Home | 18.01 | Chapter 2 | Section 2.4

Tools    Index    Up    Previous    Next


Ball example

As we have seen, the height h(t) of the ball thrown vertically obeys:

h(t) = 32t -16t2

We calculate the derivative of h at t0

step1

Factor out t - t0

h(t) - h(t0) = 32t -16t2 - (32t0 - 16 t02)

           = 32(t - t0) - 16 (t2 - t02)

                  = 32(t - t0) - 16 (t - t0)(t + t0)

         = (t - t0)(32 - 16(t + t0))

step 2

Divide by t - t0

 = 32 - 16(t + t0)

step 3

Take the limit

h'(t0) = = 32 - 32t0