6 X}, & \text{if } \text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q}) \cong S_3, \\
\frac{X}{\log 2/3 X}, & \text{if } \text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z}.
\end{cases}
\]

Remark 1.13. Assumption (★) imposes certain constraints on \(E/\mathbb{Q} \) (e.g., its local Tamagawa numbers at odd primes are odd, see §5.1), but it is satisfied for a wide class of elliptic curves. See §6 for examples and also Remark 6.6 on the wide applicability of Theorem 1.12.

Remark 1.14. Mazur–Rubin [MR10] proved similar results for the number of twists of \(2\)-Selmer rank 0, 1. Again we remark that it however does not have the same implication for analytic rank \(r = 0, 1 \) (or algebraic rank 1), since the \(p \)-converse to the theorem of Gross–Zagier and Kolyvagin for \(p = 2 \) is not known.

Remark 1.15. For certain elliptic curves with \(E(\mathbb{Q})[2] = \mathbb{Z}/2\mathbb{Z} \), the work of Coates–Y. Li–Tian–Zhai [CLTZ15] also improves the current bounds, using a generalization of the classical method of Heegner and Birch for prime twists.

1.4. Congruences between \(p \)-adic logarithms of Heegner points

The starting point of the proof of Theorem 1.12 is the simple observation that quadratic twists don’t change the mod 2 Galois representations: \(E[2] \cong E'(d)[2] \). More generally, suppose \(p \) is a prime and \(E, E' \) are two elliptic curves with isomorphic semisimplified Galois representations \(E[p^m]^{ss} \cong E'[p^m]^{ss} \) for some \(m \geq 1 \), one expects that there should be a congruence mod \(p^m \) between the special values (or derivatives) of the associated \(L \)-functions of \(E \) and \(E' \). It is usually rather subtle to formulate such congruence precisely. Instead, we work directly with the \(p \)-adic incarnation of the \(L \)-values — the \(p \)-adic logarithm of Heegner points and we prove the following key congruence formula.

Theorem 1.16. Let \(E \) and \(E' \) be two elliptic curves over \(\mathbb{Q} \) of conductors \(N \) and \(N' \) respectively. Suppose \(p \) is a prime such that there is an isomorphism of semisimplified \(G_\mathbb{Q} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \)-representations

\[
E[p^m]^{ss} \cong E'[p^m]^{ss}
\]

for some \(m \geq 1 \). Let \(K \) be an imaginary quadratic field satisfying the Heegner hypothesis for both \(N \) and \(N' \). Let \(P \in E(K) \) and \(P' \in E'(K) \) be the Heegner points. Assume \(p \) is split in \(K \). Then we have

\[
\left(\prod_{\ell \mid pN\ell' M} \frac{|\tilde{E}^{ns}(\mathbb{F}_\ell)|}{\ell} \right) \cdot \log_{\omega_E} P \equiv \pm \left(\prod_{\ell \mid pN\ell' M} \frac{|\tilde{E}'^{ns}(\mathbb{F}_\ell)|}{\ell} \right) \cdot \log_{\omega_{E'}} P' \pmod{p^m \mathcal{O}_K}.
\]

Here

\[
M = \prod_{a_\ell(E) \equiv a_\ell(E') \pmod{p^m}} \ell^{\text{ord}_\ell(N\ell')}.
\]

Remark 1.17. Recall that \(\tilde{E}^{ns}(\mathbb{F}_\ell) \) denotes the number of \(\mathbb{F}_\ell \)-points of the nonsingular part of the mod \(\ell \) reduction of \(E \), which is \(\ell + 1 - a_\ell(E) \) if \(\ell \nmid N \), \(\ell \pm 1 \) if \(\ell \mid N \) and \(\ell \) if \(\ell^2 \mid N \). The factors in the above congruence can be understood as the result of removing the Euler factors of \(L(E, 1) \) and \(L(E', 1) \) at bad primes.
Remark 1.18. The link between the p-adic logarithm of Heegner points and p-adic L-functions dates back to Rubin [Rub92] in the CM case and was recently established in great generality by Bertolini–Darmon–Prasanna [BDP13] and Liu–S. Zhang–W. Zhang [LZZ15]. However, our congruence formula is based on direct p-adic integration and does not use this deep link with p-adic L-functions.

Remark 1.19. Since there is no extra difficulty, we prove a slightly more general version (Theorem 3.9) for Heegner points on abelian varieties of GL_2-type. The same type of congruence should hold for modular forms of weight $k \geq 2$ (in a future work), where the p-adic logarithm of Heegner points is replaced by the p-adic Abel–Jacobi image of generalized Heegner cycles defined in [BDP13].

Notice that Theorem 1.16 allows us to propagate the non-vanishing (mod p) of the p-adic logarithm of Heegner points through congruences, as long as the extra Euler factors are p-adic units. As a first application, we apply to the case $p = 2$ and $E' = E^{(d)}$ and construct an explicit set of d’s such that the p-adic logarithm of $P^{(d)} \in E^{(d)}(K)$ is nonzero. Combining with the Gross–Zagier formula ($P^{(d)}$ is non-torsion if and only if $r_{an}(E^{(d)}/K) = 1$), we can then deduce Theorem 1.12. Further applications of Theorem 1.16 will be given a future work.

1.5. Heegner points at Eisenstein primes. The proof of Theorems 1.5 and 1.8 also relies on a congruence formula involving the p-adic logarithm of Heegner points. Now suppose p is an Eisenstein prime for E (i.e., $E[p]$ is a reducible $G_{\mathbb{Q}}$-representation, or equivalently, E admits a rational p-isogeny). In this case, we have congruence between the modular form f and an Eisenstein series. The Eisenstein series side of the congruence formula can be evaluated explicitly and gives rise to a product of two Bernoulli numbers.

More precisely, for a finite order Galois character $\psi : G_{\mathbb{Q}} \to \bar{\mathbb{Q}}^\times$, we abuse notation and denote by $\psi : (\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb{C}^\times$ the corresponding Dirichlet character, where f is its conductor. The generalized (first) Bernoulli number is defined to be

\begin{equation}
B_{1, \psi} := \frac{1}{f} \sum_{m=1}^{f} \psi(m)m.
\end{equation}

Let ε_K be the quadratic character associated to K. We consider the even Dirichlet character

$\psi_0 := \begin{cases}
\psi, & \text{if } \psi \text{ is even}, \\
\psi \varepsilon_K, & \text{if } \psi \text{ is odd}.
\end{cases}$

Theorem 1.20 (Theorem 7.1). Let E/\mathbb{Q} be an elliptic curve of conductor N. Suppose p is an odd prime such that $E[p]$ is a reducible $G_{\mathbb{Q}}$-representation. Write $E[p]^{ss} \cong \mathbb{F}_p(\psi) \oplus \mathbb{F}_p(\psi^{-1}\omega)$, for some character $\psi : G_{\mathbb{Q}} \to \text{Aut}(\mathbb{F}_p) \cong \mu_{p-1}$ and the mod p cyclotomic character ω. Assume that

1. $\psi(p) \neq 1$ and $(\psi^{-1}\omega)(p) \neq 1$.
2. E has no primes of split multiplicative reduction.
3. If $\ell \neq p$ is an additive prime for E, then $\psi(\ell) \neq 1$ and $(\psi^{-1}\omega)(\ell) \neq 1$.

Let K be an imaginary quadratic field satisfying the Heegner hypothesis for N. Let $P \in E(K)$ be the associated Heegner point. Assume p splits in K. Assume

$$B_{1, \psi_0^{-1}} \varepsilon_K \cdot B_{1, \psi_0^{-1} \omega} \neq 0 \pmod{p}.$$

Then

$$\frac{|\bar{E}^{ns}(\mathbb{F}_p)|}{p} \cdot \log_{\omega_{E}} P \neq 0 \pmod{p}.$$
In particular, $P \in E(K)$ is of infinite order and E/K has analytic and algebraic rank 1.

Remark 1.21. When E/Q has CM by $\mathbb{Q}(\sqrt{-p})$ (of class number 1), Rubin [Rub83] proved a mod p congruence formula between the algebraic part of $L(E,1)$ and certain Bernoulli numbers. Notice that E admits a p-isogeny (multiplication by $\sqrt{-p}$), Theorem 1.20 specializes to provide a mod p congruence between the p-adic logarithm of the Heegner point on E and certain Bernoulli numbers, which can be viewed as a generalization of Rubin’s formula from the rank 0 case to the rank 1 case.

Notice that the two odd Dirichlet characters $\psi_0^{-1} \varepsilon_K$ and $\psi_0 \omega^{-1}$ cut out two abelian CM fields (of degree dividing $p-1$). When the relative p-class numbers of these two CM fields are trivial, it follows from the relative class number formula that the two Bernoulli numbers in Theorem 1.20 are nonzero mod p (see [8]), hence we conclude $r_{an}(E/K) = 1$. When $p = 3$, the relative p-class numbers becomes the 3-class numbers of two quadratic fields. Our final ingredient to finish the proof of Theorems 1.5 and 1.20 is Davenport–Heilbronn’s theorem ([DH71]) (enhanced by Nakagawa–Horie [NH88] with congruence conditions), which allows one to find a positive proportion of twists such that both 3-class numbers in question are trivial.

1.6. A by-product: the p-part of the BSD conjecture. The Birch and Swinnerton-Dyer conjecture predicts the precise formula

$$\frac{L^{(r)}(E/Q,1)}{r!\Omega(E/Q)R(E/Q)} = \prod_p c_p(E/Q) \cdot |\Sha(E/Q)|^2$$

for the leading coefficient of the Taylor expansion of $L(E/Q,s)$ at $s = 1$ (here $r = r_{an}(E)$) in terms of various important arithmetic invariants of E (see [Gro11] for detailed definitions). When $r \leq 1$, both sides of the BSD formula (2) are known to be positive rational numbers. To prove that (2) is indeed an equality, it suffices to prove that it is an equality up to a p-adic unit, for each prime p. This is known as the p-part of the BSD formula (BSD(p) for short).

Remark 1.22. Much progress for BSD(p) has been made recently, but only in the case $p \geq 3$ is semi-stable and non-Eisenstein (for $r = 0$: [Kat04], [SU14], [Wan14], [Spr16]; for $r = 1$: [Zha14], [SZ14], [BBV16], [JSW13], [Spr16], [Cas17]). For the case $p = 2$, very little (beyond numerical verification) is known. Gonzalez-Avilés [GA97] establishes BSD(2) for the quadratic twists of $X_0(49)$ when $r = 0$. Tian’s breakthrough [Tia14] on the congruent number problem establishes BSD(2) for many quadratic twists of $X_0(32)$ when $r \leq 1$. Coates outlined a program ([Coa93] p.35) generalizing Tian’s method for establishing BSD(2) for many quadratic twists of a general elliptic curve when $r \leq 1$, which has succeeded for two more examples $X_0(49)$ ([CLTZ15]) and $X_0(36)$ ([CCL16]). All these three examples are CM with rational 2-torsion.

As a by-product of our congruence formulas for Heegner points, we establish new results on BSD(2) for the explicit twists of a general E constructed in Theorem 1.12 (see Theorem 5.1). We also establish the following new results on BSD(3) for many sextic twists $E_d : y^2 = x^3 - 432d$, in the case $p = 3$ is additive and Eisenstein.

Theorem 1.23 (Theorem 10.10). Suppose K is an imaginary quadratic field satisfies the Heegner hypothesis for $3d$. Assume that

1. d is a fundamental discriminant.
2. $d \equiv 2, 3, 5, 8 \pmod{9}$.
3. If $d > 0$, $h_3(-3d) = h_3(d_Kd) = 1$. If $d < 0$, $h_3(d) = h_3(-3d_Kd) = 1$.

The Manin constant of E_d is coprime to 3. Then $r_{an}(E_d/K) = 1$ and BSD(3) holds for E_d/K. (Here $h_3(D)$ denotes the 3-class number of $\mathbb{Q}(\sqrt{D})$.)

Remark 1.24. Since the curve E_d has complex multiplication by $\mathbb{Q}(\sqrt{-3})$, we already know that BSD(p) holds for E_d/\mathbb{Q} if $p \neq 2, 3$ (when $r = 0$) and if $p \neq 2, 3$ is a prime of good reduction or potentially good ordinary reduction (when $r = 1$) thanks to the works [Rub91], [PR87], [Kob13], [PR04], [LLT16]. When $r = 0$, we also know BSD(3) for some quadratic twists of the two curves $X_0(27)$ and $X_0(36)$ of j-invariant 0, using explicit weight 3/2 modular forms ([Nek90], [Ono98], [Jam99]).

1.7. Comparison with previous methods establishing the weak Goldfeld conjecture.

(1) The work of James [Jam98] on weak Goldfeld for $r = 0$ uses Waldspurger’s formula relating coefficients of weight 3/2 modular forms and quadratic twists L-values (see also Nekovár [Nek90], Ono–Skinner [OS98]). Our proof does not use any half-integral weight modular forms.

(2) When N is a prime different from p, Mazur in his seminal paper [Maz79] proved a congruence formula at an Eisenstein prime above p, between the algebraic part of $L(J_0(N), \chi, 1)$ and a quantity involving generalized Bernoulli numbers attached to χ, for certain odd Dirichlet characters χ. This was later generalized by Vatsal [Vat99] for more general N and used to prove weak Goldfeld for $r = 0$ for infinitely many elliptic curves.

(3) When N is a prime different from p, Mazur [Maz79] also constructed a point of infinite order on the Eisenstein quotient of $J_0(N)$, when certain quadratic class number is not divisible by p. This was later generalized by Gross [Gro84-II] to more general N, and became the starting point of the work of Vatsal [Vat98] and Byeon–Jeon–Kim [BJK09] on weak Goldfeld for $r = 1$.

(4) Our main congruence at Eisenstein primes (see §7.5) through which Theorem 1.20 is established can be viewed as a vast generalization of Mazur’s congruence from $J_0(N)$ to any elliptic curve with a p-isogeny and to both rank 0 and rank 1 case. To achieve this, instead of working with L-functions directly, we use the p-adic logarithm of Heegner points as the p-adic incarnation of L-values (or L-derivatives).

(5) The recent work [Kri16] also uses p-adic logarithm of Heegner points. As we have pointed out, the crucial difference is that our proof uses a direct method of p-adic integration, and does not rely on the deep p-adic Gross–Zagier formula of [BDP13]. This is the key observation to remove all technical hypothesis appeared in previous works, which in particular makes the application to the sextic twists family possible.

(6) Although the methods are completely different, the final appearance of Davenport–Heilbronn type theorem is a common feature in all previous works ([Jam98], [Vat98], [Vat99], [BJK09], [Kri16]), and also ours.

1.8. Structure of the paper. The main congruence (Theorem 1.16) is proved in §3. We explain the ideal of the proof in §3.1. In §4 we prove the application to Goldfeld’s conjecture for general E (Theorem 1.12). In §5 we prove the application to BSD(2) (Theorem 5.1). In §6 we include numerical examples illustrating the wide applicability of Theorems 1.12 and 5.1. In §7 we establish the non-triviality criterion for Heegner points at Eisenstein primes, in terms of p-indisibility of Bernoulli numbers (Theorem 1.20). In §8 we recall the relation between the Bernoulli numbers and relative class numbers. In §9 we combine our criterion and the Nakagawa–Horie theorem to prove the weak Goldfeld conjecture for curves with a 3-isogeny (Theorem 1.5). In §10 we give applications
to Goldfeld’s conjecture and BSD(3) for the sextic twists family (Theorems \[1.8\] and \[1.23\]). Finally, in \[\S11\] we give an application to cubic twists families (Theorem \[11.1\]).

1.9. Acknowledgments. We are grateful to M. Bhargava, J. Coates, D. Goldfeld, B. Gross, B. Mazur, K. Prasanna, P. Sarnak, A. Shnidman, C. Skinner, E. Urban, X. Wan, A. Wiles, S. Zhang and W. Zhang for helpful conversations or comments. Our debt to the two papers \[BDP13\] and \[LZZ15\] should be clear to the readers. The examples in this article are computed using Sage ((Sag16)).

2. Notations and conventions

In this section we define some notation and fix some conventions that will be used throughout the paper.

Fix an algebraic closure \(\overline{\mathbb{Q}}\) of \(\mathbb{Q}\), and view all number fields \(L\) as embedded \(L \subset \overline{\mathbb{Q}}\). Let \(h_L\) denote the class number of \(L\), and let \(\mathbb{Z}\) denote the integral closure of \(\mathbb{Z}\) in \(\overline{\mathbb{Q}}\). Fix an algebraic closure \(\overline{\mathbb{Q}}_p\) of \(\mathbb{Q}_p\) (which amounts to fixing a prime of \(\overline{\mathbb{Q}}\) above \(p\)). Let \(\mathbb{C}_p\) be the \(p\)-adic completion of \(\overline{\mathbb{Q}}_p\), and let \(L_p\) denote the \(p\)-adic completion of \(L \subset \mathbb{C}_p\). For any integers \(a, b\), let \((a, b)\) denote their (positive) greatest common divisor. Given ideals \(a, b \subset \mathcal{O}_L\), let \((a, b)\) denote their greatest common divisor.

All Dirichlet (i.e. finite order) characters \(\psi : \mathbb{A}_K^\times \to \mathbb{Q}_p^\times\) will be primitive, and we denote the conductor by \(f(\psi)\), which as an ideal in \(\mathbb{Z}\) identified with its unique positive generator. We may equivalently view \(\psi\) as a character \(\psi : (\mathbb{Z}/f(\psi))^\times \to \mathbb{Q}_p^\times\) via

\[
\psi(x \mod f(\psi)) = \prod_{\ell | f(\psi)} \psi_\ell(x) = \prod_{\ell | f(\psi)} \psi_\ell^{-1}(x)
\]

where \(\psi_\ell : \mathbb{Q}_\ell^\times \to \mathbb{Q}_p^\times\) is the local character at \(\ell\). Following convention, we extend \(\psi\) to \(\mathbb{Z}/f(\psi) \to \mathbb{Q}_p\), defining \(\psi(a) = 0\) if \((a, f(\psi)) \neq 1\). Given Dirichlet character \(\psi_1\) and \(\psi_2\), we let \(\psi_1\psi_2\) denote the unique primitive Dirichlet character such that \(\psi_1\psi_2(a) = \chi(a)\psi_2(a)\) for all \(a \in \mathbb{Z}\) with \((a, f(\psi)) = 1\). Given a prime \(p\), let \(f(\psi)_p\) denotes the \(p\)-primary part of \(f(\psi)\) and let \(f(\psi)^{(p)}\) denote the prime-to-\(p\) part of \(f(\psi)\).

We define the Gauss sum \(g(\psi)\) of \(\psi\) and local Gauss sums \(g_\ell(\psi)\) as in \([Kri16\] Section 1\]. We will often identify a Dirichlet character \(\psi : \mathbb{A}_K^\times \to \mathbb{Q}_p^\times\) with its associated Galois character \(\psi : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{Q}_p^\times\) via the (inverse of the) Artin reciprocity map \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \cong \hat{\mathbb{Z}}^\times\), using the arithmetic normalization (i.e. the normalization where \(\text{Frob}_\ell\) the Frobenius conjugacy class at \(\ell\), gets sent to the idèle which is \(\ell\) at the place of \(\mathbb{Z}\) corresponding to \(\ell\) and 1 at all other places). Throughout, for a given \(p\), let \(\omega : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mu_{p-1}\) denote the mod \(p\) cyclotomic character. Let \(N_\mathbb{Q} : \mathbb{A}_\mathbb{Q}^\times \to \mathbb{C}^\times\) denote the norm character, normalized to have infinity type \(-1\). For a number field \(K\), let \(N_m/K/\mathbb{Q} : \mathbb{A}_K^\times \to \mathbb{A}_\mathbb{Q}^\times\) denote the idelic norm, and let \(N_K := N_\mathbb{Q} \circ N_m/K/\mathbb{Q} : \mathbb{A}_K^\times \to \mathbb{C}^\times\).

Suppose we are given an imaginary quadratic field \(K\) with fundamental discriminant \(d_K\). Let \(\varepsilon_K : (\mathbb{Z}/d_K)^\times \to \mu_2\) be the quadratic character associated with \(K\). For any Dirichlet character \(\psi\) over \(\mathbb{Q}\), let

\[
\psi_0 := \begin{cases} \psi, & \text{if } \psi \text{ even}, \\ \psi\varepsilon_K, & \text{if } \psi \text{ odd}. \end{cases}
\]
Throughout, let E/\mathbb{Q} be an elliptic curve of conductor $N = N_{\text{split}}N_{\text{nonsplit}}N_{\text{add}}$, where N_{split} is only divisible by primes of split multiplicative reduction, N_{nonsplit} is only divisible by primes of nonsplit multiplicative reduction, and N_{add} is only divisible by primes of additive reduction.

Finally, for any number field L, let h_L denote its class number. For any non-square integer D, we denote by $h_3(D) := |\text{Cl}(\mathbb{Q}(\sqrt{D}))[3]|$ the 3-class number of the quadratic field $\mathbb{Q}(\sqrt{D})$.

3. Proof of the main congruence

3.1. The strategy of the proof

We first give the idea of the proof of Theorem 1.16. From the congruent Galois representations, we deduce that the coefficients of the associated modular forms are congruent away from the bad primes in pNN'/M. After applying suitable stabilization operators ($§3.3$) at primes in NN'/M, we obtain p-adic modular forms whose coefficients are all congruent. This congruence is preserved when applying a power θ^j of the Atkin-Serre operator θ. Letting $j \to -1$ (p-adically) and using Coleman’s theorem on p-adic integration (generalized in [LZZ15], see §3.5), we can identify the values of $\theta^{-1}f$ and \log_{ω_j} at CM points. The action of stabilization operators at CM points ($§3.4$) gives rise to the extra Euler factors. Summing over the CM points finally proves the main congruence between p-adic logarithms of Heegner points ($§3.6$). This procedure is entirely parallel to the construction of anticyclotomic p-adic L-functions of [BDP13], but we stress that the congruence itself (without linking to the p-adic L-function) is more direct and does not require the main result of [BDP13]. In particular, we work on $X_0(N)$ directly (as opposed to working on the finite cover $X_1(N)$) and we do not require E to have good reduction at p.

The proof of Theorem 1.20 (and the more general version Theorem 7.1) relies on a similar congruence identity ($§7.5$) between the p-adic logarithm of Heegner points and a product of two Bernoulli numbers. The starting point is that the prime p being Eisenstein produces a congruence between the modular form f and a weight 2 Eisenstein series g, away from the bad primes. The rest of the argument are similar: we apply stabilization operators in order to produce a modified Eisenstein series $g^{(N)}$ whose entire q-expansion $g^{(N)}(q)$ is congruent to $f(q)$. Applying another p-stabilization operator and the Atkin-Serre derivatives θ^j, we obtain a p-adically continuously varying system of congruences $\theta^j f^{(p)}(q) \equiv \theta^j g^{(pN)}(q) \pmod{p}$. By the q-expansion principle and our assumption that p splits in K, we can sum this congruence over CM points to obtain a congruence between a normalized CM period sum and a p-adic Katz L-value times certain Euler factors at bad primes. Again taking $j \to -1$ (p-adically), the CM period sums converge to the p-adic logarithm of the Heegner point times an Euler factor at p, by Coleman’s integration. The Katz L-values converge to a product of two Bernoulli numbers, by Gross’s factorization. We finally arrive at the congruence identity in §7.5.

3.2. p-adic modular forms

Henceforth, it will be useful to adopt Katz’s viewpoint of p-adic modular forms as rules on the moduli space of isomorphism classes of “ordinary test triples”. (For a detailed reference, see for example [Kat76, Chapter V].)

Definition 3.1. (Ordinary test triple). Let R be a p-adic ring (i.e. the natural map $R \to \varprojlim R/p^nR$ is an isomorphism). An ordinary test triple (A, C, ω) over R means the following:

1. A/R is an elliptic curve which is ordinary (i.e. A is ordinary over R/pR),
(2) (level N structure) $C \subset A[N]$ is a cyclic subgroup of order N over R such that the p-primary part $C[p^\infty]$ is the canonical subgroup of that order (i.e., letting \tilde{A} be the formal group of A, we have $C[p^\infty] = \tilde{A}[p^\infty] \cap C$),

(3) $\omega \in \Omega^1_{A/R} := H^0(A/R, \Omega^1)$ is a differential.

Given two ordinary test triples (A, C, ω) and (A', C', ω') over R, we say there is an isomorphism $(A, C, \omega) \simto (A', C', \omega')$ if there is an isomorphism $i : A \to A'$ of elliptic curves over R such that $\phi(C) = C'$ and $i^*\omega' = \omega$. Henceforth, let $[(A, C, \omega)]$ denote the isomorphism class of the test triple (A, C, ω).

Definition 3.2 (Katz’s interpretation of p-adic modular forms). Let S be a fixed p-adic ring. Suppose F as a rule which, for every p-adic S-algebra R, assigns values in R to isomorphism classes of test triples (A, C, ω) of level N defined over R. As such a rule assigning values to isomorphism classes of ordinary test triples, consider the following conditions:

1. (Compatibility under base change) For all S-algebra homomorphisms $i : R \to R'$, we have
 $$F((A, C, \omega) \otimes_i R') = i(F(A, C, \omega)).$$

2. (Weight k condition) Fix $k \in \mathbb{Z}$. For all $\lambda \in R^\times$,
 $$F(A, C, \lambda \cdot \omega) = \lambda^{-k} \cdot F(A, C, \omega).$$

3. (Regularity at cusps) For any positive integer $d | N$, letting Tate(q) = $\mathbb{G}_m/q \mathbb{Z}$ denote the Tate curve over the p-adic completion of $R((q^{1/d}))$, and letting $C \subset$ Tate(q)[N] be any level N structure, we have
 $$F(\text{Tate}(q), C, du/u) \in R[[q^{1/d}]]$$
 where u is the canonical parameter on \mathbb{G}_m.

If F satisfies conditions (1)-(2), we say it is a weak p-adic modular form over S of level N. If F satisfies conditions (1)-(3), we say it is a p-adic modular form over S of level N. Denote the space of weak p-adic modular forms over S of level N and the space of p-adic modular forms over S of level N by $\tilde{M}_k^{p\text{-adic}}(\Gamma_0(N))$ and $M_k^{p\text{-adic}}(\Gamma_0(N))$, respectively. Note that $M_k^{p\text{-adic}}(\Gamma_0(N)) \subset \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N))$.

Let Tate(q) be the Tate curve over the p-adic completion of $S((q))$. If $F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N))$, one defines the q-expansion (at infinity) of F as $F(q) := F(\text{Tate}(q), \mu_N, du/u) \in S[[q]]$, which defines a q-expansion map $F \mapsto F(q)$. The q-expansion principle (see [Gou88] Theorem I.3.1 or [Kat75]) says that the q-expansion map is injective for $F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N))$.

From now on, let N denote the minimal level of F (i.e. the smallest N such that $F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N))$). For any positive integer N' such that $N | N'$, we can define

$$[N'/N]^*F(A, C, \omega) := F(A, C[N], \omega)$$

so that $[N'/N]^*F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N'))$. When the larger level N' is clear from context, we will often abuse notation and simply view $F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N'))$ by identifying F and $[N'/N]^*F$.

We now fix $N^\# \in \mathbb{Z}_{>0}$ such that $N | N^\#$, so that we can view $F \in \tilde{M}_k^{p\text{-adic}}(\Gamma_0(N^\#))$, and further suppose $\ell^2 | N^\#$ where ℓ is a prime (not necessarily different from p). Take the base ring $S = \mathcal{O}_{\mathbb{C}_p}$. Then the operator on $\tilde{M}_k^{p\text{-adic}}(\Gamma_0(N^\#))$ given on q-expansions by

$$F(q) \mapsto F(q^\ell)$$
has a moduli-theoretic interpretation given by “dividing by ℓ-level structure”. That is, we have an operation on test triples (A, C, ω) defined over p-adic $\mathcal{O}_{C, \omega}$-algebras \mathcal{R} given by
\[
V_{\ell}(A, C, \omega) = (A/C[\ell], \pi(C), \pi^*\omega)
\]
where $\pi : A \to A/C[\ell]$ is the canonical projection and $\pi : A/C[\ell] \to A$ is its dual isogeny.

Thus V_{ℓ} induces a form $V_{\ell}^* F \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$ defined by
\[
V_{\ell}^* F(A, C, \omega) := F(V_{\ell}(A, C, \omega)).
\]
For the Tate curve test triple $(\text{Tate}(q), \mu_{N\#}, du/u)$, one sees that $(\mu_{N\#})[\ell] = \mu_\ell$ and $\pi : \text{Tate}(q) \to \text{Tate}(q^\ell)$. Since $\pi : \mathcal{G}_m = \widehat{\text{Tate}(q)} \to \widehat{\text{Tate}(q^\ell)} = \mathcal{G}_m$ is multiplication by ℓ, we have $\pi^* du/u = \ell \cdot du/u$, and so $\pi^* du/u = du/u$. Thus one sees that V_{ℓ} acts on q-expansions by
\[
V_{\ell}^* F(q) = V_{\ell}^* F(\text{Tate}(q), \mu_{N\#}, du/u) = F(\text{Tate}(q^\ell), \mu_{N\#}/\ell, du/u) = F(q^\ell).
\]
If $F \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$, then $V_{\ell}^* F \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$, and the q-expansion principle then implies that $V_{\ell}^* F$ is the unique p-adic modular form of level $N\#$ with q-expansion $F(q^\ell)$.

3.3. Stabilization operators. In this section, we define the “stabilization operators” alluded to in §2.1 as operations on rules on the moduli space of isomorphism classes of test triples. Let $F \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N))$ and henceforth suppose N is the minimal level of F. View $F \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$, and let $a_\ell(F)$ denote the coefficient of the q^ℓ term in the q-expansion $F(q)$. Then up to permutation there is a unique pair of numbers $(\alpha_\ell(F), \beta_\ell(F)) \in \mathbb{C}_p^2$ such that $\alpha_\ell(F) + \beta_\ell(F) = a_\ell(F)$, $\alpha_\ell(F) = \beta_\ell(F) = \ell^{-1}$. We henceforth fix an ordered pair $(\alpha_\ell(F), \beta_\ell(F))$.

Definition 3.3. When $\ell \nmid N$, we define the $(\ell)^+\text{-stabilization of } F$ as
\[
F^{(\ell)^+} = F - \beta_\ell(F)V_{\ell}^* F,
\]
the $(\ell)^-\text{-stabilization of } F$ as
\[
F^{(\ell)^-} = F - \alpha_\ell(F)V_{\ell}^* F,
\]
and the $(\ell)^0\text{-stabilization of } F$ as
\[
F^{(\ell)^0} = F - a_\ell(F)V_{\ell}^* F + \ell^{k-1}V_{\ell}^* V_{\ell}^* F.
\]
We have $F^{(\ell)^0} \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$ for $* \in \{+,-,0\}$.

Observe that on q-expansions, we have
\[
F^{(\ell)^+}(q) := F(q) - \beta_\ell(F)F(q^\ell),
\]
\[
F^{(\ell)^-}(q) := F(q) - \alpha_\ell(F)F(q^\ell),
\]
\[
F^{(\ell)^0}(q) := F(q) - a_\ell(F)F(q^\ell) + \ell^{k-1}F(q^{\ell^2}).
\]
It follows that if F is a T_n-eigenform where $\ell \nmid n$, then $F^{(\ell)^0}$ is still an eigenform for T_n. If F is a T_{ℓ}-eigenform, one verifies by direct computation that $a_{\ell}(F^{(\ell)^+}) = a_\ell(F)$, $a_{\ell}(F^{(\ell)^-}) = \beta_\ell(F)$, and $a_{\ell}(F^{(\ell)^0}) = 0$.

When $\ell | N$, we define the $(\ell)^0\text{-stabilization of } F$ as
\[
F^{(\ell)^0} = F - a_\ell(F)V_{\ell}^* F.
\]
Again, we have $F^{(\ell)^0} \in \mathcal{M}^\text{adic}_{p}(\Gamma_0(N\#))$. On q-expansions, we have
\[
F^{(\ell)^0}(q) := F(q) - a_\ell(F)F(q^\ell).
\]
It follows that if F is a U_n-eigenform where $\ell \nmid n$, then $F^{(\ell)^0}$ is still an eigenform for U_n. If F is a U_ℓ-eigenform, one verifies by direct computation that $a_\ell(F^{(\ell)^0}) = 0$.

Note that for $\ell_1 \neq \ell_2$, the stabilization operators $F \mapsto F^{(\ell_1)^*}$ and $F \mapsto F^{(\ell_2)^*}$ commute. Then for pairwise coprime integers with prime factorizations $N_+ = \prod_i \ell_i^{\ell_i}$, $N_- = \prod_j \ell_j^{\ell_j}$, $N_0 = \prod_m \ell_m^{\ell_m}$, we define the (N_+, N_-, N_0)-stabilization of F as

$$F^{(N_+, N_-, N_0)} := F^{\prod_i (\ell_i)^+} F^{\prod_j (\ell_j)^-} F^{\prod_m (\ell_m)^0}.$$

3.4. **Stabilization operators at CM points.** Let K be an imaginary quadratic field satisfying the Heegner hypothesis with respect to $N\#$. Assume that p splits in K, and let p be prime above p determined by the embedding $K \subset \mathbb{C}_p$. Let $\mathfrak{N} \subset \mathcal{O}_K$ be a fixed ideal such that $\mathcal{O}/\mathfrak{N} = \mathbb{Z}/N\#$, and if $p|N\#$, we assume that $p|\mathfrak{N}$. Let A/\mathcal{O}_{K_p} be an elliptic curve with CM by \mathcal{O}_K. By the theory of complex multiplication and Deuring's theorem, $(A, A[\mathfrak{N}], \omega)$ is an ordinary test triple over \mathcal{O}_{K_p}.

A crucial observation is that at an ordinary CM test triple $(A, A[\mathfrak{N}], \omega)$, one can express $V_\ell(A, A[\mathfrak{N}], \omega)$ and thus (ℓ)-stabilization operators in terms of the action of $G_\ell(\mathcal{O}_K)$ on A coming from Shimura's reciprocity law. First we recall the Shimura action: given an ideal $a \subset \mathcal{O}_K$, we define $A_a = A/A[a]$, an elliptic curve over \mathcal{O}_{K_p} which has CM by \mathcal{O}_K, whose isomorphism class depends only on the ideal class of a. Let $\phi_a : A \to A_a$ denote the canonical projection. Note that there is an induced action of prime-to-\mathfrak{N} integral ideals $a \subset \mathcal{O}_K$ on the set of triples $(A, A[\mathfrak{N}], \omega)$ given by of isomorphism classes $[(A, A[\mathfrak{N}], \omega)]$, given by

$$a \star (A, A[\mathfrak{N}], \omega) = (A_a, A_a[\mathfrak{N}], \omega_a)$$

where $\omega_a \in \Omega^1_{A_a/\mathcal{O}_{K_p}}$ is the unique differential such that $\phi^*_a \omega_a = \omega$. Note that this action descends to an action on the set of isomorphism classes of triples $[(A, A[\mathfrak{N}], \omega)]$ given by $a \star [(A, A[\mathfrak{N}], \omega)] = [a \star (A, A[\mathfrak{N}], \omega)]$. Letting $\mathfrak{N} = (\mathfrak{N}, N)$, also note that for any $\mathfrak{N}' \subset \mathcal{O}_K$ with norm N' and $\mathfrak{N} | \mathfrak{N}' | N\#$, the Shimura reciprocity law also induces an action of prime-to-\mathfrak{N}' integral ideals on CM test triples and isomorphism classes of ordinary CM test triples of level N'.

The following calculation relates the values of V_ℓ, $F^{(\ell)}$ and F at CM test triples.

Lemma 3.4. For a prime ℓ, let $v|\mathfrak{N}$ be the corresponding prime ideal of \mathcal{O}_K above it, let v denote the prime ideal which is the complex conjugate of v, and let $a \subset \mathcal{O}_K$ be an ideal prime to \mathfrak{N}. Then for any $\omega \in \Omega^1_{A/\mathcal{O}_{K_p}}$, we have

$$V_\ell(a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega))) = [v^{-1} a \mathfrak{N}^\# \star (A, A[\mathfrak{N}, v^{-1}], \omega)]$$

and

$$V_\ell(V_\ell(a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega)))) = [v^{-2} a \mathfrak{N}^\# \star (A, A[\mathfrak{N}, v^{-2}], \omega)].$$

As a consequence, if $F \in \mathfrak{M}_k^{\text{adic}}(\Gamma_0(N\#))$, when $\ell \nmid N$ we have

$$F^{(\ell)^+} (a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega))) = F(a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega)) - \beta_\ell(F) F(v^{-1} a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega)),$$

and

$$F^{(\ell)^-} (a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega))) = F(a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega)) - \alpha_\ell(F) F(v^{-1} a \mathfrak{N}^\# \star (A, A[\mathfrak{N}], \omega)),$$
\[F^{(\ell)^0}(a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)) \]
\[= F(a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)) - a_\ell(F)F(\mathfrak{N}^{-1}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)) + \ell^{k-1}F(\mathfrak{N}^{-2}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)), \]

and when \(\ell | N, \)
\[F^{(\ell)^0}(a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)) = F(a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)) - a_\ell(F)F(\mathfrak{N}^{-1}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega)). \]

Proof. Note that \((A, a \mathfrak{M}^\#[\mathfrak{N}^#])[\ell] = A, a \mathfrak{M}^\#[v]. \)

\[
[V_\ell(a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#], \omega))] = [a \mathfrak{M}^\# \ast \nu(A, A[\mathfrak{N}^#], \omega)]
\]
\[
= [a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#][v^{-1}], \nu_i \omega)]
\]
\[
= [\mathfrak{N}^{-1}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#][v^{-1}], (\nu_i \omega)_\nu)]
\]
\[
= [\mathfrak{N}^{-1}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#][v^{-1}], (\nu_i \omega)_\nu)]
\]
\[
= [\mathfrak{N}^{-1}a \mathfrak{M}^\# \ast (A, A[\mathfrak{N}^#][v^{-1}], (\nu_i \omega)_\nu)]
\]

where the last equality, and hence (7) follows, once we prove the following.

Lemma 3.5. Under the canonical isomorphism \(i : A(\ell) \overset{\sim}{\rightarrow} A \) sending an equivalence class \(x + A[\ell] \in A(\ell) \) to \([\ell]x, \) where \([\ell] : A \rightarrow A\) denotes multiplication by \(\ell \) in the group law, we have
\[
(\phi^*_v \omega)_\nu = i^* \omega.
\]

Proof. By definition of \(\omega_\nu \) for a given differential \(\omega, \)
(13) is equivalent to the identity
\[
\phi^*_v \omega = \phi^*_\nu(i^* \omega) = (i \circ \phi_\nu)^* \omega.
\]

To show this, it suffices to establish the equality
\[
\phi^*_v = i \circ \phi_\nu
\]
of isogenies \(A_v \rightarrow A. \) Since \(\phi_\nu \circ \phi_v = \phi(\ell) = A \rightarrow A(\ell), \) we have
\[
i \circ \phi_\nu \circ \phi_v = i \circ \phi(\ell) : A \overset{\phi(\ell)}{\rightarrow} A(\ell) \overset{i}{\rightarrow} A
\]
where the first arrow maps \(x \mapsto x + A[\ell], \) and the second arrow maps \(x + A[\ell] \mapsto [\ell]x. \) Hence this composition is in fact just the multiplication by \(\ell \) map \([\ell]. \) Hence \(i \circ \phi_\nu \) is the dual isogeny of \(\phi_v, \)
i.e. \(\phi^*_v = i \circ \phi_\nu \) and the lemma follows. \[\square \]

The identity (8) follows by the same argument as above, replacing \(\mathfrak{N}^# \) with \(\mathfrak{N}^# v^{-1}. \) Viewing \(F \) as a form of level \(N^# \) and using (7) and (8), then (9), (10), (11) and (12) follow from (3), (4), (5) and (6), respectively. \[\square \]

Finally, we relate the CM period sum of \(F^{(\ell)^+} \) for \(\in \{+,-,0\} \) to that of \(F \) by showing that they differ by an Euler factor at \(\ell \) associated with \(F \otimes \chi^{-1}. \) This calculation will be used in the proof of Theorem 3.9 to relate the values at Heegner points of the formal logarithms \(\log \omega_{\nu F} \) and \(\log \omega_F \) associated with \(F^{(\ell)^+} \) and \(F. \)
Lemma 3.6. Suppose $F \in \tilde{M}^p_{k}(\Gamma_0(N\#))$, and let $\chi : \mathbb{A}^\infty_K \to \mathbb{C}_p^\times$ be a p-adic Hecke character such χ is unramified (at all finite places of K), and $\chi_\infty(\alpha) = \alpha^k$ for any $\alpha \in K^\times$. Let $\{a\}$ be a full set of integral representatives of $\mathcal{C}(O_K)$ where each a is prime to $\mathfrak{N}\#$. If $\ell \nmid N$, we have
\[
\sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F^{(\ell)^+}(a \ast (A, A[\mathfrak{N}\#], \omega)) = (1 - \beta_{\ell}(F) \chi^{-1}(\mathfrak{p})) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega)),
\]
\[
\sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F^{(\ell)^-}(a \ast (A, A[\mathfrak{N}\#], \omega)) = (1 - \alpha_{\ell}(F) \chi^{-1}(\mathfrak{p})) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega)),
\]
\[
\sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F^{(\ell)^0}(a \ast (A, A[\mathfrak{N}\#], \omega)) = \left(1 - a_{\ell}(F) \chi^{-1}(\mathfrak{p}) + \frac{\chi^{-2}(\mathfrak{p})}{\ell}\right) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega))
\]
and if $\ell|N$, we have
\[
\sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F^{(\ell)^0}(a \ast (A, A[\mathfrak{N}\#], \omega)) = (1 - a_{\ell}(F) \chi^{-1}(\mathfrak{p})) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega)),
\]

Proof. First note that by our assumptions on χ, for any $G \in \tilde{M}^p_{k}(\Gamma_0(N\#))$, the quantity $\chi^{-1}(a) G(a \ast (A, A[\mathfrak{N}\#], \omega))$ depends only on the ideal class $[a]$ of a. Since $\{a\}$ of integral representatives of $\mathcal{C}(O_K)$, $\{a\mathfrak{N}\#\}$ is also a full set of integral representatives of $\mathcal{C}(O_K)$. By summing over $\mathcal{C}(O_K)$ and applying Lemma 3.4, we obtain
\[
\sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F^{(\ell)^0}(a \ast (A, A[\mathfrak{N}\#], \omega)) = \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega))
\]
\[
- a_{\ell}(F) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a\mathfrak{N}\#) F(\mathfrak{p}^{-1}a\mathfrak{N}\# \ast (A, A[\mathfrak{N}\#], \omega))
\]
\[
- \frac{1}{\ell} \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a\mathfrak{N}\#) F(\mathfrak{p}^{-2}a\mathfrak{N}\# \ast (A, A[\mathfrak{N}\#], \omega))
\]
\[
= \left(1 - a_{\ell}(F) \chi^{-1}(\mathfrak{p}) + \frac{\chi^{-2}(\mathfrak{p})}{\ell}\right) \sum_{[a] \in \mathcal{C}(O_K)} \chi^{-1}(a) F(a \ast (A, A[\mathfrak{N}\#], \omega))
\]
when $\ell \nmid N$. Similarly, we obtain the other identities for $(\ell)^+$ and $(\ell)^-$-stabilization when $\ell \nmid N$, as well as the identity for $(\ell)^0$-stabilization when $\ell|N$. \qed
3.5. **Coleman integration.** In this section, we recall Liu–Zhang–Zhang’s extension of Coleman’s theorem on p-adic integration. We will use this theorem later in order to directly realize (a pullback of) the formal logarithm along the weight 2 newform $f \in S^\text{new}_2(\Gamma_0(N))$ as a rigid analytic function F on the ordinary locus of $X_0(N)(\mathbb{C}_p)$ (viewed as a rigid analytic space) satisfying $\theta F = f$.

First we recall the theorem of Liu–Zhang–Zhang, closely following the discussion preceding Proposition A.1 in [LZZ15, Appendix A]. Let $R \subset \mathbb{C}_p$ be a local field. Suppose X is a quasi-projective scheme over R, $X^\text{rig} = X(\mathbb{C}_p)^\text{rig}$ is its rigid-analytification, and $U \subset X^\text{rig}$ an affinoid domain with good reduction.

Definition 3.7. Let X and U be as above, and let ω be a closed rigid analytic 1-form on U. Suppose there exists a locally analytic function F_ω on U as well as a Frobenius endomorphism ϕ of U (i.e. an endomorphism reducing to an endomorphism induced by a power of Frobenius on the reduction of U) and a polynomial $P(X) \in \mathbb{C}_p[X]$ such that no root of $P(T)$ is a root of unity, satisfying

- $dF_\omega = \omega$;
- $P(\phi^*)F_\omega$ is rigid analytic;

and F_ω is uniquely determined by these conditions up to additive constant. We then call F_ω the **Coleman primitive of ω on U**. It turns out that F_ω, if it exists, is independent of the choice of $P(X)$ ([Co85, Corollary 2.1b]).

Given an abelian variety A over R of dimension d, recall the formal logarithm defined as follows. Choosing a $\omega \in \Omega^1_{A/\mathbb{C}_p}$, the **$p$-adic formal logarithm along ω** is defined by formal integration

$$
\log_\omega(T) := \int_0^T \omega
$$

in a formal neighborhood \mathring{A} of the origin. Since $A(\mathbb{C}_p)$ is compact, we may extend by linearity to a map $\log_\omega : A(\mathbb{C}_p) \to \mathbb{C}_p$ (i.e., $\log_\omega(x) := \frac{1}{n} \log_\omega(nx)$ if $nx \in \mathring{A}$).

Liu–Zhang–Zhang prove the following extension of Coleman’s theorem.

Theorem 3.8 (See Proposition A.1 in [LZZ15]). Let X and U be as above. Let A be an abelian variety over R which has either totally degenerate reduction (i.e. after base changing to a finite extension of R, the connected component of the special fiber of the Néron model of A is isomorphic to \mathbb{G}_m), or potentially good reduction. For a morphism $\iota : X \to A$ and a differential form $\omega \in \Omega^1_{A/F}$, we have

1. $\iota^*\omega_U$ admits a Coleman primitive on U, and in fact
2. $\iota^*\log_\omega_U$ is a Coleman primitive of $\iota^*\omega_U$ on U, where $\log_\omega : A(\mathbb{C}_p) \to \mathbb{C}_p$ is the p-adic formal logarithm along ω.

3.6. **The main congruence.** Let $f \in M_2(\Gamma_0(N))$ and $g \in M_2(\Gamma_0(N'))$ be normalized eigenforms defined over the ring of integers of a number field with minimal levels N and N', respectively. Let K be an imaginary quadratic field with Hilbert class field H, and suppose K satisfies the Heegner hypothesis with respect to both N and N', with corresponding fixed choices of ideals $\mathfrak{N}, \mathfrak{N}' \subset \mathcal{O}_K$ such that $\mathcal{O}_K/\mathfrak{N} = \mathbb{Z}/N\mathbb{Z}$, $\mathcal{O}_K/\mathfrak{N}' = \mathbb{Z}/N'\mathbb{Z}$, and such that $|\ell|(N, N')$ implies $(\ell, \mathfrak{N}) = (\ell, \mathfrak{N}')$; hence $\mathcal{O}_K/\text{lcm}(\mathfrak{N}, \mathfrak{N}') = \mathbb{Z}/\text{lcm}(N, N')$.

Recall the moduli-theoretic interpretation of $X_0(N)$, in which points on $X_0(N)$ are identified with isomorphism classes $[(A, C)]$ of pairs (A, C) consisting of an elliptic curve A and a cyclic subgroup $C \subset A[N]$ of order N. Throughout this section, let $A/\mathcal{O}_\mathbb{C}_p$ be a fixed elliptic curve with CM by \mathcal{O}_K,
and note that as in §3.4, the Shimura reciprocity law induces an action of integral ideals prime to \(\mathfrak{N} \) on \((A, A[\mathfrak{N}])\), which descends to an action of \(\mathcal{C}(\mathcal{O}_K) \) on \([(A, A[\mathfrak{N}])]\). Let \(\chi : \text{Gal}(H/K) \to \overline{\mathbb{Q}}^\times \) be a character, and let \(L \) be a finite extension of \(K \) containing the Hecke eigenvalues of \(f, g \), the values of \(\chi \) and the field cut out by the kernel of \(\chi \). For any full set of prime-to-\(\mathfrak{N} \) integral representatives \(\{ a \} \) of \(\mathcal{C}(\mathcal{O}_K) \), define the Heegner point on \(J_0(N) \) attached to \(\chi \) by

\[
P(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)([a \ast (A, A[\mathfrak{N}])] - [\infty]) \in J_0(N)(H) \otimes_{\mathbb{Z}} L,
\]

where \([\infty] \in X_0(N)(\mathbb{C}_p)\) denotes the cusp at infinity. Similarly, for any full set of prime-to-\(\mathfrak{N}' \) integral representatives \(\{ a \} \) of \(\mathcal{C}(\mathcal{O}_K) \), define the Heegner point on \(J_0(N') \) attached to \(\chi \) by

\[
P'(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)([a \ast (A, A[\mathfrak{N}'])] - [\infty']) \in J_0(N')(H) \otimes_{\mathbb{Z}} L,
\]

where \([\infty'] \in X_0(N')(\mathbb{C}_p)\) denotes the cusp at infinity.

Let \(\iota : X_0(N) \to J_0(N) \) denote the Abel-Jacobi map sending \([\infty] \mapsto 0\), and let \(\iota' : X_0(N') \to J_0(N') \) denote the Abel-Jacobi map sending \([\infty'] \mapsto 0\). Let \(A_f \) and \(A_g \) be the abelian varieties over \(\mathbb{Q} \) of \(\text{GL}(2) \)-type associated with \(f \) and \(g \). Fix modular parametrizations \(\pi_f : J_0(N) \to A_f \) and \(\pi_g : J_0(N') \to A_g \). Let \(P_f(\chi) := \pi_f(P(\chi)) \) and \(P_g(\chi) := \pi_g(P'(\chi)) \). Letting

\[
\omega_f \in \Omega^1_{J_0(N)/\mathcal{O}_C_p} \text{ such that } \iota^* \omega_f = f(q) \cdot dq/q,
\]

and

\[
\omega_g \in \Omega^1_{J_0(N')/\mathcal{O}_C_p} \text{ such that } \iota'^* \omega_g = g(q) \cdot dq/q,
\]

we choose \(\omega_{A_f} \in \Omega^1_{A_f/\mathbb{Q}} \) and \(\omega_{A_g} \in \Omega^1_{A_g/\mathbb{Q}} \) such that \(\pi_f^* \omega_{A_f} = \omega_f \) and \(\pi_g^* \omega_{A_g} = \omega_g \).

We define

\[
\log_{\omega_f} P(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a) \log_{\omega_f}([a \ast (A, A[\mathfrak{N}])] - [\infty]) \in L_p
\]

and

\[
\log_{\omega_g} P'(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a) \log_{\omega_g}([a \ast (A, A[\mathfrak{N}'])] - [\infty']) \in L_p.
\]

The fact that these are values in \(L_p \) follows from the fact \(P(\chi) \in J_0(N)(H) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}} \) is in the \(\chi \)-isotypic component of \(\text{Gal}(\overline{\mathbb{Q}}/K) \), and similarly for \(P'(\chi) \). We similarly define \(\log_{\omega_{A_f}} P_f(\chi) \in L_p \) and \(\log_{\omega_{A_g}} P_g(\chi) \in L_p \), and note that by functoriality of the \(p \)-adic logarithm, \(\log_{\omega_f} P(\chi) = \log_{\omega_{A_f}} P_f(\chi) \) and \(\log_{\omega_g} P'(\chi) = \log_{\omega_{A_g}} P_g(\chi) \).

Let \(\lambda \) be the prime of \(\mathcal{O}_L \) above \(p \) determined by the embedding \(L \hookrightarrow \overline{\mathbb{Q}}_p \). We will now prove a generalization of Theorem 1.16 for general weight 2 forms.

Theorem 3.9. In the setting and notations described above, suppose that the associated semisimple mod \(\lambda^m \) representations \(\tilde{\rho}_f, \tilde{\rho}_g : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathcal{O}_{L_p}/\lambda^m) \) satisfy \(\tilde{\rho}_f \cong \tilde{\rho}_g \). For each prime
\[\ell | NN', \text{ let } v | NN' \text{ be the corresponding prime above it. Then we have} \]

\[
\prod_{\ell | NN'/M, \ell | N} \left(\frac{\ell - a_\ell(f) \chi^{-1}(\ell) + \chi^{-2}(\ell)}{\ell} \right) \equiv \prod_{\ell | NN'/M, \ell | N} \left(\frac{\ell - a_\ell(g) \chi^{-1}(\ell) + \chi^{-2}(\ell)}{\ell} \right) \log_{\omega_{\Lambda_f}} P_f(\chi) \quad \pmod{\lambda^m \mathcal{O}_L},
\]

where

\[M = \prod_{\ell | (N, N'), a_\ell(f) \equiv a_\ell(g) \pmod{\lambda^m}} \ell \]

Proof of Theorem 3.2 We first transfer all differentials and Heegner points on \(J_0(N) \) and \(J_0(N') \) to the Jacobian \(J_0(N^\#) \) of the modular curve \(X_0(N^\#) \), where \(N^\# := \text{lcm}_{\ell | NN'}(N, N', p^2, \ell^2) \). Note that for the newforms \(f \) and \(g \), the minimal levels of the stabilizations \(f^{(\ell)} \) and \(g^{(\ell)} \) divide \(N^\# \), since if \(\ell^2 | N \) then \(a_\ell(f) = 0 \) and \(f^{(\ell)} = f \), and similarly if \(\ell^2 | N' \) then \(g^{(\ell)} = g \). By assumption, \(K \) satisfies the Heegner hypothesis with respect to \(N^\# \), and let \(\Omega^\# := \text{lcm}_{\ell | NN'}(\Omega, \Omega', p^2, v^2) \). For any full set of prime-to-\(\Omega^\# \) integral representatives \(\{a\} \) of \(\mathcal{C}(\mathcal{O}_K) \), define

\[P^\#(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a) \left[\{a \ast (A, A[\Omega^\#])\} - [\infty^\#] \right] \in J_0(N^\#)(H) \otimes \mathbb{Z}, L, \]

where \([\infty^\#] \in X_0(N^\#)(\mathbb{C}_p)\) denotes the cusp at infinity. Letting \(\pi^\#: J_0(N^\#) \to J_0(N) \) and \(\pi^{1,\#} : J_0(N^\#) \to J_0(N') \) denote the natural projections, one sees that \(\pi^\#(P^\#(\chi)) = P(\chi) \) and that \(\pi^{1,\#}(P^\#(\chi)) = P'(\chi) \). Let \(i^\#: X_0(N^\#) \to J_0(N^\#) \) denote the Abel-Jacobi map sending \([\infty^\#] \mapsto 0\). Viewing \(f \) and \(g \) as having level \(N^\# \), we define their associated differential forms by

\[\omega^\#_f \in \Omega^1_{J_0(N^\#)/\mathcal{O}_C} \text{ such that } i^\#: \omega^\#_f = f(q) \cdot dq/q \in \Omega^1_{X_0(N^\#)/\mathcal{O}_C}, \]

and similarly define \(\omega^\#_g \in \Omega^1_{J_0(N^\#)/\mathcal{O}_C} \). One sees that \(\pi^\#: \omega^\#_f = \omega^\#_f \) and \(\pi^{1,\#}: \omega^\#_g = \omega^\#_g \). Finally, define

\[\log_{\omega^\#_f} P^\#(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a) \log_{\omega^\#_f} \left([a \ast (A, A[\Omega^\#])] - [\infty^\#] \right) \in L_p \]

and similarly for \(\log_{\omega^\#_g} P^\#(\chi) \).

Let \(N_0^\# \) denote the prime-to-\(p \) part of \(N^\# \). Let \(\mathcal{X} \) denote the canonical smooth proper model of \(X_0(N^\#) \) over \(\mathbb{Z}_p \), and let \(X_{\mathbb{F}_p} \) denote its special fiber. There is a natural reduction map \(: X_0(N^\#)(\mathbb{C}_p) = \mathcal{X}(\mathcal{O}_{\mathbb{C}_p}) \to X_{\mathbb{F}_p}(\mathbb{F}_p) \). Viewing \(X_0(N^\#)(\mathbb{C}_p) \) as a rigid analytic space, the inverse image in \(X_0(N^\#)(\mathbb{C}_p) \) of an element of the finite set of supersingular points in \(X_{\mathbb{F}_p}(\mathbb{F}_p) \) is conformal to an open unit disc, and is referred to as a supersingular disc. Let \(D_0 \) denote the the affinoid domain of good reduction obtained by removing the finite union of supersingular discs from the rigid space \(X_0(N^\#)(\mathbb{C}_p) \). In the moduli-theoretic interpretation, \(D_0 \) consists of points \([A, C]\) over \(\mathcal{O}_{\mathbb{C}_p} \) of good reduction such that \(A \otimes \mathcal{O}_{\mathbb{C}_p} \mathbb{F}_p \) is ordinary. The canonical projection \(X_0(N^\#) \to X_0(N_0^\#) \) has a rigid analytic section on \(D_0 \) given by “increasing level \(N_0^\# \) structure by the order \(N^\#/N_0^\# \) canonical subgroup”. Namely given \([A, C]\) \in \(D_0 \), the section is defined by \([A, C] \mapsto ([A, C]) \mapsto ([A, C \times \overline{A}[N^\#/N_0^\#]]) \). We identify \(D_0 \) with its lift \(D \), which is called the ordinary locus of \(X_0(N^\#)(\mathbb{C}_p) \); one sees from the above construction that \(D \) is an affinoid domain of good reduction.
A p-adic modular form F of weight 2 (as defined in §3.2) can be equivalently viewed as a rigid analytic section of $(Ω_{X_0(N^\#)/\mathcal{C}_p})|_\mathcal{D}$ (viewed as an analytic sheaf). Under this identification, the exterior differential is given on q-expansions by $d = \theta \frac{dq}{q}$. \(\theta\) is the Atkin–Serre operator on p-adic modular forms acting via $q\frac{d}{dq}$ on q-expansions. Thus for each $j \in \mathbb{Z}_{\geq 0}$, $\theta^j F$ is a rigid analytic section of $(Ω_{X_0(N^\#)/\mathcal{C}_p})|_\mathcal{D}$. The collection of p-adic modular forms $\theta^j(f^{(p)})$ varies p-adically continuously in $j \in \mathbb{Z}/(p-1) \times \mathbb{Z}_p$ (as one verifies on q-expansions), and so

$$
\theta^{-1}(f^{(p)}) := \lim_{j \to (-1,0)} \theta^j(f^{(p)})
$$

is a rigid analytic function on \mathcal{D} and a Coleman primitive for $\iota^\# \cdot \omega_f^{(p)}$ since

$$
d\theta^{-1}(f^{(p)}) = f^{(p)}(q) \cdot dq/q = \iota^\# \cdot \omega_f^{(p)}.
$$

Also note that $\iota^\# \cdot \omega_f$ (restricted to \mathcal{D}) has a Coleman primitive $F_{\iota^\# \cdot \omega_f}$ by part (1) of Theorem 3.8 (applied to $R = \mathbb{Q}_p$, $X = X_0(N\#)$, $U = \mathcal{D}$ and $A = J_0(N\#)$), which we can (and do) choose to take the value 0 at $[\infty \#]$. As a locally analytic function on \mathcal{D}, $F_{\iota^\# \cdot \omega_f}$ can be viewed as an element of $\tilde{M}_0^{\text{p-adic}}(\Gamma_0(N\#))$ (see Definition 3.2). By the moduli-theoretic definition of (p)-stabilization in terms of the operators V_p defined in §3.3, we have

$$
d\theta^{-1}(f^{(p)}) = d(F_{\iota^\# \cdot \omega_f}^{(p)}),
$$

and so

$$
\theta^{-1}(f^{(p)}) = (F_{\iota^\# \cdot \omega_f}^{(p)})
$$

by uniqueness of Coleman primitives. The same argument shows that $\theta^{-1}(g^{(p)}) = (F_{\iota^\# \cdot \omega_g}^{(p)})$.

Since $\tilde{\rho}_f \equiv \tilde{\rho}_g$, we have

$$
\theta^j(f^{(pN^{N'/M})})(q) \equiv \theta^j(g^{(pN^{N'/M})})(q) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}
$$

for all $j \geq 0$. Letting $j \to (-1,0) \in \mathbb{Z}/(p-1) \times \mathbb{Z}_p$, we find that

$$
\theta^{-1}(f^{(pN^{N'/M})})(q) \equiv \theta^{-1}(g^{(pN^{N'/M})})(q) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}.
$$

Let N_0 denote the prime-to-p part of NN'/M. One sees directly from the description of stabilization operators on q-expansions that $\theta^{-1}(f^{(pN^{N'/M})})(q) = (\theta^{-1}(f^{(p)}))^{(N_0)}(q)$ and $\theta^{-1}(g^{(pN^{N'/M})})(q) = (\theta^{-1}(g^{(p)}))^{(N_0)}(q)$. Thus, the above congruence becomes

$$
(\theta^{-1}(f^{(p)}))^{(N_0)}(q) \equiv (\theta^{-1}(g^{(p)}))^{(N_0)}(q) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}.
$$

Using the identities $\theta^{-1}(f^{(p)}) = (F_{\iota^\# \cdot \omega_f}^{(p)})$ and $\theta^{-1}(g^{(p)}) = (F_{\iota^\# \cdot \omega_g}^{(p)})$ and the equality of stabilization operators $(pN_0) = (pN^{N'/M})$, we have

$$
(F_{\iota^\# \cdot \omega_f}^{(pN^{N'/M})})(q) \equiv (F_{\iota^\# \cdot \omega_g}^{(pN^{N'/M})})(q) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}.
$$

Thus, applying the q-expansion principle (i.e. the fact that the q-expansion map is injective), we have that

$$
(F_{\iota^\# \cdot \omega_f}^{(pN^{N'/M})}) \equiv (F_{\iota^\# \cdot \omega_g}^{(pN^{N'/M})}) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}
$$
as weight 0 p-adic modular forms on D over $\mathcal{O}_{\mathbb{C}_p}$. In particular, for an ordinary CM test triple $(A,A[\mathfrak{N}^\#],\omega)$, we have

$$\left(F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)} \right)(a \ast (A,A[\mathfrak{N}^\#],\omega)) \equiv \left(F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)} \right)(a \ast (A,A[\mathfrak{N}^\#],\omega)) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}. \tag{15}$$

Applying Lemma 3.6 inductively to $F_t = F_t((\prod_{\ell=1}^{t-1} \ell_i) / p\mathcal{N}'/M)$ for $1 \leq t \leq r$ where $\prod_{\ell=1}^{t} \ell_i$ is the square-free part of $p\mathcal{N}'/M$ (so that $F_0 = F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}$, $F_r = F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}$ and $F_{t+1} = F_{t}$), and noting that $\theta F_{\ell^\#,\omega_f^\#} ^{(t)}(q) = f(q)$ implies $a_{\ell_t}(F_t) = a_{\ell_t}(f/\ell_t)$, we obtain, for any full set of prime-to-$\mathfrak{N}^\#$ integral representatives $\{a\}$ of $\mathcal{C}(\mathcal{O}_K)$,

$$\sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)(F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)})(a \ast (A,A[\mathfrak{N}^\#],\omega))$$

$$= \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} + \frac{\chi^{-2}(\overline{\tau})}{\ell} \right) \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} \right)$$

$$\cdot \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}(a \ast (A,A[\mathfrak{N}^\#],\omega))$$

and similarly for $F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}$. Thus by (15), we have

$$\left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} + \frac{\chi^{-2}(\overline{\tau})}{\ell} \right) \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} \right)$$

$$\cdot \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}(a \ast (A,A[\mathfrak{N}^\#],\omega))$$

$$\equiv \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} + \frac{\chi^{-2}(\overline{\tau})}{\ell} \right) \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} \right)$$

$$\cdot \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}(a \ast (A,A[\mathfrak{N}^\#],\omega)) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}. \tag{15}$$

By part (2) of Theorem 3.8 we have $F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)} = \ell^\# \ast \log_{\omega_f^\#}$ and $F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)} = \ell^\# \ast \log_{\omega_f^\#}$. Thus, the above congruence becomes

$$\left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} + \frac{\chi^{-2}(\overline{\tau})}{\ell} \right) \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} \right)$$

$$\cdot \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}(a \ast (A,A[\mathfrak{N}^\#],\omega))$$

$$\equiv \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} + \frac{\chi^{-2}(\overline{\tau})}{\ell} \right) \left(\prod_{\ell | p\mathcal{N}'/M, \ell \not| N} 1 - \frac{a_{\ell}(f)}{\ell} \frac{\chi^{-1}(\overline{\tau})}{\ell} \right)$$

$$\cdot \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a)F_{\ell^\#,\omega_f^\#} ^{(p\mathcal{N}'/M)}(a \ast (A,A[\mathfrak{N}^\#],\omega)) \pmod{\lambda^m \mathcal{O}_{\mathbb{C}_p}}. \tag{15}$$

In fact, since both sides of this congruence belong to L_p and $L_p \cap \mathcal{O}_{\mathbb{C}_p} = \mathcal{O}_{L_p}$, this congruence in fact holds mod $\lambda^m \mathcal{O}_{L_p}$. The theorem now follows from the functoriality of the p-adic logarithm:

$$\log_{\omega_f^\#} P^\#(\chi) = \log_{\pi^\# \cdot \omega_f^\#} P^\#(\chi) = \log_{\omega_f^\#} P(\chi) = \log_{\pi^\# \omega_f^\#} P(\chi) = \log_{\omega_f^\#} P(\chi) = \log_{\omega_f^\#} P(\chi)$$

$$19$$
and similarly \(\log_{\omega_E^#} P^#(\chi) = \log_{\omega_A^g} P_g(\chi). \)

\[\square \]

Remark 3.10. The normalizations of \(\omega_E \) and \(\omega_{E'} \) in the statement of Theorem 1.16 *a priori* imply that both sides of Theorem 1.16 are \(p \)-integral. This is because CM points are integrally defined by the theory of CM and the above proof shows that the rigid analytic function \(i^{\#,*} \log_{\omega_j(pN\mathcal{N}^t/M)} \) has integral \(q \)-expansion.

Let \(\omega_E \) denote the canonical Néron differential of \(E \) (as we do in \(\S 5 \)), and let \(c \in \mathbb{Z} \) such that \(\omega_E = c \cdot \omega_E \). Note that the normalization of the \(p \)-adic formal logarithm \(\log_{\omega_E} \) above differs by a factor of \(c \) from that of the normalization \(\log_E := \log_{\omega_E} \). So we know that

\[
\frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_p)|}{p \cdot c} \cdot \log_E P = \frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_p)|}{p} \cdot \log_{\omega_E} P
\]

is \(p \)-integral. We remark this is compatible with the \(p \)-part of the BSD conjecture. In fact, the \(p \)-part of the BSD conjecture predicts that \(P \) is divisible by \(p^\ord_p \cdot c \cdot c_p(E) \) in \(E(K) \) (see the conjectured formula \(\text{(59)} \)) and so \(\frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_p)|}{c} \cdot P \) lies in the formal group and hence \(\frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_p)|}{c} \cdot \log_E P \in p\mathcal{O}_K \).

Remark 3.11. Note that both sides of the congruence in the statement of Theorem 3.9 depend on the choices of appropriate \(\mathfrak{N}, \mathfrak{N}' \) up to a sign \(\pm 1 \). In fact, for a rational prime \(\ell | N \) (resp. \(\ell | N' \)), if we let \(v = (\mathfrak{N}, \ell) \) with complex conjugate prime ideal \(\overline{\mathfrak{N}} \) (resp. \(v' = (\mathfrak{N}', \ell) \) with complex conjugate prime ideal \(\overline{\mathfrak{N}'} \)), replacing \(\mathfrak{N} \) with \(\mathfrak{N}^{-1} \overline{\mathfrak{N}} \) (resp. \(\mathfrak{N}' \) with \(\mathfrak{N}'^{-1} \overline{\mathfrak{N}'} \)) amounts to performing an Atkin-Lehner involution on the Heegner point \(P_f(\chi) \) (resp. \(P_g(\chi) \)), which amounts to multiplying the Heegner point by the local root number \(w_\ell(A_f) \in \{ \pm 1 \} \) (resp. \(w_\ell(A_g) \in \{ \pm 1 \} \)). Our proof in fact shows that for whatever change we make in choice of \(\mathfrak{N} \) (resp. \(\mathfrak{N}' \)), both sides are multiplied by the same sign \(\pm 1 \).

3.7. **Proof of Theorem 1.16** It follows immediately from Theorem 3.9 by taking \(\chi = 1 \), \(L = K \), and \(f \) and \(g \) to be associated with \(E \) and \(E' \). The Heegner points \(P = P_f(1) \) and \(P' = P_g(1) \) are defined up to sign and torsion depending on the choices of \(\mathfrak{N} \) and \(\mathfrak{N}' \) (see \(\text{[Gro84]} \)).

4. **Goldfeld’s conjecture for a general class of elliptic curves**

Our goal in this section is to prove Theorem 1.12. Throughout this section we assume

\[
E(\mathbb{Q}[2]) = 0, \text{ or equivalently, } \text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q}) \cong S_3 \text{ or } \mathbb{Z}/3\mathbb{Z}.
\]

Notice that this assumption is mild and is satisfied by 100% of all elliptic curves (when ordered by naive height).

4.1. **Explicit twists.** Now we restrict our attention to the following well-chosen set of twisting discriminants.

Definition 4.1. Given an imaginary quadratic field \(K \) satisfying the Heegner hypothesis for \(N \), we define the set \(\mathcal{S} \) consisting of primes \(\ell \nmid 2N \) such that

1. \(\ell \) splits in \(K \).
2. \(\text{Frob}_\ell \in \text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q}) \) has order 3.

We define \(\mathcal{N} \) to be the set of all integers \(d \equiv 1 \pmod{4} \) such that \(|d| \) is a square-free product of primes in \(\mathcal{S} \).
Remark 4.2. By Chebotarev’s density theorem, the set of primes S has Dirichlet density $\frac{1}{6} = \frac{1}{2} \cdot \frac{1}{3}$ or $\frac{1}{3} = \frac{1}{2} \cdot \frac{2}{3}$ depending on $\text{Gal}(\mathbb{Q}(E[2]/\mathbb{Q})) \cong S_3$ or $\mathbb{Z}/3\mathbb{Z}$. In particular, there are infinitely many elements of N with k prime factors for any fixed $k \geq 1$.

For $d \in N$, we consider $E^{(d)}/\mathbb{Q}$, the quadratic twist of E/\mathbb{Q} by $\mathbb{Q}(\sqrt{d})$. Since $d \equiv 1 \pmod{4}$, we know that 2 is unramified in $\mathbb{Q}(\sqrt{d})$ and $E^{(d)}/\mathbb{Q}$ has conductor Nd^2. Hence K also satisfies the Heegner hypothesis for Nd^2. Let $P^{(d)} \in E^{(d)}(K)$ be the corresponding Heegner point. Since $E[2] \cong E^{(d)}[2]$, we can apply Theorem 1.16 to E and $E^{(d)}$, $p = 2$ and obtain the following theorem.

Theorem 4.3. Suppose E/\mathbb{Q} is an elliptic curve with $E(\mathbb{Q})[2] = 0$. Let K be an imaginary quadratic field satisfying the Heegner hypothesis for N. Assume $d \in N$.

(1) We have

$$\frac{\left|\tilde{E}^{(d),ns}(\mathbb{F}_2)\right| \cdot \log_{\omega_E}(P)}{2} \neq 0 \pmod{2}.$$

In particular, $P^{(d)} \in E^{(d)}(K)$ is of infinite order and $E^{(d)}/K$ has both algebraic and analytic rank one.

(2) The rank part of the BSD conjecture is true for $E^{(d)}/\mathbb{Q}$ and $E^{(d-d_K)}/\mathbb{Q}$. One of them has both algebraic and analytic rank one and the other has both algebraic and analytic rank zero.

(3) $E^{(d)}/\mathbb{Q}$ (resp. $E^{(d-d_K)}/\mathbb{Q}$) has the same rank as E/\mathbb{Q} if and only if $\psi_d(-N) = 1$ (resp. $\psi_d(-N) = -1$), where ψ_d is the quadratic character associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$.

4.2. **Proof of Theorem 4.3**

(1) We apply Theorem 1.16 to the two elliptic curves E/\mathbb{Q} and $E^{(d)}/\mathbb{Q}$ and $p = 2$. Let $\ell | Nd^2$ be a prime. Notice

(a) if $\ell \mid |N$,

$$a_\ell(E), a_\ell(E^{(d)}) \in \{\pm 1\},$$

(b) if $\ell^2 \mid |N$,

$$a_\ell(E) = a_\ell(E^{(d)}) = 0,$$

(c) if $\ell \mid d$, we have $\ell \in S$. Since Frob_ℓ is order 3 on $E[2]$, we know that its trace

$$a_\ell(E) \equiv 1 \pmod{2}.$$

Since $\ell^2 \mid Nd^2$, we know that

$$a_\ell(E^{(d)}) = 0.$$

It follows that $M = N^2$. The congruence formula in Theorem 1.16 then reads:

$$\frac{|\tilde{E}^{ns}(\mathbb{F}_2)|}{2} \prod_{\ell \mid d} \frac{|\tilde{E}^{ns}(\mathbb{F}_\ell)|}{\ell} \cdot \log_{\omega_E} P = \frac{|\tilde{E}^{(d),ns}(\mathbb{F}_2)|}{2} \prod_{\ell \mid d} \frac{|\tilde{E}^{(d),ns}(\mathbb{F}_\ell)|}{\ell} \cdot \log_{\omega_{E^{(d)}}} P^{(d)} \pmod{2}.$$

Since E has good reduction at $\ell \mid d$ and ℓ is odd, we have

$$|\tilde{E}^{ns}(\mathbb{F}_\ell)| = |E(\mathbb{F}_\ell)| = \ell + 1 - a_\ell(E) \equiv a_\ell(E) \equiv 1 \pmod{2}.$$
Since $E(d)$ has additive reduction at $\ell \mid d$ and ℓ is odd, we have
\[|\mathcal{E}^{(d),ns}(\mathbb{F}_\ell)| = \ell \equiv 1 \pmod{2}. \]

Therefore we obtain the congruence
\[\frac{|\mathcal{E}^{(d),ns}(\mathbb{F}_2)| \cdot \log_{\omega_{E}} P}{2} \equiv \frac{|\mathcal{E}^{(d),ns}(\mathbb{F}_2)| \cdot \log_{\omega_{E(d)}} P^{(d)}}{2} \pmod{2}. \]

Assumption \(\star \) says that the left-hand side is nonzero, hence the right-hand side is also nonzero. In particular, the Heegner point $P^{(d)}$ is of infinite order. The last assertion follows from the celebrated work of Gross–Zagier and Kolyvagin.

(2) Since \[L(E^{(d)}/K,s) = L(E^{(d)}/\mathbb{Q},s) \cdot L(E^{(d,K)}/\mathbb{Q},s), \]
the sum of the analytic rank of $E^{(d)}/\mathbb{Q}$ and $E^{(d,K)}/\mathbb{Q}$ is the equal to the analytic rank of $E^{(d)}/K$, which is one by the first part. Hence one of them has analytic rank one and the other has analytic rank zero. The remaining claims follow from Gross–Zagier and Kolyvagin.

(3) It is well-known that the global root numbers of quadratic twists are related by
\[\varepsilon(E/\mathbb{Q}) \cdot \varepsilon(E^{(d)}/\mathbb{Q}) = \psi_d(-N). \]

It follows that $E^{(d)}/\mathbb{Q}$ and E/\mathbb{Q} have the same global root number if and only if $\psi_d(-N)=1$. Since the analytic ranks of $E^{(d)}/\mathbb{Q}$ and E/\mathbb{Q} are at most one, the equality of global root numbers implies the equality of the analytic ranks.

4.3. **Proof of Theorem 1.12** This is a standard application of Ikehara’s tauberian theorem (see, e.g., [Ser76, 2.4]). We include the argument for completeness. Since the set of primes \mathcal{S} has Dirichlet density $\alpha = \frac{1}{6}$ or $\frac{1}{3}$ depending on $\text{Gal}(\mathbb{Q}(E[2]/\mathbb{Q})) \cong S_3$ or $\mathbb{Z}/3\mathbb{Z}$, we know that
\[\sum_{\ell \in \mathcal{S}} \ell^{-s} \sim \alpha \cdot \log \frac{1}{s-1}, \quad s \to 1+. \]

Then
\[\log \left(\sum_{d \in \mathcal{N}} |d|^{-s} \right) = \log \left(\prod_{\ell \in \mathcal{S}} (1 + \ell^{-s}) \right) \sim \sum_{\ell \in \mathcal{S}} \ell^{-s} \sim \alpha \cdot \log \frac{1}{s-1}, \quad s \to 1+. \]

Hence
\[\sum_{d \in \mathcal{N}} |d|^{-s} = \frac{1}{(s-1)^\alpha} \cdot f(s) \]
for some function $f(s)$ holomorphic and nonzero when $\Re(s) \geq 1$. It follows from Ikehara’s tauberian theorem that
\[\# \{ d \in \mathcal{N} : |d| < X \} \sim c \cdot \frac{X}{\log^{1-\alpha} X}, \quad X \to \infty \]
for some constant $c > 0$. But by Theorem 4.3(2), we have for $r = 0, 1,$
\[N_r(E, X) \geq \# \{ d \in \mathcal{N} : |d| < X/|d_K| \}. \]

The results then follow.
5. The 2-part of the BSD conjecture

In this sections, we aim to prove the following consequence on BSD(2) when \(r \leq 1 \) for all the explicit quadratic twists under consideration, at least when the local Tamagawa number at \(2 \) is odd.

Theorem 5.1. Let \(E/\mathbb{Q} \) be an elliptic curve with \(E(\mathbb{Q})[2] = 0 \). Assume there is an imaginary quadratic field \(K \) satisfying the Heegner hypothesis for \(N \) and Assumption [★]. Further assume that the local Tamagawa number \(c_2(E) \) is odd. If \(E \) has additive reduction at \(2 \), further assume its Manin constant is odd.

1. If BSD(2) is true for \(E/K \), then BSD(2) is true for \(E^d/K \), for any \(d \in \mathbb{N} \).
2. If BSD(2) is true for \(E/\mathbb{Q} \) and \(E^{(dK)}/\mathbb{Q} \), then BSD(2) is true for \(E^d/\mathbb{Q} \) and \(E^{(d-dK)}/\mathbb{Q} \), for any \(d \in \mathbb{N} \) such that \(\psi_d(-N) = 1 \).

Remark 5.2. BSD(2) for a single elliptic curve (of small conductor) can be proved by numerical calculation when \(r \leq 1 \) (see [Mil11] for curves of conductor at most 5000). Theorem 5.1 then allows one to deduce BSD(2) for many of its quadratic twists (of arbitrarily large conductor). See [Ø6] for examples.

Remark 5.3. Manin’s conjecture asserts the Manin constant for any optimal curve is 1, which would imply that the Manin constant for \(E \) is odd since \(E \) is assumed to have no rational 2-torsion. Cremona has proved Manin’s conjecture for all optimal curves of conductor at most 380000 (see [ARS06] Theorem 2.6) and the update at http://johncremona.github.io/ecdata/#optimality.

5.1. The strategy of the proof. Under Assumption [★] and the assumption that \(c_2(E) \) is odd, the Heegner point \(P \in E(K) \) is indivisible by 2 (Lemma 5.4), equivalently, all the local Tamagawa numbers of \(E \) are odd, and the 2-Selmer group \(\text{Sel}_2(E/K) \) has rank one (Corollary 5.5). We are able to deduce that all the local Tamagawa numbers of \(E^d \) are also odd (Lemma 10.12), and \(\text{Sel}_2(E^d/K) \) also has rank one (Lemma 5.9). These are consequences of the primes in the well-chosen set \(S \) being silent in the sense of Mazur–Rubin [MR15]. Notice that \(\text{Sel}_2(E^d/K) \) having rank one predicts that \(E^d(K) \) has rank one and \(\text{III}(E^d/K)[2] \) is trivial, though it is not known in general how to show this directly (Remark 5.14). The advantage here is that we know a priori from the mod 2 congruence that the Heegner point \(P^d \in E^d(K) \) is also indivisible by 2. Hence the prediction is indeed true and implies BSD(2) for \(E^d/K \) (Corollary 5.8).

Since the Iwasawa main conjecture is not known for \(p = 2 \), the only known way to prove BSD(2) over \(\mathbb{Q} \) is to compute the 2-part of both sides of [2] explicitly. We compute the 2-Selmer group \(\text{Sel}_2(E^d/K) \) (Lemma 5.10) and compare this to a formula of Zhai [Zha16] (based on modular symbols) for 2-part of algebraic \(L \)-values for rank zero twists. This allows us to deduce BSD(2) for the rank zero curve among \(E^d \) and \(E^{(d-dK)} \) (Lemma 5.12). Finally, BSD(2) for \(E^d/K \) and BSD(2) for the rank zero curve together imply BSD(2) for the rank one curve among \(E^d \) and \(E^{(d-dK)} \).

5.2. BSD(2) for \(E/K \). Let \(E \) and \(K \) be as in Theorem 5.1. By the Gross–Zagier formula, the BSD conjecture for \(E/K \) is equivalent to the equality ([GZ86, V.2.2])

\[
\langle u_K \cdot c_E \cdot \prod_{\ell \nmid N} c_{\ell}(E) \cdot \text{III}(E/K)|^1/2 = |E(K) : ZP|, \tag{16}
\]

where \(u_K = |\mathcal{O}_K^\times/\{±1\}|, c_E \) is the Manin constant of \(E/\mathbb{Q} \), \(c_{\ell}(E) = |E(\mathbb{Q}_\ell) : E^0(\mathbb{Q}_\ell)| \) is the local Tamagawa number of \(E \) and \(|E(K) : ZP| \) is the index of the Heegner point \(P \in E(K) \). By
Assumption [★] that 2 splits in K, we know $K \neq \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, so $u_K = 1$. Therefore the BSD conjecture for E/K is equivalent to the equality

\[\prod_{\ell \in \mathcal{S}} c_{\ell}(E) \cdot [\text{III}(E/K)]^{1/2} = \frac{[E(K) : \mathbb{Z}P]}{c_E}, \tag{17} \]

Lemma 5.4. The right-hand side of (17) is a 2-adic unit.

Proof. Since $\mathbb{Q}(E[2])/\mathbb{Q}$ is an S_3 or $\mathbb{Z}/3\mathbb{Z}$ extension, we know that the Galois representation $E[2]$ remains irreducible when restricted to any quadratic field, hence $E(K)[2] = 0$.

Notice that the Manin constant c_E is odd: it follows from [AU96, Theorem A] when E is good at 2, from [AU96, p.270 (ii)] when E is multiplicative at 2 since $c_2(E)$ is assumed to be odd, and by our extra assumption when E is additive at 2.

Since c_E is odd, we know that the right-hand side of (17) 2-adically integral. If it is not a 2-adic unit, then there exists some $Q \in E(K)$ such that $2Q$ is an odd multiple of P. Let ω be the Néron differential of E and let $\log_E := \log_{\omega_E}$. By the very definition of the Manin constant we have $c_E \cdot \omega_E = \omega_E$ and $c_E \cdot \log_{\omega_E} = \log_E$. Hence up to a 2-adic unit, we have

\[\frac{|\tilde{E}^{ns}(\mathbb{F}_2)| \cdot \log_{\omega_E} P}{2} = \frac{|\tilde{E}^{ns}(\mathbb{F}_2)| \cdot \log_E P}{2} = |\tilde{E}^{ns}(\mathbb{F}_2)| \cdot \log_E(Q). \]

On the other hand, $c_2(E) \cdot |\tilde{E}^{ns}(\mathbb{F}_2)| \cdot Q$ lies in the formal group $\tilde{E}(2\mathcal{O}_K)$ and $c_2(E)$ is assumed to be odd, we know that

\[|\tilde{E}^{ns}(\mathbb{F}_2)| \cdot \log_E(Q) \in 2\mathcal{O}_K, \]

which contradicts (★). So the right-hand side of (17) is a 2-adic unit. \(\square\)

Since the left-hand side of (17) is a product of integers, Lemma 5.4 implies the following.

Corollary 5.5. BSD(2) for E/K is equivalent to that all the local Tamagawa numbers $c_{\ell}(E)$ are odd and III(E/K)[2] = 0.

5.3. BSD(2) for $E^{(d)}/K$. Let $d \in \mathcal{N}$. The BSD conjecture for $E^{(d)}/K$ is equivalent to the equality

\[\prod_{\ell \mid Nd^2} c_{\ell}(E^{(d)}) \cdot [\text{III}(E^{(d)}/K)]^{1/2} = \frac{[E^{(d)}(K) : \mathbb{Z}P^{(d)}]}{c_{E^{(d)}}}, \tag{18} \]

Lemma 5.6. Assume BSD(2) is true for E/K. Then $c_{\ell}(E^{(d)})$ is odd for any $\ell \mid Nd^2$.

Proof. First consider $\ell \mid N$. Let \mathcal{E} and $\mathcal{E}^{(d)}$ be the Néron model over \mathbb{Z}_ℓ of E and $E^{(d)}$ respectively. Notice that $E^{(d)}/\mathbb{Q}_p$ is the unramified quadratic twist of $E^{(d)}$. Since Néron models commute with unramified base change, we know that the component groups $\Phi_{\mathcal{E}}$ and $\Phi_{\mathcal{E}^{(d)}}$ are quadratic twists of each other as $\text{Gal}(\mathbb{F}_\ell/\mathbb{F}_\ell)$-modules. In particular, $\Phi_{\mathcal{E}}[2] \cong \Phi_{\mathcal{E}^{(d)}}[2]$ as $\text{Gal}(\mathbb{F}_\ell/\mathbb{F}_\ell)$-modules and thus

\[\Phi_{\mathcal{E}}(\mathbb{F}_\ell)[2] \cong \Phi_{\mathcal{E}^{(d)}}(\mathbb{F}_\ell)[2]. \]

It follows that $c_{\ell}(E)$ and $c_{\ell}(E^{(d)})$ have the same parity.

Next consider $\ell \mid d$. Since $E^{(d)}$ has additive reduction and ℓ is odd, thus we know that

\[E^{(d)}(\mathbb{Q}_\ell)[2] \cong \Phi_{\mathcal{E}^{(d)}}(\mathbb{F}_\ell)[2]. \]

Since $\ell \in \mathcal{S}$, Froby is assumed to have order 3 acting on $E^{(d)}[2] \cong E[2]$, we know that $E^{(d)}(\mathbb{Q}_\ell)[2] = 0$. Hence $c_{\ell}(E^{(d)})$ is odd. \(\square\)
Lemma 5.7. Assume BSD(2) is true for E/K. The right-hand side of (18) is a 2-adic unit.

Proof. Since E has no rational 2-torsion, we know that the Manin constants (with respect to both $X_0(N)$-parametrization and $X_1(N)$-parametrization) for all curves in the isogeny of E have the same 2-adic valuation. The twisting argument of Stevens [Ste89, §5] shows that if the Manin constant c_1 for the $X_1(N)$-optimal curve in the isogeny class of E is 1, then the Manin constant $c_1^{(d)}$ for the $X_1(N)$-optimal curve in the isogeny class of $E^{(d)}$ is also 1. The same twisting argument in fact shows that if c_1 is a 2-adic unit, then $c_1^{(d)}$ is also a 2-adic unit. Since c_E is odd, we know that c_1 is odd, therefore $c_1^{(d)}$ is also odd. Since $E^{(d)}$ has no rational 2-torsion, it follows that the Manin constant $c_{E^{(d)}}$ is also odd.

Now using $c_2(E^{(d)})$ is odd (by Lemma 10.12) and $c_{E^{(d)}}$ is odd, and replacing E by $E^{(d)}$ and replacing (⋆) by the conclusion of Theorem 4.3 (1), the same argument as in the proof of Lemma 5.4 shows that the right-hand side of (18) is also a 2-adic unit. □

Again, since the left-hand side of (18) is a product of integers, Lemma 5.7 implies the following.

Corollary 5.8. BSD(2) for $E^{(d)}/K$ is equivalent to that
all the local Tamagawa numbers $c_v(E^{(d)})$ are odd and $\text{III}(E^{(d)}/K)[2] = 0$.

5.4. 2-Selmer groups over K. Now let us compare the 2-Selmer groups of E/K and $E^{(d)}/K$.

Lemma 5.9. Assume BSD(2) is true for E/K. The isomorphism of Galois representations $E[2] \cong E^{(d)[2]}$ induces an isomorphism of 2-Selmer groups

$$\text{Sel}_2(E/K) \cong \text{Sel}_2(E^{(d)}/K).$$

In particular,

$$\text{III}(E^{(d)}/K)[2] = 0.$$

Proof. The 2-Selmer group $\text{Sel}_2(E/K)$ is defined by the local Kummer conditions

$$\mathcal{L}_v(E/K) = \text{im} \left(E(K_v)/2E(K_v) \to H^1(K_v, E[2]) \right).$$

Denote by $\mathcal{L}_v(E^{(d)}/K)$ the local Kummer conditions for $E^{(d)}/K$. It suffices to show that $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K)$ are the same at all places v of K:

1. $v \mid \infty$: Since v is complex, $H^1(K_v, E[2]) = 0$. So $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K) = 0$.

2. $v \mid d$: Suppose v lies above $\ell \in S$. Since Frob$_\ell$ acts by order 3 on $E[2]$, we know that the unramified cohomology

$$H^1_{\text{un}}(\mathbb{Q}_\ell, E[2]) \cong E[2]/(\text{Frob}_\ell - 1)E[2] = 0$$

(such ℓ is called silent by Mazur–Rubin), and thus $\dim H^1(\mathbb{Q}_\ell, E[2]) = 2 \dim H^1_{\text{un}}(\mathbb{Q}_\ell, E[2]) = 0$ ([Mil86, 1.2.6]). Since ℓ is split in K, it follows that

$$H^1(K_v, E[2]) \cong H^1(\mathbb{Q}_\ell, E[2]) = 0,$$

So $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K) = 0$.

3. $v \nmid d$: By [MR10] Lemma 2.9, we have

$$\mathcal{L}_v(E/K) \cap \mathcal{L}_v(E^{(d)}/K) = E_{N}(K_v)/2E(K_v),$$

where

$$E_{N}(K_v) = \text{im} \left(N : E(L_v) \to E(K_v) \right)$$
is the image of the norm map induced from the quadratic extension $L_v = K_v(\sqrt{d})$ over K_v. To show that $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K)$, it suffices to show that

$$E(K_v)/\mathcal{N}E(L_v) = 0.$$

By local Tate duality, it suffices to show that

$$H^1(\text{Gal}(L_v/K_v), E(L_v)) = 0.$$

Notice that $K_v \cong \mathbb{Q}_L$ and L_v/K_v is the unramified quadratic extension, we know that

$$E(L_v)/E^0(L_v) \cong \Phi_c(\mathbb{F}_L),$$

where Φ_c is the component group of the Néron model of E over \mathbb{Z}_L. Let $c \in \text{Gal}(\mathbb{F}_L/\mathbb{F}_L)$ be the order two automorphism, then $\Phi_c(\mathbb{F}_L)[2] = \Phi_c(\mathbb{F}_L)[2]$. Since c is odd, it follows that $\Phi_c(\mathbb{F}_L)[2] = \Phi_c(\mathbb{F}_L)[2] = 0$. Since an order two automorphism on a nonzero \mathbb{F}_L-vector space must have a nonzero fixed vector, we know that $\Phi_c(\mathbb{F}_L)[2] = 0$. Therefore $E(L_v)/E^0(L_v)$ has odd order. It remains to show that

$$H^1(\text{Gal}(L_v/K_v), E^0(L_v)) = 0,$$

which is true by Lang’s theorem since L_v/K_v is unramified (see [Maz72, Prop. 4.3]).

5.5. **Proof of Theorem 5.1**. It follows immediately from Corollary 5.8, Lemma 10.12 and Lemma 5.9.

5.6. **2-Selmer groups over \mathbb{Q}.** Let us compare the 2-Selmer groups of E/\mathbb{Q} and $E^{(d)}/\mathbb{Q}$.

Lemma 5.10. Let $\Delta(E)$ be the discriminant of a Weierstrass equation of E/\mathbb{Q}.

(1) If $\Delta(E) < 0$, then $\text{Sel}_2(E/\mathbb{Q}) \cong \text{Sel}_2(E^{(d)}/\mathbb{Q})$.

(2) If $\Delta(E) > 0$ and $d > 0$, then $\text{Sel}_2(E/\mathbb{Q}) \cong \text{Sel}_2(E^{(d)}/\mathbb{Q})$.

(3) If $\Delta(E) > 0$ and $d < 0$, then $\dim_{\mathbb{F}_2} \text{Sel}_2(E/\mathbb{Q})$ and $\dim_{\mathbb{F}_2} \text{Sel}_2(E^{(d)}/\mathbb{Q})$ differ by 1.

Proof. By the same proof as Lemma 5.9, we know that $\mathcal{L}_v(E/\mathbb{Q}) = \mathcal{L}_v(E^{(d)}/\mathbb{Q})$ for any place $v \nmid \infty$ of \mathbb{Q}. The only issue is that the local condition at ∞ may differ for E/\mathbb{Q} and $E^{(d)}/\mathbb{Q}$. By [Ser72, p.305], we have $\mathbb{Q}(\sqrt{\Delta(E)}) \subseteq \mathbb{Q}(E[2])$. So complex conjugation acts nontrivially on $E[2]$ if and only if $\Delta(E) < 0$. Hence

$$\dim_{\mathbb{F}_2} H^1(\text{Gal}(\mathbb{C}/\mathbb{R}), E[2]) = \begin{cases} 0, & \Delta(E) < 0, \\ 2, & \Delta(E) > 0. \end{cases}$$

The item (3) follows immediately. When $\Delta(E) > 0$, $\mathcal{L}_\infty(E/\mathbb{Q}) = E(\mathbb{R})/2E(\mathbb{R})$ and $\mathcal{L}_\infty(E^{(d)}/\mathbb{R}) = E^{(d)}(\mathbb{R})/2E^{(d)}(\mathbb{R})$ define the same line in $H^1(\text{Gal}(\mathbb{C}/\mathbb{R}), E[2])$ if and only if $d > 0$. The item (2) follows immediately and the item (3) follows from a standard application of global duality (e.g., by [LHL16, Lemma 8.5]).

We immediately obtain a more explicit description of the condition $\psi_d(-N) = 1$ in Theorem 4.3 under our extra assumption that $c_2(E)$ is odd.

Corollary 5.11. The following conditions are equivalent.

(1) $E^{(d)}/\mathbb{Q}$ has the same rank as E/\mathbb{Q}.

(2) $\psi_d(-N) = 1$, where ψ_d is the quadratic character associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$.

(3) $\Delta(E) < 0$, or $\Delta(E) > 0$ and $d > 0$.

26
Proof. Since the parity conjecture for 2-Selmer groups of elliptic curves is known ([Mon96 Theorem 1.5]), we know that E/\mathbb{Q} and $E^{(d)}/\mathbb{Q}$ has the same root number if and only if they have the same 2-Selmer rank. The result then follows from Lemma 5.10 and Theorem 4.3 [2]. \qed

5.7. Rank zero twists. Let K be as in Theorem 5.1. We now verify BSD(2) for the rank zero twists.

Lemma 5.12. If BSD(2) is true for E/\mathbb{Q} and $E^{(dK)}/\mathbb{Q}$, then BSD(2) is true for all twists $E^{(d)}/\mathbb{Q}$ and $E^{(d-dK)}/\mathbb{Q}$ of rank zero, where $d \in \mathcal{N}$ with $\psi_d(-N) = 1$.

Proof. Notice exactly one of E/\mathbb{Q} and $E^{(dK)}/\mathbb{Q}$ has rank zero. Consider the case that E/\mathbb{Q} has rank zero. Since all the local Tamagawa numbers $c_\ell(E)$ are odd and $\text{III}(E/\mathbb{Q})[2] = 0$, BSD(2) for E/\mathbb{Q} implies that

$$\frac{L(E/\mathbb{Q}, 1)}{\Omega(E/\mathbb{Q})}$$

is a 2-adic unit. Assume $\psi_d(-N) = 1$. We know from Corollary 5.11 that $\Delta(E) < 0$, or $\Delta(E) > 0$ and $d > 0$. Under these conditions, it follows from [Zha16 Theorem 1.1, 1.3] that

$$\frac{L(E^{(d)}/\mathbb{Q}, 1)}{\Omega(E^{(d)}/\mathbb{Q})}$$

is also a 2-adic unit (notice that the Néron period $\Omega(E/\mathbb{Q})$ is twice of the real period when $\Delta(E) > 0$). Since all the local Tamagawa numbers $c_\ell(E^{(d)})$ are odd (Lemma 10.12 and $\text{III}(E^{(d)}/\mathbb{Q})[2] = 0$ (Lemma 5.11 [2]), we know that BSD(2) is true for $E^{(d)}/\mathbb{Q}$. By the same argument, if $E^{(dK)}/\mathbb{Q}$ has rank zero and $\psi_d(-N) = 1$, we know that BSD(2) is true for $E^{(d-dK)}/\mathbb{Q}$. \qed

5.8. Proof of Theorem 5.1 (2). Now we can finish the proof of Theorem 5.1 (2). Because the abelian surface $E \times E^{(dK)}/\mathbb{Q}$ is isogenous to the Weil restriction Res_K/\mathbb{Q} and the validity of the BSD conjecture for abelian varieties is invariant under isogeny ([Mil06 1.7.3]), we know that BSD(2) for E/\mathbb{Q} and $E^{(dK)}/\mathbb{Q}$ implies that BSD(2) is true for E/K. Hence by Theorem 5.1 (2), BSD(2) is true for $E^{(d)}/K$. By Lemma 5.12, BSD(2) is true for the rank zero curve among $E^{(d)}/\mathbb{Q}$ and $E^{(d-dK)}/\mathbb{Q}$ for $d \in \mathcal{N}$ such that $\psi_d(-N) = 1$. Then again by the invariance of BSD(2) under isogeny, we know BSD(2) is also true for the other rank one curve among $E^{(d)}/\mathbb{Q}$ and $E^{(dK)}/\mathbb{Q}$.

6. Examples

In this section we illustrate our application to Goldfeld’s conjecture and the 2-part of the BSD conjecture in §4 and §5 by providing examples of E/\mathbb{Q} and K which satisfy Assumption [★].

Let us first consider curves E/\mathbb{Q} of rank one.

Example 6.1. Consider the curve 37a1 in Cremona’s table,

$$E = 37a1 : y^2 + y = x^3 - x,$$

It is the rank one optimal curve over \mathbb{Q} of smallest conductor ($N = 37$). Take

$$K = \mathbb{Q}(\sqrt{-7}),$$

the imaginary quadratic field with smallest $|d_K|$ satisfying the Heegner hypothesis for N such that 2 is split in K. The Heegner point

$$P = (0, 0) \in E(K)$$
generates $E(\mathbb{Q}) = E(K) \cong \mathbb{Z}$. Since E is optimal with Manin constant 1, we know that ω_E is equal to the Néron differential. The formal logarithm associated to ω_E is

$$\log_{\omega_E}(t) = t + 1/2 \cdot t^2 - 2/5 \cdot t^5 + 6/7 \cdot t^7 - 3/2 \cdot t^8 + 2/3 \cdot t^9 + \ldots$$

We have $|\tilde{E}(\mathbb{F}_2)| = 5$ and the point $5P = (1/4, -5/8)$ reduces to $\infty \in \tilde{E}(\mathbb{F}_2)$. Plugging in the parameter $t = -x(5P)/y(5P) = 2/5$, we know that up to a 2-adic unit,

$$\log_{\omega_E} P = \log_{\omega_E} 5P = 2 + 2^5 + 2^6 + 2^8 + 2^9 + \ldots \in 2\mathbb{Z}_2^\times.$$

Hence

$$\frac{|\tilde{E}(\mathbb{F}_2)| \cdot \log_{\omega_E} P}{2} \in \mathbb{Z}_2^\times$$

and \star is satisfied. The set \mathcal{N} consists of square-free products of the signed primes

$$-11, 53, -71, -127, 149, 197, -211, -263, 337, -359, 373, -379, -443, -571, -599, 613, \ldots$$

For any $d \in \mathcal{N}$, we deduce:

1. The rank part of BSD conjecture is true for $E(d)$ and $E(-7d)$ by Theorem 4.3.
2. Since $\Delta(E) > 0$, we know from Corollary 5.11 that

$$\begin{cases} \text{rank } E(d)(\mathbb{Q}) = 1, & \text{rank } E(-7d)(\mathbb{Q}) = 0, \quad d > 0, \\ \text{rank } E(d)(\mathbb{Q}) = 0, & \text{rank } E(-7d)(\mathbb{Q}) = 1, \quad d < 0. \end{cases}$$

3. Since $\text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q})) \cong S_3$, it follows from Theorem 1.12 that

$$N_r(E, X) \gg \frac{X}{\log^{5/6} X}, \quad r = 0, 1.$$

4. Since BSD(2) is true for E/\mathbb{Q} and $E(-7)/\mathbb{Q}$ by numerical verification, it follows from Theorem 5.1 that the BSD(2) is true for $E(d)$ and $E(-7d)$ when $d > 0$.

Example 6.2. As we saw in §5, a necessary condition for \star is that the local Tamagawa numbers $c_p(E)$ are all odd for $p \neq 2$. Another necessary condition is that the formal group of E at 2 cannot be isomorphic to \mathbb{G}_m: this due to the usual subtlety that the logarithm on \mathbb{G}_m sends $1 + 2\mathbb{Z}_2$ into $4\mathbb{Z}_2$ (rather than $2\mathbb{Z}_2$). We search for rank one optimal elliptic curves with $E(\mathbb{Q})[2] = 0$ satisfying these two necessary conditions. There are 38 such curves of conductor ≤ 300. For each curve, we choose K with smallest $|d_K|$ satisfying the Heegner hypothesis for N and such that 2 is split in K. Then 31 out of 38 curves satisfy \star. See Table 1. The first three columns list E, d_K and the local Tamagawa number $c_2(E)$ at 2 respectively. A check-mark in the last column means that \star holds, in which case Theorems 4.3, 1.12 apply and the improved bound towards Goldfeld’s conjecture holds. If $c_2(E)$ is further odd (true for 23 out of 31), then the application to BSD(2) (Theorem 5.1) also applies.

Remark 6.3. There is one CM elliptic curve in Table 1 namely $E = 243a1$ with j-invariant 0, which seems to be only j-invariant of CM elliptic curves over \mathbb{Q} for which \star holds.

Next let us consider curves E/\mathbb{Q} of rank zero.

Example 6.4. Consider

$$E = X_0(11) = 11a1 : y^2 + y = x^3 - x^2 - 10x - 20,$$
Hence and the parameter t is satisfied. The set \mathcal{N} consists of square-free products of the signed primes

For any $d \in \mathcal{N}$, we deduce:

1. The rank part of BSD conjecture is true for $E^{(d)}$ and $E^{(-7d)}$ by Theorem 4.3.

2. Since $\Delta(E) < 0$, we know from Corollary 5.11 that

$$\text{rank } E^{(d)}(\mathbb{Q}) = 0, \quad \text{rank } E^{(-7d)}(\mathbb{Q}) = 1.$$
(3) Since \(\text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q})) \cong S_3 \), it follows from Theorem 1.12 that
\[
N_r(E, X) \gg \frac{X}{\log^{5/6} X}, \quad r = 0, 1.
\]

(4) Since BSD(2) is true for \(E/\mathbb{Q} \) and \(E(-7)/\mathbb{Q} \) by numerical verification, it follows from Theorem 5.1 that the BSD(2) is true for \(E(d) \) and \(E(-7d) \).

Example 6.5. For rank zero curves, the computation of Heegner points is most feasible when \(|d_K| \) is small. Thus we fix \(d_K = -7 \) and search for rank zero optimal curves with \(E(\mathbb{Q})[2] = 0 \) satisfying the two necessary conditions in Example 6.2 and such that \(K = \mathbb{Q}(\sqrt{-7}) \) satisfies the Heegner hypothesis. There are 39 such curves of conductor \(\leq 750 \). See Table 2. Then 28 out of 39 curves satisfy (\(\star \)), in which case Theorems 4.3, 1.12 apply and the improved bound towards Goldfeld’s conjecture holds. If \(c_2(E) \) is further odd (true for 24 out of 28), then the application to BSD(2) (Theorem 5.1) also applies.

Table 2. Assumption (\(\star \)) for rank zero curves

<table>
<thead>
<tr>
<th>(E)</th>
<th>(d_K)</th>
<th>(c_2(E))</th>
<th>(\star)</th>
<th>(E)</th>
<th>(d_K)</th>
<th>(c_2(E))</th>
<th>(\star)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>316a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>37b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>352a1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>44a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>352e1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>67a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>368c1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>92a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>368f1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>116a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>428a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
</tr>
<tr>
<td>116b1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>464c1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>176a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464d1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>176b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464f1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>179a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464g1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>184d1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>557b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>232b1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>568a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>268a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>571a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>

Remark 6.6. Even when \(E \) does not satisfy (\(\star \)) for any \(K \) (e.g., when \(E(\mathbb{Q}) \) has rank \(\geq 2 \) or \(III(E/\mathbb{Q})[2] \) is nontrivial), one can still prove the same bound in Theorem 1.12 by exhibiting one quadratic twist \(E^* \) of \(E \) such that \(E^* \) satisfies (\(\star \)) (as quadratic twisting can lower the 2-Selmer rank). We expect that one can always find such \(E^* \) when the two necessary conditions \((c_p(E)^*)'s \) are odd for \(p \neq 2 \) and \(a_2(E) \) is even) are satisfied, and so we expect that Theorem 1.12 applies to a large positive proportion of elliptic curves \(E \). Showing the existence of such \(E^* \) amounts to showing that the value of the anticyclotomic \(p \)-adic \(L \)-function at the trivial character is nonvanishing mod \(p \) among quadratic twists families for \(p = 2 \). This nonvanishing mod \(p \) result seems to be more difficult and we do not address it here (but when \(p \geq 5 \) see Prasanna [Pra10] and the forthcoming work of Burungale–Hida–Tian).
Remark 7.3. Note that when N that by (3) of the second part of Theorem 7.1, in this case

\[
\ell \equiv -1 \mod p \quad \text{and} \quad \ell \not\equiv \psi(\ell) \mod p,
\]

or the following four conditions hold:

1. $\psi(p) \neq 1$ and $(\psi^{-1}, \omega)(p) \neq 1$,
2. $N_{\text{split}} = 1$,
3. $\ell \neq p, \ell | N_{\text{add}}$ implies either $\psi(\ell) \neq 1$ and $\ell \not\equiv \psi(\ell) \mod p$, or $\psi(\ell) = 0$,
4. $p \nmid B_{1,\psi^{-1}} \cdot B_{1,\psi\omega^{-1}}$.

or the following four conditions hold:

1. $\psi = 1$,
2. $p | N$,
3. $\ell | N, \ell \neq p$ implies $\ell | N, \ell \equiv -1 \mod p$, $\ell \not\equiv 1 \mod p$,
4. $\ord_p \left(\frac{p-1}{2} \log_p \bar{\alpha} \right) = 0$,

where $\alpha \in \mathcal{O}_K^*$ and $(\alpha) = p^h K, \bar{\alpha}$ is its complex conjugate, and \log_p is the Iwasawa p-adic logarithm.

Let $P \in E(K)$ be the associated Heegner point. Then

\[
\frac{|\tilde{E}_p^n|}{p} \cdot \log_{\omega E} P \neq 0 \mod p.
\]

In particular, $P \in E(K)$ is of infinite order and E/K has analytic and algebraic rank 1.

Remark 7.2. When $p = 2$, we must have $\psi = 1$ (since $\psi : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \mu_{p-1} = \{1\}$). Note also that by (3) of the second part of Theorem 7.1 in this case N must be a power of 2.

Remark 7.3. Note that when $p = 3$ and ψ is quadratic, condition (3) in the first part of the statement of Theorem 7.1 is equivalent to

- $\ell | N_{\text{add}}, \ell \equiv 1 \mod 3$ implies that $\psi(\ell) = -1$, and
- $\ell \neq 3, \ell | N_{\text{add}}, \ell \equiv 2 \mod 3$ implies that $\psi(\ell) = 0$.

7.1. The Eisenstein congruence. We may assume without loss of generality that $\psi \neq \omega$ (otherwise, interchange ψ and ψ^{-1}, ω). As in the proof of Theorem 13 in [Kri16], the argument relies on establishing an Eisenstein congruence. More precisely, let f be the normalized weight 2 $\Gamma_0(N)$-level newform associated with E. Recall the weight 2 Eisenstein series $E_{2,\psi}$ defined by the q-expansion (at ∞)

\[
E_{2,\psi}(q) := \delta(\psi)^{-1/2} L(-1, \psi) + \sum_{n=1}^\infty \sigma_{\psi,\psi^{-1}}(n) q^n,
\]

where $\delta(\psi) = 1$ if $\psi = 1$ and $\delta(\psi) = 0$ otherwise, and

\[
\sigma_{\psi,\psi^{-1}}(n) = \sum_{0 < d | n} \psi(n/d) \psi^{-1}(d) d.
\]

\(^1\)Here our generalization also corrects a self-contained typo in the statement of Theorem 13 in loc. cit., where part of condition (3) was mistranscribed from Theorem 7 in loc. cit.: "$\ell \neq -1 \mod p$" should be "$\ell \neq \psi(\ell) \mod p$".
This determines a \(\Gamma_0(f(\psi)^2) \)-level algebraic modular form of weight 2, in Katz’s sense (see \cite[Chapter II]{Kat76}). The assumption that \(E[p] \) is reducible and \(E[p]^{ns} \cong \mathbb{F}_p(\psi) \oplus \mathbb{F}_p(\psi^{-1}\omega) \) implies the following lemma (see \cite[Theorem 34 (2)]{Kri16}).

Lemma 7.4. \(N \) has a decomposition \(N = N_+N_-N_0 \) into pairwise coprime integers \(N_+, N_- ,N_0 \) such that \(N_+, N_- \) is the square-free part of \(N \), \(N_0 \) is the square-full part of \(N \), and

1. if \(\ell \mid N_+ \), then \(a_\ell(f) \equiv \psi(\ell) \pmod{p} \),
2. if \(\ell \mid N_- \), then \(a_\ell(f) \equiv \psi^{-1}(\ell)\ell \pmod{p} \),
3. if \(\ell \mid N_0 \), then \(a_\ell(f) = 0 \).

Note that the minimal level of \(E_{2,\psi} \) is \(f(\psi)^2 \). With respect to this level, take \(N^\# \) as in Section 3.3 to be \(N^\# = \text{lcm}(\ell^2, f(\psi)) \). We now consider \(E_{2,\psi} \) as a form of level \(N^\# \) and let \(E_{2,\psi}^{(N_+, N_-, N_0)} \) denote the \((N_+, N_-, N_0)\)-stabilization of \(E_{2,\psi} \), with the choices \(\alpha_\ell = \psi(\ell) \) and \(\beta_\ell = \psi^{-1}(\ell)\ell \) as in Definition 3.3. Thus, viewing \(f \) and \(E_{2,\psi}^{(N_+, N_-, N_0)} \) as a \(p \)-adic \(\Gamma_0(N) \)-level modular forms over \(\mathcal{O}_{\mathbb{C}_p} \), we have

\[
\theta^j f(q) \equiv \theta^j E_{2,\psi}^{(N_+, N_-, N_0)}(q) \pmod{p\mathcal{O}_{\mathbb{C}_p}}
\]

for all \(j \geq 1 \).

Let \(A \) be a fixed elliptic curve with complex multiplication by \(\mathcal{O}_K \), and fix an ideal \(\mathfrak{M} \subset \mathcal{O}_K \) such that \(\mathcal{O}_K / \mathfrak{M} = \mathbb{Z}/N \) and \(p \not| \mathfrak{M} \) if \(p \not| N \). Since \(p \) is split in \(K \), the \(q \)-expansion principle implies that the above congruences of \(q \)-expansions translate to congruences on points corresponding to curves with CM by \(\mathcal{O}_K \). As is explained in \S 3 by Theorem 3.8, this implies that (for any generator \(\omega \in \Omega_{A/\mathcal{O}_{\mathbb{C}_p}} \))

\[
\frac{[E_{ns}(\mathbb{F}_p)]}{p} \cdot \log_{\omega_{\mathfrak{M}}} P = \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \theta^{-1} \theta_{(1,1,p)}(a \ast (A, A[\mathfrak{M}], \omega))
\]

where the final equality follows from Lemma 3.6 applied to successive stabilizations of \(E_{2,\psi} \).

7.2. CM period of Eisenstein series. To evaluate \(\theta^{-1} \theta_{(1,1,p)}(a \ast (A, A[\mathfrak{M}], \omega)) \pmod{p\mathcal{O}_{\mathbb{C}_p}} \).

We will show that this period is interpolated by the Katz \(p \)-adic \(L \)-function. Indeed, let \(\chi_j \) be the unramified Hecke character of infinity type \((h_K j, -h_K j)\) defined on ideals by

\[
\chi_j(a) = (\alpha / \pi)^j
\]

where \((\alpha) = a^{h_K} \), and \(h_K \) is the class number of \(K \). Let \(\mathfrak{p} \) denote the prime ideal of \(\mathcal{O}_K \) which is the complex conjugate of \(p \). For the remainder of the proof, in a slight abuse of notation, unless otherwise stated let \(N_K \) denote the \(p \)-adic Hecke character associated with the algebraic Hecke
character giving rise to the complex Hecke character $\mathbb{N}_K : K^\times \setminus \mathbb{A}_K^\times \to \mathbb{C}^\times$. Then by looking at q-expansions and invoking the q-expansion principle, it is apparent that the above sum is given by

$$
\sum_{[a] \in C\ell(O_K)} \theta^{-1} E_{2,\psi}^{(1,1,p)} (a * (A, A[\mathfrak{N}], \omega))
$$

$$
= \lim_{j \to 0} \sum_{[a] \in C\ell(O_K)} (\chi_j^{-1} N_{\mathbb{K}}(k)) \theta^{-1 + h_{Kj} \ell} E_{2,\psi}^{(1,1,p)} \left(a * (A, A[\mathfrak{N}], \omega) \right)
$$

$$
= \lim_{j \to 0} (1 - \psi^{-1}(p) \chi_j^{-1}(\overline{\mathbb{F}})) (1 - \psi(p) \chi_j^{-1} N_{\mathbb{K}}(\overline{\mathbb{F}})) \cdot \sum_{[a] \in C\ell(O_K)} (\chi_j^{-1} N_{\mathbb{K}}(k)) \theta^{-1 + h_{Kj} \ell} E_{2,\psi} \left(a * (A, A[\mathfrak{N}], \omega) \right)
$$

(20)

since $\chi_j^{-1} N_{\mathbb{K}}(k) \to 1$ as $j \to 0 = (0, 0) \in \mathbb{Z} / (p - 1) \times \mathbb{Z}_p$; here the last equality again follows from Lemma 3.6 applied to $F = E_{2,\psi}$.

7.3. The Katz p-adic L-function. We will now show that the terms in the above limit are interpolated by the Katz p-adic L-function (restricted to the anticyclotomic line). Let \mathfrak{N} such that $O / f = \mathbb{Z} / f(\psi)$. Choose a good integral model A of A at p, choose an identification $\iota : \hat{A} \to \hat{G}_{\mathbb{m}}$ (unique up to \mathbb{Z}_p^\times), and let $\omega_{\text{can}} := \ast \frac{du}{u}$ where u is the coordinate on $\hat{G}_{\mathbb{m}}$. This choice of ω_{can} determines p-adic and complex periods Ω_p and Ω_{∞} as in Section 3 of [Kri16]. As an intermediate step to establishing the p-adic interpolation, we have the following identity of algebraic values.

Lemma 7.5. We have the following identity of values in $\overline{\mathbb{Q}}$ for $j \geq 1$:

$$
\sum_{[a] \in C\ell(O_K)} (\chi_j^{-1} N_{\mathbb{K}}(k)) \theta^{-1 + h_{Kj} \ell} E_{2,\psi} (a * (A, A[\mathfrak{N}], \omega_{\text{can}}))
$$

$$
= \left(\frac{\Omega_p}{\Omega_{\infty}} \right)^{2h_{Kj}} \cdot \frac{f(\psi)^2 \Gamma(1 + h_{Kj}) \psi^{-1} (-\sqrt{A}) (\chi_j^{-1} N_{\mathbb{K}})(\overline{f})}{(2\pi i)^{1 + h_{Kj}} \vartheta(\psi^{-1}/(\sqrt{A})^{1 + h_{Kj}})} L((\psi \circ N_{\mathbb{K}/\mathbb{Q}} \chi_j^{-1} N_{\mathbb{K}}, 0)}
$$

where $\psi^{-1}(-\sqrt{A})$ denotes the Dirichlet character ψ^{-1} evaluated at the unique class $b \in (\mathbb{Z} / f(\psi) \times)^\times$ such that $b + \sqrt{A} \equiv 0 \mod f$. (In particular, note that the above complex-analytic calculation does not use the assumptions $p > 2$ or $p \nmid f(\psi)$.)

Proof. View the algebraic modular form $E_{2,\psi}$ as a modular form over \mathbb{C}, and evaluate at CM triples $(A, A[\mathfrak{N}], 2\pi idz)$ as a triple over \mathbb{C} by considering the uniquely determined complex uniformization $\mathbb{C} / (\mathbb{Z} \tau + \mathbb{Z}) \cong A$ for some τ in the complex upper half-plane, and identifying $A[\mathfrak{N}]$ with $\mathbb{C} / (\mathbb{Z} \tau + \mathbb{Z})$. By plugging $\psi_1 = \psi_2^{-1} = \psi$ and $u = t = f, \mathfrak{N}' = f^2$ into Proposition 36 of loc. cit., we have the complex identity

$$
\sum_{[a] \in C\ell(O_K)} (\chi_j^{-1} N_{\mathbb{K}}(k)) \theta^{-1 + h_{Kj} \ell} E_{2,\psi} (a * (A, A[\mathfrak{N}], 2\pi idz))
$$

(21)

$$
= \frac{f(\psi)^2 \Gamma(1 + h_{Kj}) \psi^{-1} (-\sqrt{A}) (\chi_j^{-1} N_{\mathbb{K}})(\overline{f})}{(2\pi i)^{1 + h_{Kj}} \vartheta(\psi^{-1}/(\sqrt{A})^{1 + h_{Kj}})} L((\psi \circ N_{\mathbb{K}/\mathbb{Q}} \chi_j^{-1} N_{\mathbb{K}}, 0)}
$$

where ϑ is the complex Maass-Shimura operator, and $\mathbb{N}_K : K^\times \setminus \mathbb{A}_K^\times \to \mathbb{C}^\times$ is the complex norm character over K. By definition of Ω_p and Ω_{∞}, we have

$$
2\pi idz = \frac{\Omega_p}{\Omega_{\infty}} \cdot \omega_{\text{can}}.
$$
By Proposition 21 of loc. cit., we have the equality of \textit{algebraic} values
\[\partial^{-1+h_{Kj}} E_2(a \star (A, A[N], \omega_{can})) = \theta^{-1+h_{Kj}} E_2(a \star (A, A[N], \omega_{can})) \]
for all \(j \geq 1 \). Moreover, since \(N_{K}(a) \in \mathbb{Z} \), we can identify this value of \(N_{K} \) with the value of its \(p \)-adic avatar, which again we also denote by \(N_{K} \), at \(a \). Applying these identities to the identity of complex numbers \([21]\), we get the desired identity of algebraic numbers.

We now apply the interpolation property of the Katz \(p \)-adic \(L \)-function (see \cite[Theorem II]{HT93}) to our situation, taking the normalization as in \cite{Gro80}, thus arriving at the identity
\[
L_p^{Katz}((\psi \circ N_{M_K/Q}) \chi_j^{-1} N_{K}, 0) = 4 \cdot \text{Local}_p((\psi \circ N_{M_K/Q}) \chi_j^{-1} N_{K}) \left(\frac{\Omega_p}{\Omega_\infty} \right)^{2h_{Kj}}
\]
for all \(j \geq 1 \), where \(\text{Local}_p(\chi) = \text{Local}_p(\chi, \Sigma, \delta) \) is defined as in \cite[5.2.26]{Kat78} with \(\Sigma = \{ p \} \) and \(\delta = \sqrt{d_{K}/2} \) (or as denoted \(W_p(\lambda) \) in \cite[0.10]{HT93}). For any prime \(\ell \), let \(\psi_{\ell}(\cdot) \) denote the value \(\psi_{\ell}(b) \), where again \(b \) is any integer such that \(b + \sqrt{d_K} \in \mathcal{J} \). By directly plugging in \(\chi = (\psi \circ N_{M_K/Q}) \chi_j^{-1} N_{K} \) into the definition of \(\text{Local}_p \), we have
\[
\text{Local}_p((\psi \circ N_{M_K/Q}) \chi_j^{-1} N_{K}) = \psi_{\ell}(-\sqrt{d_K}) f(\psi_{\ell}) g(\psi).
\]
Plugging \([22]\) into the identity in Lemma \([7.3]\), we have for all \(j \geq 1 \)
\[
(1 - \psi^{-1}(p) \chi_j^{-1}(\mathcal{F}))(1 - \psi(p)(\chi_j^{-1} N_{K}))(\mathcal{F}) \sum_{[a] \in \mathcal{C}(\mathcal{O}_{K})} (\chi_j^{-1} N_{K}^h)(a) \theta^{-1+h_{Kj}} E_2(a, (A, A[N], \omega_{can})))
\]
\[
\sum_{[a] \in \mathcal{C}(\mathcal{O}_{K})} \theta^{-1} E_2^{(1,1,p)}(a \star (A, A[N], \omega_{can})) = \frac{f(\psi)(p)}{4(\prod_{\ell} f(\psi)(\ell) \psi_{\ell}^{-1}(-\sqrt{d_K}) g_{\ell}(\psi)) (2\pi i)^{2h_{Kj}}} L_p^{Katz}((\psi \circ N_{M_K/Q}) \chi_j^{-1} N_{K}, 0).
\]
Taking the limit \(j \to 0 = (0, 0) \in \mathbb{Z}/(p - 1) \times \mathbb{Z}_p \), noting that \(\chi_j^{-1} N_{K} \to N_{K} \) and \(N_{K}(\mathcal{I}) = f(\psi)^{-1} \), and applying \([20]\), we have
\[
\sum_{[a] \in \mathcal{C}(\mathcal{O}_{K})} \theta^{-1} E_2^{(1,1,p)}(a \star (A, A[N], \omega_{can})) = \frac{f(\psi)(p)}{4(\prod_{\ell} f(\psi)(\ell) \psi_{\ell}^{-1}(-\sqrt{d_K}) g_{\ell}(\psi))} L_p^{Katz}((\psi \circ N_{M_K/Q}) N_{K}, 0).
\]

7.4. \textbf{Gross’s factorization theorem.} We now evaluate the Katz \(p \)-adic \(L \)-value on the right-hand side of \([23]\).

\textbf{Lemma 7.6.} \textit{We have, for } \psi \neq 1,
\[
\sum_{[a] \in \mathcal{C}(\mathcal{O}_{K})} \theta^{-1} E_2^{(1,1,p)}(a \star (A, A[N], \omega_{can})) = \pm \frac{1}{4} (1 - \psi^{-1}(p))(1 - (\psi \omega^{-1})(p)) B_{1,\psi_{\ell}^{-1} E_{K} 1, \psi_{\ell} \omega^{-1}} \pmod{p \mathcal{O}_p}
\]
\textit{and for } \psi = 1,
\[
\sum_{[a] \in \mathcal{C}(\mathcal{O}_{K})} \theta^{-1} E_2^{(1,1,p)}(a \star (A, A[N], \omega_{can})) \equiv \frac{p - 1}{2p} \log_p \overline{\alpha} \pmod{p \mathcal{O}_p}
\]

34
where \(\alpha \in \mathcal{O}_K \) such that \((\alpha) = p^{b_K} \).

Proof. Applying Gross’s factorization theorem (see [Gro80], and [Kri16, Theorem 28] for the extension to the general auxiliary conductor case), we have

\[
\left(\prod_{f | (\psi)(\rho)} \psi_{\ell}^{-1}(-\sqrt{d_K}) \theta_f(\psi) \right) L_p^{\text{Katz}}((\psi \circ \text{Nm}_{K/Q})\mathcal{N}_K, 0) = \pm L_p(\psi_0^\ast \varepsilon_K\omega, 0)L_p(\psi_0, 1)
\]

where \(L_p(\cdot, s) \) denotes the Kubota-Leopoldt \(p \)-adic \(L \)-function; here the sign of \(\pm 1 \) is uniquely determined by the suitably normalized \(p \)-adic Kronecker limit formula due to Katz used in Gross’s proof to compare elliptic and cyclotomic units (the normalization factor in Theorem 28 of loc. cit. already incorporates this sign). We now evaluate each Kubota-Leopoldt factor in the above identity. Using the fact that \(\varepsilon_K(p) = 1 \) since \(p \) splits in \(K \), by the interpolation property of the Kubota-Leopoldt \(p \)-adic \(L \)-function we have

\[
L_p(\psi_0^{-1}\varepsilon_K, 0) = -(1 - \psi^{-1}(p))B_{1, \psi_0^{-1}\varepsilon_K}.
\]

Now suppose \(\psi \neq 1 \). We claim that

1. \(8 \nmid f(\psi_0) \) if \(p = 2 \), and
2. \(p^2 \nmid f(\psi_0) \) if \(p > 2 \).

If \(p = 2 \), then \(\psi_0 = 1 \) and \(f(\psi_0) = 1 \). If \(p = 3 \), then \(\psi_0 : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mu_2 \) is quadratic, and so \(9 \nmid f(\psi_0) \) (since \(f(\psi_0) \) is squarefree outside of 2). If \(p \geq 5 \), then since \(E[p]^\ast \cong \mathbb{F}_p(\psi) \oplus \mathbb{F}_p(\psi^{-1}\omega) \), then \(f(\psi) \cdot f(\psi^{-1}\omega)|N \). Since \(p \) splits in \(K \), \(f(\varepsilon_K)_p = 1 \), and so \(f(\psi)_p = f(\psi)_p \). Since \(f(\omega) = p \), we have \(f(\psi^{-1}\omega) = f(\psi^{-1})_p = f(\psi)_p \) and hence \(f(\psi)_p^2|N \). Now assume for the sake of contradiction that \(p^2 \nmid f(\psi_0) \). Then since \(p^2 \nmid f(\psi_0)_p = f(\psi)_p \), we have \(p^4 \nmid f(\psi)_p^2 \). However since \(N \) is the conductor of \(E/\mathbb{Q} \) and \(p \geq 5 \), we have \(\text{ord}_p(N) \leq 2 \), a contradiction.

Having justified this claim, we know that \(L_p(\psi_0, m) \equiv L_p(\psi_0, n) \pmod{p\mathcal{O}_C} \) for all \(m, n \in \mathbb{Z} \) (e.g. see [Was97, Corollary 5.13]). Thus

\[
L_p(\psi_0, 1) \equiv L_p(\psi_0, 0) = -(1 - (\psi_0\omega^{-1})(p))B_{1, \psi_0\omega^{-1}} \pmod{p\mathcal{O}_C}.
\]

Combining (24), (25), and (26), we get

\[
\left(\prod_{f | (\psi)(\rho)} \psi_{\ell}^{-1}(-\sqrt{d_K}) \theta_f(\psi) \right) L_p^{\text{Katz}}((\psi \circ \text{Nm}_{K/Q})\mathcal{N}_K, 0) \equiv \pm (1 - \psi^{-1}(p))(1 - (\psi_0\omega^{-1})(p))B_{1, \psi_0^{-1}\varepsilon_K}B_{1, \psi_0\omega^{-1}} \pmod{p\mathcal{O}_C}
\]

when \(\psi \neq 1 \).

Now suppose \(\psi = 1 \). In particular \(f(\psi) = f(\psi)(\rho) = 1 \). By the functional equation for the Katz \(p \)-adic \(L \)-function (e.g. see [HT93, Theorem II]), since \(\mathbb{N}_K = \mathbb{N}_K^{-1}\mathbb{N}_K = 1 \) is the dual Hecke character of \(\mathbb{N}_K \), we have

\[
L_p^{\text{Katz}}(\mathbb{N}_K, 0) = L_p^{\text{Katz}}(1, 0).$

By a standard special value formula (e.g. see [Gro80, Section 5, Formulas 1]), we have

\[
L_p^{\text{Katz}}(1, 0) = \frac{4}{|\mathcal{O}_K|} \cdot \frac{p - 1}{p} \log_p(\overline{\alpha})
\]

and so

\[
L_p^{\text{Katz}}(\mathbb{N}_K, 0) = \frac{4}{|\mathcal{O}_K|} \cdot \frac{p - 1}{p} \log_p(\overline{\alpha}) = 2 \cdot \frac{p - 1}{p} \log_p(\overline{\alpha})$

(28)
since we assume $d_K < -4$ and hence $|O_K^\times| = 2$.

Now plugging in (27) into (23) when $\psi \neq 1$, and (28) into (23) when $\psi = 1$, we establish the lemma.

7.5. Proof of Theorem 7.1. Putting together (19) and Lemma (7.6), we arrive at our main congruence identities. If $\psi \neq 1$ we have

$$(\psi)$$

$$|E_{ns}(\mathbb{F}_p)| \cdot \log_{\omega_E} P = \prod_{\ell \mid N, \ell \neq p} (1 - \psi^{-1}(\ell)) \prod_{\ell \mid N_0, \ell \neq p} (1 - \psi^{-1}(\ell)) (1 - \psi(\ell))$$

$$\cdot \frac{1}{4} (1 - \psi^{-1}(p))(1 - (\psi\omega^{-1})(p))B_{1,\psi^{-1},\omega}(\mod pO_C^\times).$$

Now the statement for $\psi \neq 1$ in theorem 7.1 immediately follows from studying when the right-hand side of the congruence vanishes mod p. If $\psi = 1$ we have

$$(\psi)$$

$$|E_{ns}(\mathbb{F}_p)| \cdot \log_{\omega_E} P = \prod_{\ell \mid N, \ell \neq p} (1 - \frac{1}{\ell}) \cdot \frac{p^{-1}}{2p} \log_{p}(\mod pO_C^\times),$$

$$\prod_{\ell \mid N_0, \ell \neq p} (1 - \frac{1}{\ell}) \cdot \frac{p^{-1}}{2p} \log_{p}(\mod pO_C^\times),$$

where $(\pi) = \mathfrak{P}^{N_\infty}$ and log is the Iwasawa p-adic logarithm (i.e. the locally analytic function defined by the usual power series $\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots$, and then uniquely extended to all of \mathbb{C}_p^\times by defining $\log_p p = 0$).

We now finish the proof of Theorem 7.1 with the following lemma.

Lemma 7.7. The right-hand side of (30) does not vanish mod p if and only if

1. $\ell \mid N, \ell \neq p$ implies $\ell \mid N, \ell \equiv -1 (\mod p), \ell \neq 1 (\mod p)$,
2. $\text{ord}_p \left(\frac{p^{-1}}{2p} \log_{p}(\mod pO_C^\times) \right) = 0$.

We also have that the non-vanishing of the right-hand side of (30) mod p implies $p \mid N$, and so the right-hand side of (30) does not vanish mod p if and only if $p \mid N$ and (1) and (2) hold.

Proof. We first study when

$$(\psi)$$

$$\prod_{\ell \mid N, \ell \neq p} (1 - \frac{1}{\ell}) \cdot \frac{p^{-1}}{2p} \log_{p}(\mod pO_C^\times)$$

vanishes mod p. Clearly (31) does not vanish mod p if and only if each of its factors does not vanish mod p. Then $\prod_{\ell \mid N, \ell \neq p} (1 - \frac{1}{\ell})$ does not vanish if and only if

$$(\psi)$$

$$\ell \mid N, \ell \neq p \implies \ell \neq 1 (\mod p).$$

Hence (31) does not vanish mod p if and only if (32) and (2) in the statement of the lemma hold.

If the right-hand side of (30) does not vanish, then we have $\ell \mid N_0, \ell \neq p$, the right-hand side of (30) equals (31) mod p, and (32) holds. Thus (1) and (2) in the statement of the lemma hold.

If (1) and (2) in the statement of the lemma hold, then since by definition $\ell \mid N_\infty \implies \ell \equiv \pm 1 (\mod p)$, we have that (32) holds. So (31) does not vanish mod p. Now if $\ell \mid N_0, \ell \neq p$, then by (1) in the statement of the lemma, we have $\ell \mid N, \ell \neq 1 (\mod p)$. Hence $\ell \nmid N_0, \ell \nmid N_\infty$, a contradiction. So we have $\ell \mid N_0, \ell \neq p$, and so the right-hand side of (30) equals (31) mod p, which does not vanish mod p. 36
Thus we have shown that the non-vanishing of the right-hand side of (30) mod p is equivalent to (1) and (2) in the statement of the lemma.

Now we show the second part of the theorem. Suppose that the right-hand side of (30) does not vanish. In particular, we have $\ell | N, N_0 \implies \ell = p$ and that the right-hand side of (30) equals (31) mod p. If $p \nmid N$, then we thus have $N_+, N_0 = 1$. We now show a contradiction, considering the cases $p = 2$ and $p \geq 3$ separately.

Suppose $p = 2$. Then since $2 \nmid N_+ - N \neq 1$ (where $N \neq 1$ follows because E is an elliptic curve over \mathbb{Q}), we have that there exists $\ell | N_+ - N$ with $\ell \equiv 1 (\mod 2)$. Hence

$$(33) \quad \prod_{\ell | N_+, \ell \neq p} \left(1 - \frac{1}{\ell}\right) \equiv 0 \pmod{p}$$

and the right-hand side of (30) vanishes mod p, a contradiction.

Suppose $p > 2$. Note that

$$(34) \quad (N_{\text{split}}, N_-) = \prod_{\ell | N_-, \ell \equiv 1 (\mod p)} \ell.$$

Since $N_0 = N_{\text{add}}$ (because they are both the squarefull parts of N), we have $N_{\text{add}} = N_0 = 1$. By [Yoo15, Theorem 2.2], we know that $N_{\text{split}} N_{\text{add}} \neq 1$, and hence $N_{\text{split}} \neq 1$. Since $N_+ = 1$, we therefore have that $1 \neq N_{\text{split}} N_-$. By (34), we thus have that there is some $\ell | N_-$ such that $\ell \equiv 1 (\mod p)$. In particular we have (33) once again, and so the right-hand side of (30) vanishes mod p, a contradiction. \hfill \square

Remark 7.8. Note that our proof uses a direct method of p-adic integration, and does not go through the construction of the Bertolini–Darmon–Prasanna (BDP) p-adic L-function as in the proof of the main theorem of loc. cit. In particular, it does not recover the more general congruence of the BDP and Katz p-adic L-functions established when p is of good reduction established in [Kri16] (also for higher weight newforms). We expect that our method should extend to higher weight newforms, in particular establishing congruences between images of generalized Heegner cycles under appropriate p-adic Abel-Jacobi images and quantities involving higher Bernoulli numbers and Euler factors, without using the deep BDP formula.

8. Bernoulli numbers and relative class numbers

When $p = 3$, all Dirichlet characters in Theorem 7.1 are quadratic. Note that for an odd quadratic character ψ over \mathbb{Q}, by the analytic class number formula we have

$$(35) \quad B_{1,\psi} = \frac{-2}{|O_{K_\psi}^\times|}$$

where K_ψ is the imaginary quadratic field associated with ψ. So the 3-indivisibility criteria of the theorem becomes a question of 3-indivisibility of quadratic class numbers. This fact will be employed in our applications to Goldfeld’s conjecture.

More generally, for $p \geq 3$, we can find a sufficient condition for non-vanishing mod p of the Bernoulli numbers $B_{1,\psi_0^{-1} \varepsilon_K} B_{1,\psi_0 \omega^{-1}}$ in terms of non-vanishing mod p of the relative class numbers of the abelian CM fields of degrees dividing $p - 1$ cut out by $\psi_0^{-1} \varepsilon_K$ and $\psi_0 \omega^{-1}$. Let us first observe the following simple lemma.
Lemma 8.1. Suppose $\psi : (\mathbb{Z}/f)^\times \to \mu_{p-1}$ is a Dirichlet character, and assume $\psi^{-1} \pmod{p} \neq \omega$, or equivalently, assume there exists some $a \in (\mathbb{Z}/f)^\times$ such that $\psi(a) \neq 1 \pmod{p\mathbb{Z}[\mu_{p-1}]}$. Then

$$\text{ord}_p(B_{1,\psi}) \geq 0.$$

Proof. By our assumption, there exists some $a \in (\mathbb{Z}/f)^\times$ such that $\psi(a) \neq 1 \pmod{p\mathbb{Z}[\mu_{p-1}]}$. Then we have

$$\sum_{m=1}^{f} \psi(m)m = \sum_{m=1}^{f} \psi(am)m = \psi(a) \sum_{m=1}^{f} \psi(m)m \pmod{p\mathbb{Z}[\mu_{p-1}]}$$

$$\implies (1 - \psi(a)) \cdot \sum_{m=1}^{f} \psi(m)m \equiv 0 \pmod{p} \implies \sum_{m=1}^{f} \psi(m)m \equiv 0 \pmod{p\mathbb{Z}[\mu_{p-1}]}.$$

Now our conclusion follows from the formula for the Bernoulli numbers. □

For an odd Dirichlet character ψ, let K_{ψ} denote the abelian CM field cut out by ψ. Consider the relative class number $h_{K_{\psi}}^- = h_{K_{\psi}}/h_{K_{\psi}}^+$, where K_{ψ}^+ is the maximal totally real subfield of K_{ψ}. The relative class number formula ([Was97, 4.17]) gives

$$h_{K_{\psi}}^- = Q \cdot w \cdot \prod_{\chi \text{ odd}} \left(-\frac{1}{2} B_{1,\chi} \right)$$

where χ runs over all odd characters of $\text{Gal}(K_{\psi}/\mathbb{Q})$, w is the number of roots of unity in K_{ψ}, and $Q = 1$ or 2 (see [Was97, 4.12]). By Lemma 8.1 assuming that $\psi^{-1} \neq \omega$, we see that we have the following divisibility of numbers in $\mathbb{Z}_p[\psi]$:

$$p \nmid h_{K_{\psi}}^- \implies p \nmid B_{1,\psi}.$$

Lemma 8.2. Suppose $\psi : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mu_{p-1}$ is a Dirichlet character and K is an imaginary quadratic field such that $f(\psi)$ is prime to d_K and $p \nmid d_K$. As long as $\psi \neq 1$ or ω, we have

$$p \nmid h_{K_{\psi}}^- \cdot h_{K_{\psi}}^{-1,\omega} \implies p \nmid B_{1,\psi,0} \cdot B_{1,\psi^{-1},0}.$$

Proof. If ψ is even, then $\psi_0 \in K = \psi \in K$ is ramified at some place outside p and so is not equal to ω, and $\psi_0^{-1} \omega = \psi^{-1} \omega$ is not equal to ω if and only if $\psi \neq 1$. Hence $(\psi_0^{-1} \in K)^{-1} \pmod{p} = \psi_0 \in K \neq \omega$, and $(\psi_0 \omega^{-1})^{-1} = \psi^{-1} \omega \neq \omega$ if and only if $\psi \neq 1$. If ψ is odd, then $\psi_0 \in K = \psi$ is not equal to ω if and only if $\psi \neq 1$, and $\psi_0^{-1} \omega = \psi^{-1} \in K$ is ramified at some place outside p and so is not equal to ω. Hence $(\psi_0^{-1} \in K)^{-1} = \psi_0 \in K \neq \omega$ unless $\psi = \omega$, and $(\psi_0 \omega^{-1})^{-1} = \psi^{-1} \in K \omega \neq \omega$.

Now the lemma follows from (37). □

Corollary 8.3. Suppose we are in the setting of Theorem 7.1. Then $p \nmid h_{K_{\psi}}^- \cdot h_{K_{\psi}}^{-1,\omega}$ implies condition (4) of the theorem.

Proof. Condition (1) in the statement of Theorem 7.1 in particular implies $\psi \neq 1$ or ω. Now the statement follows from Lemma (8.2). □
9. Goldfeld’s Conjecture for Elliptic Curves with a 3-isogeny

The goal in this section is to prove Theorem 1.5. We will need some Davenport-Heilbronn type class number divisibility results due to Nakagawa-Horie and Taya. For any \(x \geq 0 \), let \(K^+(x) \) denote the set of real quadratic fields \(k \) with fundamental discriminant \(d_k < x \) and \(K^-(x) \) the set of imaginary quadratic fields \(k \) with fundamental discriminant \(|d_k| < x \). Let \(m \) and \(M \) be positive integers, and let

\[
K^+(x, m, M) := \{ k \in K^+(x) : d_k \equiv m \pmod{M} \}, \\
K^-(x, m, M) := \{ k \in K^-(x) : d_k \equiv m \pmod{M} \}.
\]

Recall that we let \(h_3(d) \) denote the 3-primary part of the class number of \(\mathbb{Q}(\sqrt{d}) \), and let \(\Phi : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0} \) denote the Euler totient function. We introduce the following terminology for convenience.

Definition 9.1. We say that positive integers \(m \) and \(M \) comprise a **valid pair** \((m, M)\) if both of the following properties hold:

1. if \(\ell \) is an odd prime number dividing \((m, M)\), then \(\ell^2 \) divides \(M \) but not \(m \), and
2. if \(M \) is even, then

 - (a) \(4 | M \) and \(m \equiv 1 \pmod{4} \), or
 - (b) \(16 | M \) and \(m \equiv 8 \) or \(12 \pmod{16} \).

Horie and Nakagawa proved the following.

Theorem 9.2 (NH88). We have

\[
|K^+(x, m, M)| \sim |K^-(x, m, M)| \sim \frac{3x}{\pi^2 \Phi(M)} \prod_{\ell | M} q \quad (x \to \infty).
\]

Suppose furthermore that \((m, M)\) is a valid pair. Then

\[
\sum_{k \in K^+(x, m, M)} h_3(d_k) \sim \frac{4}{3} |K^+(x, m, M)| \quad (x \to \infty),
\]

\[
\sum_{k \in K^-(x, m, M)} h_3(d_k) \sim 2 |K^-(x, m, M)| \quad (x \to \infty).
\]

Here \(f(x) \sim g(x) \ (x \to \infty) \) means that \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \), \(\ell \) ranges over primes dividing \(M \), \(q = 4 \) if \(\ell = 2 \), and \(q = \ell \) otherwise.

Now put

\[
K^+_x(x, m, M) := \{ k \in K^+(x, m, M) : h_3(d_k) = 1 \},
\]

\[
K^-_x(x, m, M) := \{ k \in K^-(x, m, M) : h_3(d_k) = 1 \}.
\]

Taya [Tay00] proves the following bound using Theorem 9.2.

Proposition 9.3. Suppose \((m, M)\) is a valid pair. Then

\[
\lim_{x \to \infty} \frac{|K^+_x(x, m, M)|}{|K^+(x, 1, 1)|} \geq \frac{5}{6 \Phi(M)} \prod_{\ell | M} q \quad \frac{1}{\ell + 1},
\]

\[
\lim_{x \to \infty} \frac{|K^-_x(x, m, M)|}{|K^-(x, 1, 1)|} \geq \frac{1}{2 \Phi(M)} \prod_{\ell | M} q \quad \frac{1}{\ell + 1}.
\]
In particular, the of real (resp. imaginary) quadratic fields k such that $d_k \equiv m \pmod{M}$ and $h_3(d_k) = 1$ has positive density in the set of all real (resp. imaginary) quadratic fields.

Proof. This follows from the trivial bounds

$$K^+(x, m, M) + 3(K^+(x, m, M) - K^+(x, m, M)) \leq \sum_{k \in K^+(x, m, M)} h_3(d_k) \quad \text{and} \quad K^-(x, m, M) + 3(K^-(x, m, M) - K^-(x, m, M)) \leq \sum_{k \in K^+(x, m, M)} h_3(d_k),$$

and the asymptotic formulas from Theorem 9.2.

We have the following positive density result.

Theorem 9.4. Suppose E/\mathbb{Q} is any elliptic curve of conductor $N = N_{\text{split}}N_{\text{nonsplit}}N_{\text{add}}$ whose mod 3 Galois representation $E[3]$ is reducible and $E[3]^{ss} \simeq F_3(\psi) \oplus F_3(\psi^{-1}\omega)$. Let d be the fundamental discriminant corresponding to the quadratic character ψ. Suppose that

1. $\psi(3) \neq 1$ and $(\psi^{-1}\omega)(3) \neq 1$;
2. $\ell \neq 3, \ell \mid N_{\text{split}}$ implies $\psi(\ell) = -1$;
3. $\ell \neq 3, \ell \mid N_{\text{nonsplit}}$ implies $\psi(\ell) = 1$;
4. $\ell \mid N_{\text{add}}, \ell \equiv 1 \pmod{3}$ implies $\psi(\ell) = -1$ or 0;
5. $\ell \mid N_{\text{add}}, \ell \equiv 2 \pmod{3}$ implies $\psi(\ell) = 0$.

Let

$$d_0 := \begin{cases} d, & d > 0, \\ -3d, & d < 0, d \equiv 0 \pmod{3}, \\ -d/3, & d < 0, d \equiv 0 \pmod{3}, \end{cases}$$

let

$$r(E) := \begin{cases} 1, & 2 \mid \text{lcm}(N, d^2), \\ 2, & 2 \nmid \text{lcm}(N, d^2), \\ \text{ord}_2(\text{lcm}(N, d^2, 16)) - 1, & 4 \mid \text{lcm}(N, d^2), \end{cases}$$

and let

$$s_3(d) := \begin{cases} 0, & d > 0, d \equiv 0 \pmod{3}, \text{ or } d < 0, d \equiv 0 \pmod{3}, \\ 1, & d > 0, d \equiv 0 \pmod{3}, \text{ or } d < 0, d \equiv 0 \pmod{3}. \end{cases}$$

Then a proportion of at least

$$\frac{d_0}{2r(E)+s_3(d)-3} \prod_{\ell \mid N_{\text{split}}, \ell \nmid N_{\text{nonsplit}}, \ell \mid d, \ell \nmid d, \ell \nmid d} \frac{1}{2} \prod_{\ell \mid N_{\text{add}}, \ell \mid d, \ell \nmid d, \ell \nmid d} \frac{1}{2} \prod_{\ell \mid |3N, \ell \mid d, \ell \nmid d, \ell \nmid d} \frac{1}{2\ell} \prod_{\ell \mid 3} \frac{q}{\ell + 1}$$

of all imaginary quadratic fields K have the following properties:

1. d_K is odd,
2. K satisfies the Heegner hypothesis with respect to $3N$,
3. $h_3(d_0d_K) = 1$.

If furthermore, we impose the assumption on E that

6. $h_3(\ell^{-3d}) = 1$ if $\psi(\ell) = 1$, and $h_3(d) = 1$ if $\psi(\ell) = -1$

then at least the same proportion of all imaginary quadratic fields K have:

1. d_K is odd,
2. K satisfies the Heegner hypothesis with respect to $3N$, and
3. the Heegner point $P \in E(K)$ is non-torsion.
We will apply Proposition 9.3, as well as Theorem 7.1. Let N' denote the prime-to-3 part of N. We first divide into two cases (a) and (b) regarding d, corresponding to

(a) $d > 0$ and $d \not\equiv 0 \pmod{3}$, or $d < 0$ and $d \equiv 0 \pmod{3}$;
(b) $d > 0$ and $d \equiv 0 \pmod{3}$, or $d < 0$ and $d \not\equiv 0 \pmod{3}$.

We then define a positive integer M as follows:

1. In case (a), let
 $$ M = \begin{cases}
 3 \cdot \text{lcm}(N', d^2, 4), & 2 \nmid \text{lcm}(N', d^2), \\
 3 \cdot \text{lcm}(N', d^2, 8), & 2 \nmid \text{lcm}(N', d^2), \\
 3 \cdot \text{lcm}(N', d^2, 16), & 4 \nmid \text{lcm}(N', d^2).
 \end{cases} $$

2. In case (b), let
 $$ M = \begin{cases}
 9 \cdot \text{lcm}(N', d^2, 4), & 2 \nmid \text{lcm}(N', d^2), \\
 9 \cdot \text{lcm}(N', d^2, 8), & 2 \nmid \text{lcm}(N', d^2), \\
 9 \cdot \text{lcm}(N', d^2, 16), & 4 \nmid \text{lcm}(N', d^2).
 \end{cases} $$

Using the Chinese remainder theorem, choose a positive integer m such that

1. $m \equiv 2 \pmod{3}$ in case (a), or $m \equiv 3 \pmod{9}$ in case (b),
2. ℓ odd prime, $\ell \not\equiv 3$, $\ell \nmid N_{\text{split}} \implies \frac{m}{d_0} \equiv [\text{quadratic residue unit}] \pmod{\ell}$, and $2 \nmid N_{\text{split}} \implies \frac{m}{d_0} \equiv 1 \pmod{8}$,
3. ℓ odd prime, $\ell \not\equiv 3$, $\ell \nmid N_{\text{nonsplit}} \implies \frac{m}{d_0} \equiv [\text{quadratic residue unit}] \pmod{\ell}$, and $2 \nmid N_{\text{nonsplit}} \implies \frac{m}{d_0} \equiv 1 \pmod{8}$,
4. ℓ prime, $\ell \equiv 1 \pmod{3}$, $\ell \nmid N_{\text{add}}, \ell \nmid d \implies \frac{m}{d_0} \equiv [\text{quadratic residue unit}] \pmod{\ell}$, and $\ell \equiv 1 \pmod{3}, \ell \nmid N_{\text{add}} \implies m \equiv \frac{m}{d_0} \equiv [\text{quadratic residue unit}] \pmod{\ell}$,
5. ℓ prime, ℓ odd, $\ell \equiv 2 \pmod{3}$, $\ell \nmid N_{\text{add}}$ (which by our assumptions implies $\ell | d$) $\implies m \equiv 0 \pmod{\ell}$ where $\frac{m}{d_0} \equiv [\text{quadratic residue unit}] \pmod{\ell}$, and $2 \nmid N_{\text{add}} \implies m \equiv d \pmod{16}$,

and furthermore, if $2 \nmid N$, then suppose $m \equiv d \pmod{4}$.

Suppose K is any imaginary quadratic field such that $d_0 d_K \equiv m \pmod{M}$. Then the congruence conditions corresponding to (1)-(5) above, along with assumptions (1)-(5) in the statement of the theorem, imply

1. 3 splits in K,
2. $\ell \not\equiv 3, \ell \nmid N_{\text{split}} \implies \ell$ splits in K,
3. $\ell \not\equiv 3, \ell \nmid N_{\text{nonsplit}} \implies \ell$ splits in K,
4. ℓ prime, $\ell \equiv 1 \pmod{3}, \ell \nmid N_{\text{add}} \implies \ell$ splits in K,
5. ℓ prime, $\ell \equiv 2 \pmod{3}, \ell \nmid N_{\text{add}} \implies \ell$ splits in K,

and $d_K \equiv 1 \pmod{4}$ (i.e. d_K is odd). Hence K satisfies the Heegner hypothesis with respect to $3N$.

Moreover, the congruence conditions above imply that (m, M) is a valid pair (see Definition 9.1), and the assumptions (4)-(5) in the statement of the theorem imply that (jd, d^2) is also a valid pair whenever $(j, d) = 1$. Thus, by Proposition 9.3, for any $d_0 | M$,

$$ \lim_{x \to \infty} \frac{|K^-_{x}(x, m, M)|}{|K^-(x/d_0, 1, 1)|} \geq \frac{d_0}{2\Phi(M)} \prod_{\ell | M} \frac{q}{\ell + 1}. $$
The left-hand side of (40) is the proportion of imaginary quadratic K satisfying $d_0d_K \equiv m \pmod{M}$ and $h_3(d_0d_K) = 1$. Moreover, notice that there are
\[
\prod_{\ell \mid N_{\text{split}}} \frac{\ell - 1}{2} \prod_{\ell \mid N_{\text{non-split}}} \frac{\ell - 1}{2} \prod_{\ell \mid \mathcal{O}_K} \frac{\ell - 1}{2}
\]
choices for residue classes of $m \pmod{M}$. Combining all the above and summing over each valid residue class $m \pmod{M}$, we immediately obtain our lower bound (45) for the proportion of imaginary quadratic fields K such that (1) d_K is odd, (2) K satisfies the Heegner hypothesis with respect to $3N$, and (3) $h_3(d_0d_K) = 1$. This proves the part of the theorem before assumption (6) is introduced in the statement.

If we assume that E satisfies assumption (6) in the statement of the theorem, then for all K as above, we see that E, $p = 3$ and K satisfy all the assumptions of Theorem 7.1 (see Remark 7.3), thus implying that P is non-torsion. The final part of the theorem now follows.

\[\square\]

Similarly, we have the following positive density result for producing E which satisfy the assumptions of Theorem 9.4.

Theorem 9.5. Suppose (N_1, N_2, N_3) is a triple of pairwise coprime integers such that N_1N_2 is square-free, N_3 is square-full and $N_1N_2N_3 = N$. Let
\[
\ell := \begin{cases}
0, & 2 \nmid N, \\
2, & 2 \mid N.
\end{cases}
\]

Then a proportion of at least
\[
\frac{1}{2^r} \prod_{\ell \mid N_{1,2}} \frac{1}{2} \prod_{\ell \mid N_3} \frac{1}{\ell} \prod_{\ell \mid N, \ell \equiv 3} \frac{q}{\ell + 1}
\]
of even (resp. odd) quadratic characters ψ corresponding to real (resp. imaginary) quadratic fields $\mathbb{Q}(\sqrt{d})$, where the $d > 0$ (resp. $d < 0$) are fundamental discriminants, satisfy
(1) $\psi(3) \neq 1$ and $(\psi^{-1}\omega)(3) \neq 1$;
(2) $\ell \neq 3, \ell \mid N_1$ implies $\psi(\ell) = -1$;
(3) $\ell \neq 3, \ell \mid N_2$ implies $\psi(\ell) = 1$;
(4) $\ell \neq 3, \ell \mid N_3, \ell \equiv 1 \pmod{3}$ implies $\psi(\ell) = 0$;
(5) $\ell \neq 3, \ell \mid N_3, \ell \equiv 2 \pmod{3}$ implies $\psi(\ell) = 0$;
(6) $h_3(-3d) = 1$ (resp. $h_3(d) = 1$).

Moreover, we have that for any $i \in \{2, 3, 5, 8\}$,
- $1/4$ of the above fundamental discriminants $d > 0$ (resp. $d < 0$) satisfy $d \equiv i \pmod{9}$.

Proof. We will apply Proposition 9.3. Using the Chinese remainder theorem, choose a positive integer m which satisfies the following congruence conditions:
(1) $m \equiv 3 \pmod{9}$ or $m \equiv 2 \pmod{3}$,
(2) ℓ odd prime, $\ell \neq 3, \ell \mid N_1 \implies m \equiv -3[\text{quadratic non-residue}] \pmod{\ell}$, and $2\mid N_1 \implies m \equiv 1 \pmod{8}$,
(3) ℓ odd prime, $\ell \neq 3, \ell \mid N_2 \implies m \equiv -3[\text{quadratic residue unit}] \pmod{\ell}$, and $2\mid N_2 \implies m \equiv 5 \pmod{8}$,
(4) ℓ odd prime, $\ell \neq 3, \ell \mid N_3, \ell \equiv 1 \pmod{3} \implies m \equiv 0 \pmod{\ell}$ and $m \neq 0 \pmod{\ell^2}$,
(5) \(\ell\) odd prime, \(\ell \neq 3, \ell | N_3, \ell \equiv 2 \pmod{3} \implies m \equiv 0 \pmod{\ell}\) and \(m \neq 0 \pmod{\ell^2}\), and \(2 | N_3 \implies m \equiv 8\) or \(12 \pmod{16}\).

Let \(N'\) denote the prime-to-3 part of \(N\). Given such an \(m\), let a positive integer \(M\) be defined as follows:

- If \(m \equiv 3 \pmod{9}\), let
 \[
 M = \begin{cases}
 9N', & 2 \not| N, \\
 9 \cdot \text{lcm}(N', 8), & 2 \mid N, \\
 9 \cdot \text{lcm}(N', 16), & 4 \mid N.
 \end{cases}
 \]

- If \(m \equiv 2 \pmod{3}\), let
 \[
 M = \begin{cases}
 3N', & 2 \not| N, \\
 3 \cdot \text{lcm}(N', 8), & 2 \mid N, \\
 3 \cdot \text{lcm}(N', 16), & 4 \mid N.
 \end{cases}
 \]

If \(m \equiv 2 \pmod{3}\), suppose \(d\) is a fundamental discriminant with

- \(d > 0, d \equiv 0 \pmod{3}\), and \(-d/3 \equiv m \pmod{M}\), or
- \(d < 0, d \not\equiv 0 \pmod{3}\), and \(d \equiv m \pmod{M}\).

If \(m \equiv 3 \pmod{9}\), suppose \(d\) is a fundamental discriminant with

- \(d > 0, d \not\equiv 0 \pmod{3}\), and \(-3d \equiv m \pmod{M}\), or
- \(d < 0, d \equiv 0 \pmod{3}\), and \(d \equiv m \pmod{M}\).

Let \(\psi\) be the quadratic character associated with \(d\). Then the congruence conditions on \(m\) corresponding to (1)-(5) above imply

1. \(\psi(3) \neq 1\) and \((\psi^{-1} \omega)(3) \neq 1\);
2. \(\ell \neq 3\) prime, \(\ell | N_1 \implies \psi(\ell) = -1\);
3. \(\ell \neq 3\) prime, \(\ell | N_2 \implies \psi(\ell) = 1\);
4. \(\ell \neq 3\) prime, \(\ell | N_3, \ell \equiv 1 \pmod{3} \implies \psi(\ell) = 0\);
5. \(\ell \neq 3\) prime, \(\ell | N_3, \ell \equiv 2 \pmod{3} \implies \psi(\ell) = 0\).

Thus \(\psi\) satisfies the desired congruence conditions (1)-(5) in the statement of the theorem. Now we address (6). The congruence conditions (1)-(5) above imply that \((m, M)\) is a valid pair. Thus, by Proposition \[3\], if \(m \equiv 2 \pmod{3}\) with corresponding \(M\) as defined above, then

\[
\lim_{x \to \infty} \frac{|K^-(x, m, M)|}{|K^+(3x, 3, 9)| + |K^+(3x, 6, 9)|} \geq \frac{1}{6 \Phi(M)} \prod_{\ell | M, \ell \neq 3} \frac{q}{\ell + 1}
\]

where the left-hand side of (41) is the proportion of \(d > 0\) which satisfy \(d \equiv 0 \pmod{3}\) and \(-d/3 \equiv m \pmod{M}\) and \(h_3(-d) = h_3(-d/3) = 1\), and

\[
\lim_{x \to \infty} \frac{|K^-(x, m, M)|}{|K^-(x, 1, 3)| + |K^-(x, 2, 3)|} \geq \frac{1}{2 \Phi(M)} \prod_{\ell | M, \ell \neq 3} \frac{q}{\ell + 1}
\]

where the left-hand side of (42) is the proportion of \(d < 0\) which satisfy \(d \not\equiv 0 \pmod{3}\), \(d \equiv m \pmod{M}\) and \(h_3(d) = 1\). Similarly by Proposition \[3\] if \(m \equiv 3 \pmod{9}\) with corresponding \(M\) as defined above, then

\[
\lim_{x \to \infty} \frac{|K^-(x, m, M)|}{|K^+(x/3, 1, 3)| + |K^+(x/3, 2, 3)|} \geq \frac{3}{2 \Phi(M)} \prod_{\ell | M, \ell \neq 3} \frac{q}{\ell + 1}
\]
where the left-hand side of (43) is the proportion of $d > 0$ which satisfy $d \not\equiv 0 \pmod{3}$, $-3d \equiv m \pmod{M}$ and $h_3(-3d) = 1$, and

$$\lim_{x \to \infty} \frac{|K^-_x(x, m, M)|}{|K^-(x, 0, 3)| + |K^-(x, 2, 3)|} \geq \frac{1}{2\Phi(M)} \prod_{\ell | M, \ell \neq 3} \frac{q}{\ell + 1}$$

where the left-hand side of (44) is the proportion of $d < 0$ which satisfy $d \equiv 0 \pmod{3}$, $d \equiv m \pmod{M}$ and $h_3(d) = 1$.

Moreover, in each case, we have

$$\prod_{\ell | N_1, \ell \text{ odd, } \ell \neq 3} \frac{\ell - 1}{2} \prod_{\ell | N_2, \ell \text{ odd, } \ell \neq 3} \frac{\ell - 1}{2} \prod_{\ell | N_3, \ell \text{ odd, } \ell \equiv 1 \pmod{3}} (\ell - 1) \prod_{\ell | N_3, \ell \text{ odd, } \ell \equiv 2 \pmod{3}} (\ell - 1) \prod_{\ell | N_3} 2$$

choices of residue classes $m \pmod{M}$ which satisfy congruence conditions (1)-(5). Combining all the above and summing over each these residue class $m \pmod{M}$, we immediately obtain our lower bounds for the proportions of desired $d > 0$ from (42) and desired $d < 0$ from (43).

The final part of the theorem follows by directly counting the number of residue classes $m \pmod{M}$ which force $d \equiv i \pmod{9}$ for $i \in \{2, 3, 5, 8\}$.

\[\square\]

Remark 9.6. Suppose $E[3]^{ss} \cong \mathbb{F}_3 \oplus \mathbb{F}_3(\omega)$. Note that for each d produced by Theorem 9.5, Theorem 9.4 shows that there is a positive proportion of imaginary quadratic K satisfying the Heegner hypothesis with respect to Nd^2 such that the corresponding Heegner point $P \in E^{(d)}(K)$ is non-torsion. In particular, for each such d there is at least one K such that $P \in E^{(d)}(K)$ is non-torsion. Thus $r_{an}(E^{(d)}) = \frac{1-w(E^{(d)})}{2}$.

Proof of Theorem 9.5 Suppose $E[3]$ is reducible, i.e. $E[3]^{ss} \cong \mathbb{F}_3(\psi) \oplus \mathbb{F}_3(\psi^{-1}\omega)$ for some quadratic character $\psi : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \mu_2$. Twisting by the quadratic character ψ^{-1}, we may assume without loss of generality that $E[3]^{ss} \cong \mathbb{F}_3 \oplus \mathbb{F}_3(\omega)$.

Let d be a fundamental discriminant corresponding to a quadratic character ψ in the family of d produced by Theorem 9.5 (with the integers $N_1 = N_{\text{split}}, N_2 = N_{\text{nonsplit}}$ and $N_3 = N_{\text{add}}$ as in our setting). In particular, $E^{(d)}[3]^{ss} \cong \mathbb{F}_3(\psi) \oplus \mathbb{F}_3(\psi^{-1}\omega)$ satisfies the assumptions of Theorem 9.4, including assumption (6). Hence, we can apply Theorem 9.4 to $E^{(d)}$ to conclude that a positive proportion of imaginary quadratic fields K satisfy the Heegner hypothesis with respect to $3Nd^2$ and have that the associated Heegner point $P \in E^{(d)}(K)$ is non-torsion. Since $w(E^{(d)})w(E^{3Nd^2}) = w(E/K) = -1$ (the last equality following from the Heegner hypothesis), we have that each such K satisfies

$$r_{an}(E^{3Nd^2}) = \frac{1 + w(E^{(d)})}{2}.$$

Hence there are a positive proportion of quadratic twists of E with rank $\frac{1+w(E^{(d)})}{2}$, and in fact by Theorem 9.4 a lower bound for this proportion is given by

$$\frac{d_0}{2^{r(E^{(d)})+s_3(d)} - 3} \prod_{\ell | N_{\text{split},}\ell \text{ odd, } \ell \neq 3} \frac{1}{2} \prod_{\ell | N_{\text{nonsplit},}\ell \text{ odd, } \ell \neq 3} \frac{1}{2} \prod_{\ell | N_{\text{add},}\ell \text{ odd, } \ell \neq 3} \frac{1}{2\ell} \prod_{\ell | 3Nd^2} \frac{q}{\ell + 1}$$

in the notation of the statement of the theorem.
Now choose any K as produced by Theorem 9.4 for $E(d)$, so that $w(E^{(dd)}_d) = -w(E(d))$. In particular, d_K is odd and prime to $3Nd$. Then by construction $h_3(dd_K) = 1$ if $d > 0$ and $h_3(-3dd_K) = 1$ if $d < 0$, and so $E^{(dd)}_d[3]_{ss} \cong \mathbb{F}_3(\psi_\varepsilon_K) \oplus \mathbb{F}_3((\psi_\varepsilon_K)^{-1}\omega)$ satisfies all of the assumptions (including (6)) of Theorem 9.4. Hence, we can apply Theorem 9.4 to $E^{(dd)}_d$ to conclude that a positive proportion of imaginary quadratic fields K' satisfy the Heegner hypothesis with respect to $3Nd^2d_K^2$ and have that the associated Heegner point $P \in E^{(dd)}_d(K')$ is non-torsion. Since $w(E^{(dd)}_d)w(E^{(dd)}_d/K') = w(E^{(dd)}_d/K) = -1$, we have that each such K' satisfies

\[r_{an}(E^{(dd)}_d, K') = \frac{1 + w(E^{(dd)}_d)}{2} = \frac{1 - w(E(d))}{2}. \]

Hence there are a positive proportion of quadratic twists of E with rank $\frac{1 - w(E(d))}{2}$, and in fact by Theorem 9.4, a lower bound for this proportion is given by

\[
\frac{(dd)_0}{2r(E^{(dd)}_d) + s_3(dd)_0} \cdot 3 \prod_{\ell \mid N} \prod_{\ell \mid N \text{ subdivisive}} \frac{1}{2} \prod_{\ell \mid d_K \text{ odd, } \ell \neq 3} \left(1 - \frac{1}{\ell} \right) \prod_{\ell \mid d_K, \text{ odd, } \ell \neq 3} \left(\frac{1}{2} \prod_{\ell \mid \ell^3 + 3N(d_K)^2} \frac{q}{\ell + 1} \right)
\]

in the notation of the statement of the theorem. (Note that in fact $r(E^{(dd)}_d) = r(E(d))$ since d_K is odd.)

We have thus established Theorem 1.5.

When E is semistable, we have $E[3]_{ss} \cong \mathbb{F}_3 \oplus \mathbb{F}_3(\omega)$ for the following reason: Suppose $E[3]_{ss} \cong \mathbb{F}_3(\psi) \oplus \mathbb{F}_3(\psi^{-1}\omega)$ for some quadratic character ψ. Then ψ cannot be ramified at any $\ell \mid N$ since the corresponding admissible $GL_2(\mathbb{Q}_\ell)$ representation is Steinberg of conductor ℓ, but if ψ was ramified at ℓ it would force the conductor to be divisible by ℓ^2 by the above description of $E[3]_{ss}$. Hence ψ is a quadratic character only possibly ramified at 3 and hence must be either 1 or ω.

Now we can use Theorem 9.5 to compute explicit lower bounds on the proportion of rank 0 and rank 1 quadratic twists.

Proposition 9.7. Let E/\mathbb{Q} be semistable and suppose that E has a rational 3-isogeny.

If $3 \nmid N$, then in the notation of Theorem 9.5 (with $N_1 = N_{\text{split}}, N_2 = N_{\text{nonsplit}},$ and $N_3 = N_{\text{add}} = 1$, at least

\begin{equation}
\frac{1}{2r \cdot 3} \prod_{\ell \mid N, \ell \text{ odd, } \ell \neq 3} \left(1 - \frac{1}{\ell} \right) \prod_{\ell \mid N, \ell \neq 3} \frac{q}{\ell + 1}
\end{equation}

of $d > 0$ (resp. $d < 0$) have $r_{an}(E(d)) = 1$ (resp. $r_{an}(E(d)) = 0$).

If $3 \mid N$, then:

1. If 3 is of split multiplicative reduction, then at least

\begin{equation}
\frac{1}{2r \cdot 3} \prod_{\ell \mid N, \ell \text{ odd, } \ell \neq 3} \left(1 - \frac{1}{\ell} \right) \prod_{\ell \mid N, \ell \neq 3} \frac{q}{\ell + 1}
\end{equation}

of $d > 0$ (resp. $d < 0$) have $r_{an}(E(d)) = 1$ (resp. $r_{an}(E(d)) = 0$).

2. If 3 is of nonsplit multiplicative reduction, then at least

\begin{equation}
\frac{1}{2r + 2 \cdot 3} \prod_{\ell \mid N, \ell \text{ odd, } \ell \neq 3} \left(1 - \frac{1}{\ell} \right) \prod_{\ell \mid N, \ell \neq 3} \frac{q}{\ell + 1}
\end{equation}

of $d > 0$ (resp. $d < 0$) have $r_{an}(E(d)) = 1$ (resp. $r_{an}(E(d)) = 0$).
of $d > 0$ (resp. $d < 0$) have $r_{an}(E^{(d)}) = 0$ (resp. $r_{an}(E^{(d)}) = 1$), and at least

$$
\frac{1}{2^{r+2}} \prod_{\ell | N, \ell \not\equiv 0 \bmod 3} \frac{1}{2} \prod_{\ell | N, \ell \equiv 0} \frac{q}{\ell + 1}
$$

of $d > 0$ (resp. $d < 0$) have $r_{an}(E^{(d)}) = 1$ (resp. $r_{an}(E^{(d)}) = 0$).

Proof. First we apply Theorem 9.5 to $N_1 = N_{\text{split}}, N_2 = N_{\text{nonsplit}},$ and $N_3 = N_{\text{add}} = 1.$ For any d produced by the theorem, Remark 9.6 implies that

$$r_{an}(E^{(d)}) = \frac{1 - w(E^{(d)})}{2}.\label{eq:51}$$

Let d be any fundamental discriminant produced by Theorem 9.5. By the properties of the d produced in Theorem 9.5 the corresponding local characters ψ_{E} for satisfy the implications

$$\ell | N, \ell \not| d \implies \ell | N \implies \psi_{E}(\ell)w_{E}(E) = -\psi_{E}(\ell)a_{E}(E) = -\psi(\ell)a_{E}(E) = 1 \tag{52}$$

(where the last chain of equalities follows since for $\ell | N$, $w_{E}(E) = -a_{E}(E)$), and furthermore since $N = N_{\text{split}}N_{\text{nonsplit}}$ (since we assume that E is semistable),

$$\ell | (N, d) \implies \ell = 3.\tag{53}$$

We now calculate $w(E^{(d)})$ using (52) and (53). Since E is semistable, the global root number $w(E^{(d)})$ is computed via changes to local root numbers $w_{\ell}(E)$ under the quadratic twist by d as follows (see [Bal14, Table 1]):

1. if $\ell \not| Nd$, then $w_{\ell}(E^{(d)}) = w_{\ell}(E) = 1$;
2. if $\ell | N, \ell \not| d$, then $w_{\ell}(E^{(d)}) = \psi_{E}(\ell)w_{E}(E) = 1$;
3. if $\ell \not| N, \ell | d$ then $w_{\ell}(E^{(d)}) = \psi_{E}(-1)w_{E}(E) = \psi_{E}(-1)$;
4. if $\ell | (N, d)$, then $\ell = 3$ and $w_{3}(E^{(d)}) = -\psi_{3}(-1)w_{3}(E)$;
5. $w_{\infty}(E^{(d)}) = w_{\infty}(E) = -1$.

Hence

$$w(E^{(d)}) = -\psi(-1) \left(\prod_{3 | (N, d)} -w_{3}(E) \right).\tag{54}$$

If $3 \not| N$, then we have $3 \not| (N, d)$, and so $w(E^{(d)}) = -\psi(-1).$ Thus, by (51) and the lower bound given in the statement of Theorem 9.3 in the notation of the theorem we have that at least

$$\frac{1}{2^{r} \cdot 3} \prod_{\ell | N, \ell \not\equiv 0 \bmod 3} \frac{1}{2} \prod_{\ell | N, \ell \equiv 0} \frac{q}{\ell + 1} \tag{55}$$

of $d > 0$ have $r_{an}(E^{(d)}) = 1$, and at least the same proportion of $d < 0$ have $r_{an}(E^{(d)}) = 0$.

If $3 | N$, then

$$w(E^{(d)}) = \begin{cases} -\psi(-1), & 3 \not| d, \\ -\psi(-1), & 3 | d, 3 \text{ is of split multiplicative reduction (i.e. } w_{3}(E) = -1), \\ \psi(-1), & 3 | d, 3 \text{ is of nonsplit multiplicative reduction (i.e. } w_{3}(E) = 1). \end{cases}$$

The desired bounds in this case follow again from (51), the lower bound given in the statement of Theorem 9.5 and the final part of that theorem. \qed
Remark 9.8. It is most likely possible to refine the casework in the proofs of Theorems 9.5 and 9.4 in order to achieve better lower bounds of twists with ranks 0 or 1.

Example 9.9. Consider the elliptic curve

$$E = 19a1 : y^2 + y = x^3 + x^2 - 9x - 15$$

in Cremona’s labeling. Then $E(\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z}$, so we take $p = 3$ and obtain $E[3]^{ss} = F_3 \oplus F_3(\omega)$. Notice that $N = N_{\text{split}} = 19$ and the root number $w(E) = +1$. Consider the set of fundamental discriminant $d > 0$ (resp. $d < 0$) such that

1. $\psi_d(3) \neq 1$ and $(\psi_d \omega)(3) \neq 1$.
2. $\psi_d(19) = -1$.
3. $h_3(-3d) = 1$ (resp. $h_3(d) = 1$).

The first few such $d > 0$ are

$$d = 8, 12, 21, 41, 53, 56, 65, 84, 89, 120, 164, 165, 185, 189, \cdots$$

and the first few such $d < 0$ are

Notice that the root number $w(E(d)) = \psi_d(-19) = -1$ (resp. +1), we know from Theorem 9.4 that

$$r_{an}(E(d)) = \begin{cases} 0, & d < 0, \\ 1, & d > 0. \end{cases}$$

The explicit lower bounds in Proposition 9.7 show that at least $\frac{19}{120} = 15.833\%$ of real quadratic twists of E have rank 1, and at least $\frac{19}{120} = 15.833\%$ of imaginary quadratic twists of E have rank 0 (compare the lower bound $\frac{19}{240} = 7.917\%$ in [Jam98, p. 640]).

10. The sextic twists family

10.1. The curves E_d. In this section we consider the elliptic curve of j-invariant 0,

$$E = 27a1 : X_0(27) : y^2 = x^3 - 432.$$

We remind the reader that E has CM by the ring of integers $\mathbb{Z}[\zeta_3]$ of $\mathbb{Q}(\sqrt{-3})$ and is isomorphic to the Fermat cubic curve $X^3 + Y^3 = 1$ via the transformation

$$X = \frac{36 - y}{6x}, \quad Y = \frac{36 + y}{6x}.$$

Definition 10.1. For $d \in \mathbb{Z}$, we denote E_d the d-th sextic twist of E,

$$E_d : y^2 = x^3 - 432d.$$

Notice that the d-th quadratic twist $E^{(d)}$ of E is given by

$$E_{d^2} = E^{(d)} : y^2 = x^3 - 432d^2,$$

and the d-th cubic twist of E is given by

$$E_{d^3} : y^2 = x^3 - 432d^3.$$

Remark 10.2. The cubic twist E_{d^3} is isomorphic to the curve $X^3 + Y^3 = d$ and its rational points provide solutions to the classical sum of two cubes problem. These equations have a long history, see [ZK87] §1 or [Wat07] §1 for an overview.
Lemma 10.3. We have an isomorphism of G_Q-representations

$$E_d[3]^{ss} \cong \mathbb{F}_3(\psi_d) \oplus \mathbb{F}_3(\psi_d \omega).$$

Here $\psi_d : G_Q \to \operatorname{Aut}(\mathbb{F}_3) = \{\pm 1\}$ is the quadratic character associated to the extension $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ and $\omega = \psi_{-3} : G_Q \to \operatorname{Aut}(\mathbb{F}_3) = \{\pm 1\}$.

Proof. Notice that under cubic twisting the associated modular forms are congruent mod $(\zeta_3 - 1)$. Since the Hecke eigenvalues are integers, we know that the associated modular forms are indeed congruent mod 3. Hence cubic twisting does not change the semi-simplification of the mod 3 Galois representations. Notice that $E_d \cong E_{d^2}$ is the d^2-th sextic twist of the curve E_d, which is the same as the d^2-cubic twist of the quadratic twist $E^{(d)}$. Since $E(\mathbb{Q})[3] \cong \mathbb{Z}/3\mathbb{Z}$, we have an exact sequence of G_Q-modules,

$$0 \to \mathbb{F}_3 \to E[3] \to \mathbb{F}_3(\omega) \to 0.$$

Hence we have an exact sequence of G_Q-modules

$$0 \to \mathbb{F}_3(\psi_d) \to E^{(d)}[3] \to \mathbb{F}_3(\psi_d \omega) \to 0.$$

The result then follows.

Lemma 10.4. Assume that:

1. d is a fundamental discriminant.
2. $d \equiv 0 \pmod{3}$.

Then the root number of E_d is given by

$$w(E_d) = \begin{cases} -\text{sign}(d), & d \equiv 3 \pmod{9}, \\ \text{sign}(d), & d \equiv 6 \pmod{9}. \end{cases}$$

Proof. We use the closed formula for the local root numbers $w_\ell(E_d)$ in [Liv95 §9].

1. Since d is a fundamental discriminant, we have either $d \equiv 1 \pmod{4}$, or $d = 4d'$ for some $d' \equiv 3 \pmod{4}$, or $d = 8d'$ for some $d' \equiv 1 \pmod{4}$. In the first case we have $-432d = 2^4 \cdot (-27d)$, with $2 \nmid (-27d)$. In the second case we have $-432d = 2^6 \cdot (-27d')$, and in the third case we have $-432d = 2^7 \cdot (-27d')$, with $2 \nmid (-27d')$. The local root number formula gives

$$w_2(E_d) = \begin{cases} +1, & 2 \nmid d \text{ or } 4 \mid |d|, \\ -1, & 8 \mid |d|. \end{cases}$$

2. Let $d = 3d'$. Then $-432d = 3^4 \cdot (-16d')$, with $3 \nmid -16d'$. Since the exponent of 3 is 4, which is $\equiv 1 \pmod{3}$, we know that $w_3(E_d) = +1$.

3. Notice that if $2 \nmid d$ or $4 \mid |d|$, then the number of prime factors $\ell \mid d$ such that $\ell \geq 5$ and $\ell \equiv 2 \pmod{3}$ is odd if and only if $|d'| \equiv 2 \pmod{3}$. Similarly, if $8 \mid |d|$, then the number of prime factors $\ell \mid d$ such that $\ell \geq 5$ and $\ell \equiv 2 \pmod{3}$ is odd if and only if $|d'| \equiv 1 \pmod{3}$. It follows that if $d' \equiv 1 \pmod{3}$, then

$$\prod_{\ell \geq 5} w_\ell(E_d) = \begin{cases} \text{sign}(d), & 2 \nmid d \text{ or } 4 \mid |d|, \\ -\text{sign}(d), & 8 \mid |d|. \end{cases}$$

If $d' \equiv 2 \pmod{3}$, then the product of the local root numbers

$$\prod_{\ell \geq 5} w_\ell(E_d) = \begin{cases} -\text{sign}(d), & 2 \nmid d \text{ or } 4 \mid |d|, \\ \text{sign}(d), & 8 \mid |d|. \end{cases}$$

\[48\]
Now the result follows from the product formula \(w(E_d) = -w_2(E_d)w_3(E_d)\prod_{\ell \geq 5} w_\ell(E_d) \).

Lemma 10.5. Assume that:

1. \(d \) is a fundamental discriminant.
2. \(d \equiv 2 \) (mod 3).

Then the root number of \(E_d \) is given by

\[
w(E_d) = \begin{cases}
\text{sign}(d), & d \equiv 2 \pmod{9}, \\
-\text{sign}(d), & d \equiv 5, 8 \pmod{9}.
\end{cases}
\]

Proof. The proof is similar to Lemma 10.4 using [Liv95, 9].

1. Since \(d \) is a fundamental discriminant, we again have the formula (56).
2. Notice that \(-432d = 3^3 \cdot (-16d)\). Its prime-to-3 part \(-16d\) satisfies \(-16d \equiv \pm 2, 1 \pmod{9}\) if and only if \(d \equiv \pm 1, 5 \pmod{9}\). It follows that the local root number

\[
w_3(E_d) = \begin{cases} +1, & d \equiv 2 \pmod{9}, \\
-1, & d \equiv 5, 8 \pmod{9}.
\end{cases}
\]

3. Since \(d \equiv 2 \) (mod 3), we again have the formula (57).

Now the result again follows from the product formula. \(\square\)

10.2. **Weak Goldfeld conjecture for \(\{E_d\} \).** Since \(E_d \) is CM, we know that its conductor \(N(E_d) = N_{\text{add}}(E_d) \). When \(d \) is a fundamental discriminant, the curve \(E_d \) has additive reduction exactly at the prime factors of \(3d \).

Theorem 10.6. Let \(K = \mathbb{Q}(\sqrt{d_K}) \) be an imaginary quadratic field satisfying the Heegner hypothesis with respect to \(3d \). Let \(P_d \in E_d(K) \) be the associated Heegner point. Assume that:

1. \(d \) is a fundamental discriminant.
2. \(d \equiv 2 \) (mod 3) or \(d \equiv 3 \) (mod 9).
3. If \(d > 0 \), then \(h_3(-3d) = h_3(d_K d) = 1 \). If \(d < 0 \), then \(h_3(d) = h_3(-3d_K d) = 1 \).

Then

\[
\log_{\omega_{E_d}} P_d \not\equiv 0 \pmod{3}.
\]

In particular, \(P_d \) is of infinite order and \(E_d/K \) has both analytic and algebraic rank one.

Proof. It follows by applying Theorem 7.1 for \(p = 3 \) and noticing that \(|\tilde{E}_d^{\text{ns}}(\mathbb{F}_3)| = 3 \) since \(E_d \) has additive reduction at 3. It remains to check that all the assumptions of Theorem 7.1 are satisfied. By Lemma 10.3, we have \(E[3] \) is reducible with \(\psi = \psi_d \). The condition that \(\psi(3) \neq 1 \) and \((\psi^{-1}\omega)(3) \neq 1 \) is equivalent to that \(d \equiv 2 \) (mod 3) or \(d \equiv 3 \) (mod 9). For \(\ell \neq 3 \) and \(\ell | N_{\text{add}}(E_d) \), we have \(\ell | d \), so \(\psi_d(\ell) = 0 \). Finally, the requirement on the trivial 3-class numbers is exactly the assumption that \(3 \nmid B_1, \psi_0^{-1} \epsilon K B_1, \psi_0 \omega^{-1} \) by noticing that

\[
(\psi_d)_0 = \begin{cases}
\psi_d, & d > 0, \\
\psi_{d_K d}, & d < 0,
\end{cases}
\]

and using the formula for the Bernoulli numbers (35) (see also Corollary 8.3). \(\square\)

Corollary 10.7. Assume we are in the situation of Theorem 10.6.
imaginary quadratic field K.

Proof. By Theorem 9.5, at least $1/3$ of all (positive or negative) fundamental discriminants d satisfy the Heegner hypothesis with respect to $3d$ and such that $h_3(d K) = 1$ if $d > 0$ and $h_3(-3d K) = 1$ if $d < 0$. Thus d and K satisfy all of the assumptions of Theorem 10.6. The final part of Theorem 9.5 implies that $1/4$ of the fundamental discriminants d considered above (which in turn comprise $1/3$ of all fundamental discriminants) satisfy $d \equiv i \pmod{9}$, for each $i \in \{2, 3, 5, 8\}$. Moreover, $1/2$ of these d give $r_{an}(E_d) = 0$ (resp. 1) by Corollary 10.7. The desired density $1/6$ then follows.

Remark 10.9. One can also obtain $r_{an}(E_d) \in \{0, 1\}$ for many d’s which are not fundamental discriminants. From the proof of Theorem 10.6 one sees that the fundamental discriminant assumption can be relaxed by allowing the exponent of prime factors of d to be 3 or 5 (all we use is that $\mathbb{Q}(\sqrt{d})$ is ramified exactly at the prime factors of d). We assume d is a fundamental discriminant only to simplify the root number computation in Lemmas 10.4 and 10.5.

10.3. The 3-part of the BSD conjecture over K.

The goal of this subsection is to prove the following theorem.

Theorem 10.10. Assume we are in the situation of Theorem 10.6. Assume the Manin constant of E_d is coprime to 3. Then BSD(3) is true for E_d/K.

By the Gross–Zagier formula, the BSD conjecture for E_d/K is equivalent to the equality ([GZ86, V.2.2])

$$u_K \cdot c_{E_d} \cdot \prod_{\ell \mid N(E_d)} c_{\ell}(E_d) \cdot \|\Xi(E_d/K)\|^{1/2} = [E_d(K) : \mathbb{Z}P_d],$$

where $u_K = |\mathcal{O}_K^\times/\{\pm 1\}|$, c_{E_d} is the Manin constant of E_d/Q, $c_{\ell}(E_d) = [E_d(Q_\ell) : E_\ell^0(Q_\ell)]$ is the local Tamagawa number of E_d and $[E_d(K) : \mathbb{Z}P_d]$ is the index of the Heegner point $P_d \in E_d(K)$.

From now on assume we are in the situation of Theorem 10.6. Since 3 splits in K, we know $K \neq \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, so $u_K = 1$. Therefore the BSD conjecture for E_d/K is equivalent to the equality

$$\prod_{\ell \mid N(E_d)} c_{\ell}(E_d) \cdot \|\Xi(E_d/K)\|^{1/2} = \frac{[E_d(K) : \mathbb{Z}P_d]}{c_{E_d}}.$$

We will prove BSD(3) by computing the 3-part of both sides of (60) explicitly.

Lemma 10.11. We have $E_d(K)[3] = 0$.

50
Proof. By Lemma 10.3, we have $E_d[3]^{ss} \cong F_3(\psi_d) \oplus F_3(\psi_d\omega)$. Since neither ψ_d nor $\psi_d\omega$ becomes trivial when restricted to G_K, we know that $E_d(K)[3] = 0$. □

Lemma 10.12. If $\ell \nmid N(E_d)$ and $\ell \neq 3$ (equivalently, $\ell \nmid d$), then $3 \nmid c_\ell(E_d)$.

Proof. By Lemma 10.3 we have $E_d[3]^{ss} \cong F_3(\psi_d) \oplus F_3(\psi_d\omega)$. Because ψ_d and $\psi_d\omega$ are both nontrivial at ℓ (in fact, ramified at ℓ), we know that $E_d(\mathbb{Q}_\ell)[3] = 0$. Since $E_d(\mathbb{Q}_\ell)$ has a pro-ℓ-subgroup ($\ell \neq 3$) of finite index and $E_d(\mathbb{Q}_\ell)$ has trivial 3-torsion, we know that $3 \nmid c_\ell(E_d)$. □

Definition 10.13. Let F be any number field. Let $\mathcal{L} = \{\mathcal{L}_v\}$ be a collection of subspaces $L_v \subseteq H^1(F_v, E_d[3])$, where v runs over all places of L. We say \mathcal{L} is a collection of local conditions if for almost all v, we have $L_v = H^1_{ur}(F_v, E_d[3])$ is the unramified subspace. Notice that $H^1(F_v, E_d[3]) = 0$, if $v \nmid \infty$. We define the Selmer group cut out by the local conditions \mathcal{L} to be

$$H^1_{\mathcal{L}}(F, E_d[3]) := \{x \in H^1(F, E_d[3]) : \text{res}_v(x) \in \mathcal{L}_v, \text{ for all } v\}.$$

We will consider the following four types of local conditions:

1. The Kummer conditions \mathcal{L} given by $\mathcal{L}_v = \text{im} \left(E(F_v)/3E(F_v) \to H^1(F_v, E_d[3]) \right)$. The 3-Selmer group $\text{Sel}_3(E_d/F) = H^1_{\mathcal{L}}(F, E_d[3])$ is cut out by the Kummer conditions.

2. The unramified conditions \mathcal{U} given by $\mathcal{U}_v = H^1_{ur}(F_v, E_d[3])$.

3. The strict conditions \mathcal{S} given by $\mathcal{S}_v = \mathcal{U}_v$ for $v \nmid 3$ and $\mathcal{S}_v = 0$ for $v | 3$.

4. The relaxed conditions \mathcal{R} given by $\mathcal{R}_v = \mathcal{U}_v$ for $v \nmid 3$ and $\mathcal{R}_v = H^1(F_v, E_d[3])$ for $v | 3$.

Lemma 10.14. $H^1_{\mathcal{L}}(K, E_d[3]) = H^1_{\mathcal{L}}(K, E_d[3]) = 0$.

Proof. By Shapiro’s lemma, we have

$$H^1_{\mathcal{L}}(K, E_d[3]) \cong H^1_{\mathcal{L}}(\mathbb{Q}, E_d[3]) \oplus H^1_{\mathcal{L}}(\mathbb{Q}, E_d^{(d_K)}[3]).$$

By Lemma 10.3 we have an exact sequence

$$\cdots \to H^1(\mathbb{Q}, F_3(\psi_d)) \to H^1(\mathbb{Q}, E_d[3]) \to H^1(\mathbb{Q}, F_3(\psi_d\omega)) \to \cdots.$$

Restricting to the unramified Selmer group we obtain a map

$$H^1_{\mathcal{U}}(\mathbb{Q}, E_d[3]) \to H^1(\mathbb{Q}, F_3(\psi_d\omega))$$

whose kernel and image consist of everywhere unramified classes. It follows from class field theory that

$$|H^1_{\mathcal{U}}(\mathbb{Q}, E_d[3])| \leq h_3(d) \cdot h_3(-3d).$$

Similarly, we have

$$|H^1_{\mathcal{U}}(\mathbb{Q}, E_d^{(d_K)}[3])| \leq h_3(d_{d_K}) \cdot h_3(-3d_{d_K}d).$$

By the assumptions on the 3-class numbers in Theorem 10.6 and Scholz’ reflection theorem ([Sch32, see also [Was97, 10.2]], we know that the four 3-class numbers appearing above are all trivial. Hence $H^1_{\mathcal{U}}(K, E_d[3]) = 0$. Since by definition we have

$$H^1_{\mathcal{S}}(K, E_d[3]) \subseteq H^1_{\mathcal{U}}(K, E_d[3]),$$

we also know that $H^1_{\mathcal{S}}(K, E_d[3]) = 0$. □

Lemma 10.15. $\dim H^1_{R}(K, E_d[3]) = 2$.

51
Proof. It follows from [DDT97, Theorem 2.18] that

(61) \[\dim H^1_R(K, E_d[3]) - \dim H^1_S(K, E_d[3]) = \frac{1}{2} \sum_{v \mid 3} \dim R_v. \]

Consider \(v \mid 3 \). Since 3 is split in \(K \), we know that \(H^1(K_v, E_d[3]) \cong H^1(Q_3, E_d[3]) \). By Lemma 10.3, we know that \(E_d[3] \),\(\cong \mathbb{F}_3(\psi_d) \oplus \mathbb{F}_3(\psi_d\omega) \). Since \(\psi_d(3) \neq 1 \) and \(\psi_d\omega(3) \neq 1 \), we know that

\[H^0(Q_3, E_d[3]) = H^2(Q_3, E_d[3]) = 0. \]

It follows from the Euler characteristic formula that

\[\dim H^1(Q_3, E_d[3]) = 2. \]

Namely, \(\dim R_v = 2 \). The result then follows from Lemma 10.14 and the formula (61). \(\square \)

Lemma 10.16. \(\text{Sel}_3(E_d/K) \cong \mathbb{Z}/3\mathbb{Z} \). In particular, \(\text{III}(E_d/K)[3] = 0 \).

Proof. We claim that \(L_v = U_v \) for any \(v \nmid 3 \). In fact:

1. If \(v \nmid 3 \mathrm{dc} \), then \(E_d \) has good reduction at \(v \) and so \(L_v = H^1_{\text{ur}}(K_v, E_d[3]) \) by [GP12, Lemma 6].
2. If \(v \mid \infty \), then \(v \) is complex and \(H^1(K_v, E_d[3]) = 0 \). So \(L_v = H^1_{\text{ur}}(K_v, E_d[3]) = 0 \).
3. If \(v \mid d \), then \(v \) is split in \(K \) and thus \(K_v \cong \mathbb{Q}_v \). By Lemma 10.12, \(\text{c}_v(E) \) is coprime to 3. It follows that \(L_v = H^1_{\text{ur}}(K_v, E_d[3]) \) by [GP12, Lemma 6].

It follows from the claim that

\[\text{Sel}_3(E_d/K) \subseteq H^1_R(K, E_d[3]). \]

So \(\dim \text{Sel}_3(E_d/K) \leq 2 \) by Lemma 10.15.

By the Heegner hypothesis, the root number of \(E_d/K \) is \(-1\). Since the 3-parity conjecture is known for elliptic curves with a 3-isogeny ([DD11, Theorem 1.8]), we know that \(\dim \text{Sel}_3(E_d/K) \) is odd and thus must be 1. Hence \(\text{Sel}_3(E_d/K) \cong \mathbb{Z}/3\mathbb{Z} \) as desired. \(\square \)

Lemma 10.17. We have

\[c_3(E_d) = \begin{cases} 3, & d \equiv 2 \pmod{9}, \\ 1, & d \equiv 3, 5, 8 \pmod{9}. \end{cases} \]

In either case we have \(\text{ord}_3(c_3(E_d)) = \text{ord}_3\left(\frac{[E_d(K) : ZP_d]}{c_{E_d}} \right) \).

Proof. The first part follows directly from Tate’s algorithm [Sil94, IV.9] (see also the formula in [Sat86, 0.5]).

Suppose \(\text{ord}_3(c_3(E_d)) = 0 \). We need to show that \(\text{ord}_3([E_d(K) : ZP_d]) = 0 \). If not, then since \(E_d(K)[3] = 0 \) (Lemma 10.11), we know that there exists some \(Q \in E_d(K) \) such that \(3Q = nP_d \) for some \(n \) coprime to 3. Let \(\omega_{E_d} \) be the Néron differential of \(E_d \) and let \(\log_{E_d} := \log_{\omega_{E_d}} \). By the very definition of the Manin constant we have \(c_{E_d} \cdot \omega_{E_d} = \omega_{E_d} \) and \(c_{E_d} \cdot \log_{E_d} = \log_{E_d} \). Since \(c_{E_d} \) is assumed to be coprime to 3, we have up to a 3-adic unit,

\[\frac{|\hat{E}^\text{ns}_d(F_3)| \cdot \log_{\omega_{E_d}} P_d}{3} = |\hat{E}^\text{ns}_d(F_3)| \cdot \log_{E_d} P_d = |\hat{E}^\text{ns}_d(F_3)| \cdot \log_{E_d}(Q). \]

On the other hand, \(c_3(E_d) \cdot |\hat{E}^\text{ns}_d(F_3)| \cdot Q \) lies in the formal group \(\hat{E}_d(3\mathcal{O}_K) \) and \(\text{ord}_3(c_3(E_d)) = 0 \), we know that

\[|\hat{E}^\text{ns}_d(F_3)| \cdot \log_{E_d}(Q) \in 3\mathcal{O}_K, \]

which contradicts the formula (58).
Now suppose \(\text{ord}_3(c_3(E_d)) = 1 \). The same argument as the previous case shows that we have \(\text{ord}_3([E_d(K) : ZP_d]) \leq 1 \). It remains to show that

\[
\text{ord}_3([E_d(K) : ZP_d]) \neq 0.
\]

Assume otherwise, then the image of \(P_d \) in \(E_d(K)/3E_d(K) \) is nontrivial, and hence its image in \(\text{Sel}_3(E_d/K) \cong Z/3Z \) is nontrivial. We now analyze its local Kummer image at 3 and derive a contradiction.

Since \(c_3(E_d) = 3 \) and \(\hat{E}_d^{ns}(F_3) = Z/3Z \), we know that \(E_d(Q_3)/\hat{E}_d(3Z_3) \) is a group of order 9, so

\[
E_d(Q_3)/\hat{E}_d(3Z_3) \cong Z/9Z \text{ or } Z/3Z \times Z/3Z.
\]

Since \(\dim H^1(Q_3, E_d[3]) = 2 \) and the local Kummer condition is a maximal isotropic subspace of \(H^1(Q_3, E_d[3]) \) under the local Tate pairing, we know that \(E_d(Q_3)/3E_d(Q_3) = Z/3Z \). So the only possibility is that

\[
(62) \quad E_d(Q_3)/\hat{E}_d(3Z_3) \cong Z/9Z.
\]

Now by the formula \([68] \), we know that \(P_d \notin \hat{E}_d(3O_{K_3}) \), but \(3P_d \in \hat{E}_d(3O_{K_3}) \). Using \(K_3 \cong Q_3 \) and \([62] \), we deduce that \(P_d \in 3E_d(K_3) \). So the local image of \(P_d \) in \(E_d(K_3)/3E_d(K_3) \) is trivial.

Therefore \(\text{Sel}_3(E_d/K) \) is equal to the strict Selmer group \(H^1(K, E_d[3]) \), a contradiction to Lemmas \(10.14 \) and \(10.16 \).

Proof of Theorem 10.10. Theorem 10.10 follows immediately from the equivalent formula \([60] \) and Lemmas \(10.12 \), \(10.16 \) and \(10.17 \).

11. Cubic twists families

In this section we consider the elliptic curve \(E_d/Q : y^2 = x^3 - 432d \) of \(j \)-invariant 0, where \(d \) is any 6th-power-free integer. Recall that for a cube-free positive integer \(D \), the \(D \)-th cubic twist \(E_d \) is the curve \(E_{dd} \) (cf. Definition \(10.1 \)). For \(r \geq 0 \), we define

\[
C_r(E_d, X) = \{ D < X : D > 0 \text{ cube-free}, r_{an}(E_{dd}) = r \}
\]

to be the counting function for the number of cubic twists of \(E_d \) of analytic rank \(r \). Recall that by Lemma \(10.3 \), \(E_d[3]^{ns} \cong F_3(\psi_d) \oplus F_3(\psi_d\omega) \).

Theorem 11.1. Assume for any prime \(\ell | \N(E_d) \), we have \(\psi_d(\ell) \neq 1 \) and \(\psi_d\omega(\ell) \neq 1 \). Assume there exists an imaginary quadratic field \(K \) satisfying the Heegner hypothesis for \(\N(E_d) \) such that

1. \(3 \) is split in \(K \).
2. If \(d > 0 \), then \(h_3(-3d) = h_3(d_Kd) = 1 \). If \(d < 0 \), then \(h_3(d) = h_3(-3d_Kd) = 1 \).

Then for \(r \in \{0, 1\} \), we have

\[
C_r(E_d, X) \gg \frac{X}{\log^{1/8}(X)}.
\]

Remark 11.2. Notice that when \(3 \nmid d \) is a fundamental discriminant, the conditions \(\psi_d(\ell) \neq 1 \) and \(\psi_d\omega(\ell) \neq 1 \) for \(\ell | \N(E_d) \) are automatically satisfied.

Proof. We consider the following set \(S \) consisting of primes \(\ell \nmid 6N(E_d) \) such that

1. \(\ell \) is split in \(K \).
2. \(\psi_d(\ell) = -1 \) (\(\ell \) is inert in \(Q(\sqrt{d}) \)).
3. \(\omega(\ell) = 1 \) (\(\ell \) is split in \(Q(\sqrt{-3}) \)).
Since our assumption implies that the three quadratic fields K, $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{-3})$ are linearly disjoint, we know that the set of primes \mathcal{S} has density $\alpha = (\frac{1}{2})^3 = \frac{1}{8}$ by Chebotarev’s density theorem.

Let \mathcal{N} be the set of integers consisting of square-free products of primes in \mathcal{S}. Then for any $D \in \mathcal{N}$. We have $E_{dD^2}[3] \cong F_3(\psi_d) \oplus F_3(\psi_d\omega)$. For any $\ell|N(E_{dD^2})$, we have $\psi_d(\ell) \neq 1$ and $\psi_d\omega(\ell) \neq 1$ by construction. The imaginary quadratic field K also satisfies the Heegner hypothesis for $N(E_{dD^2})$. Since the relevant 3-class numbers are trivial, we can apply Theorem 7.1 $(p = 3)$ to E_{dD^2} and conclude that

$$r_{an}(E_{dD^2}/K) = 1.$$

The root number $w(E_{dD^2})$ is $+1$ (resp. -1) for a positive proportion of $D \in \mathcal{N}$, so we have for $r \in \{0, 1\}$,

$$C_r(E_d, X) \gg \#\{D \in \mathcal{N} : D < X\}.$$

By the standard application of Ikeda’s tauberian theorem as in the proof of Theorem 1.12 we know that

$$\#\{D \in \mathcal{N} : D < X\} \sim \frac{X}{\log^{1-\alpha} X},$$

for some $c > 0$. Here $\alpha = \frac{1}{8}$ is the density of the set of primes \mathcal{S}. The results then follow.

Example 11.3. Consider $d = 2^2 \cdot 3^3 = 108$. Then $E_d = 144a1 : y^2 = x^3 - 1$. The field $K = \mathbb{Q}(\sqrt{-23})$ satisfies the Heegner hypothesis for $N = 144$ and 3 is split in K. We compute the 3-class numbers $h_3(-3d) = h_3(-1) = 1$ and $h_3(dKd) = h_3(-69) = 1$. So the assumptions of Theorem 11.1 are satisfied. The set \mathcal{N} in the proof of Theorem 11.1 consists of square-free products of the primes

$$31, 127, 139, 151, 163, 211, 223, 271, 307, 331, 439, 463, 487, 499, \ldots$$

Notice that $D \in \mathcal{N}$ implies that $D \equiv 1 \pmod{3}$. One can then compute the root number of the cubic twist

$$E_{dD^2} : y^2 = x^3 - D^2$$

to be

$$w(E_{dD^2}) = \begin{cases} +1, & D \equiv 1, 4 \pmod{9}, \\ -1, & D \equiv 7 \pmod{9}. \end{cases}$$

We conclude that for $D \in \mathcal{N}$,

$$r_{an}(E_{dD^2}) = \begin{cases} 0, & D \equiv 1, 4 \pmod{9}, \\ 1, & D \equiv 7 \pmod{9}. \end{cases}$$

References

Department of Mathematics, Princeton University, Fine Hall, Washington Rd, Princeton, NJ 08544

E-mail address: chaoli@math.columbia.edu

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027