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1. Introduction

OUne of the central ideas in algebraic
relationship between ideals in the polynomial ring Clstyyueen, 1, and
talgebraic) warieties in CV To each ideal I, one asscciates the
Wariety
U G WOTy = {xeCMifiu B, all x¢IX.
Fecall that an algebraic wariety is called irreducible if it iz not the
union of two proper subwvarieties, One wErslion of Hilhert s
Fullstellensatr is then
Theorem 1.2. The map I -= YOIy of (1.1 defines a bijection from
the set of prime ideals in C{xl,..,,xn} cnto the szt of irreduc-
ible algebraic varieties in CN,
For completensss, we recall the definition of & prime idezl. {&11 cur
rings will have unit =lements.)
Definition 1.3, Suppose & iz & commutative ring. &n idezl I in B
iz called prime if any of the tollowing equivalent conditions is
zatisfied:
&) If a and b are =lements of R, and abel, then sither acl or
Bl
272 The guotient ring RSI iz an integral domain {that is, it
has no zero divisorsy,
2 ;

Fellow. Zupported in ocart by MNEF grant
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By IF Jy oand Js oare ideals in R, and Jyde is contained in I,
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analogue of Theorasm 1.:
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non-commutatie

(Conlecture 1.24). {The main point is to replace the polwnomial ring
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by the enveloping algebra of 2 Lie algebra.) For the moment it remai
in part conjecturaly we will make the conjecture a little more precise

than has been done previcusly, and suggest some connections with

representation theory. To begin, it is helpful to hawe 2 more abstract
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formulation of Theorem 1.2,
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Definition 1.4. Suppose YV is a wector space ower
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the tensor algebra of W, endowed with the usual multiplication.

The symmeiric aloebra of WU,
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Definition 1.5. Suppose VW iz z wector space. The ring of reculss

functions R{VY is the algebra of functions on U generated by

ig infiniter, it is the algebra of oolwnomialis in sny bDesis of LT

The ring of strongly regular functicns on W5, RziW™), iz the




algebra of functions on WF generated by constant functions and
evaluation at points of W, (For w ipn W, ewaluation at « iz the

function on V" defined by

There is an cbvious map from TOUS onto ROV, defined on the genersior

Wi

by sending = in V¥ to the function = an &, This map Sends

Wi

1@y — #x@uy to Hy¥o — ¥ody, which is the zero functiony so it Tift
to S0W%y by Definition 1.4<ed. It iz then gasy to show that it defines

an isomorphism

DO Y
Simitarly,
o e e
C1.F0 S0y = Ro(WE Riu®y = goudi
=

I+ 1 is an ideal in Z0U, we now define

1.8 WOy = {xeW¥ [ fiu) = By 211 $¢1%,
using the identification (1.7 of S(VW as strongly regular functions on

L Mow we can reformulate Theorem 1.2 a

i

Theorem 1.9. Suppose V is a finite dimensional complex wector
space. Then the map I —-= Y(I) of (1.8 defines a hijection From
the set of prime ideals in S{U) ontoc the set of irreducible
algebraic warieties in ¥,

Mhat we want to do is ce S0WY by a slightly non-commutative
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nalogue, and look for similar theorems. To formulate the setting more

Y

of pon-commutativi v,
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precisely, we introduce a2 natural measur

Definition 1.18. Suppose R is a ring, and = is in R. Define

Ty iR == FH, oadixla o= owa -~ ax LadRD
Obsvicusly adix? is a deriwation of R:
LR I adixdfabky = [adixralb + aladixibl.

wu

I+ R iz an algebra over z field K {or, more generally, if E iz anw

subring of R consisting of slements commuting with =), then adix) is




K=linesar.

Definition 1.12. Suppose R is a K-algebra. We say that

tocally finite iF =zach element a of F bkelonos to oz finite

dimensional wector subspace VW of B, such that

ETa DETS RN g L,

It is this local Finiteness of adix) which will zerwve as z substitute

for commutativity, RMNoti iz central in R exactly when the
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subspace Y of the definition can alway

osen to bhe one
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dimensional.,
Proposition 1.13. Suppose R iz an algebra over the field K.
Assume that R is generated by a set S of ad-locally finite
elements S (Definition 1.12). Then R is a quotient of the
universal enveloping algebra of an ad-locally finite Lie
subalgebra, which we may also take toc be generated by S.
Conversely, suppose g is a Lie algebra generated by an ad-locally
finite set S. Then 5 is an ad locally-finite set of generators
for the universal enveloping algebra Udg).

Im what is probably too general a2 form, the problem we consider

elements. Then we sesl to relate ideal theory in Uig) to geometry in

gﬁ, To make this more precise, we must first specify which ideals we

conszider. &11 ideals will be two-sided unless otherwise stated.
Definition 1.14. Suppose R iz a ({possibly non-commutative? ring.
A ftwo-sidedy ideal I iz called prime if either of the following
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squivalent conditions i

By 14 J1 and Je are ideals in H, and Jl*E C 1, then sithser
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Gefinition 1.15. Suppose R is a ring. Aan idea

completely prime if any of the following equivalent conditions is

satistied:

a I+ & and b are elements of B, and ab¢l, then either 21 or
Bel.

a”y The guotient ring RAT is an integral domain.

By IF JI is a lefi ideal, Jo iz a right idesal, and JIJE c i;

then sither Jye I or Jo e 1.
I+ B is nostherian, these are sguiwalent alszso to

oy There ie a diwision algebra D and & ring homomorphism

T

with kEernel I,
Obecicusly every completely prime idesl is prime, and the two concepts
coincide for mmutative B, MWe will be concerned chiefly with

ince they hawve s better geometric theoryw, and

ll'l

completsly prime idesls
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s=ely connected with unitary group representations
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Example 1.16.

(This is & short way of saving

The prime ideals in Sdg correspond by Theorsem 1.7 to the points

£ in

ll’l

of €, the irreducible algebraic curves in C°, and C° its
particular, there are many of dimension 1. Ewvery prime idezl I in

Wigy turns cut fto be completely prime, and we have anly the

il




Hers
I{zy = ideal generated by e; and e;-z;
14 = ideal generated by Bm == F]I‘:',
z<C
Be will asscciate these to subvarieties of g?’f5 s follows:
Ifz) &+ the point f, in QE if leq) = 8, f leq = 22
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I particolar, only one wariety of dimension | appe

hat the ideal theory of Wg is
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much more rigid than that of Sigry only certain zpecial subvaristie

"
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gi ! womhiich ones, we nesd to

HH
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houwld correspond to ideale in Uigr., To

i

introduce & group.
Lemma 1.17. Suppose R is an algebra over C, and D is a derivation
of R, {That i=s, D is linear and satisfies
Diaby = Diadbk + aDd{b) fa,beRy .2
Assume that D is locally finite: that is, for each a in R, there
i= a finite dimensional, D-stable vector subspace of R, containing
a. Then the endomorphism expi(D) of R, defined by
(exp{D)>{ay = Z {(1/n">D"a
is an algebra avtomorphism. !
Proof. By inducticon on n, one shows that

Oliaby = Z inlspiglaoDParoDB0 .

CE O

r

The obwious formal calculation now appliss: we use the JTocal Ffiniteness
of D to ensure {indeed to defined the absoclute convergence of the

series for exzpild,. G.E.D.
It iz worth remarking that the lemms applies to any bilinear
"product’ on R, and not just to an assocciative algebra structure.
Definition 1.18. GSuppose g is & complex Lie algebra generated by

t 5 of ad-loccally finite elements. The adicint group adigd of
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the group of

of automorphisms of g. It is

cannot happen.

Lemma 1.17. In the setting of

any {two-sidedr ideal. Then I

in Adig). That is, the action

Uig /1.

Proof. Bvw the definition of aAdigr,

stable under adix), for

i

Defipition 1.18. G.E.D.

Example 1.28. In

adigr = £

Definition 1.18,

celval
oois ¥

=0 regard
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te that a&digd depends on
inite dimensional, this

suppose I Uig) is

is stable under the automorphisms

of

it

the setting of

= % g>ie

If we write £, o5

transposel
The orkits of this action
The only Adigr—invariant

therefore the line C%I.

Hers iz an

2N

triwial conseguence of Theorem 1.7,

Theaorem 1.21.

G is a group of linear transformations of U,

ULIy of

equiwvariant wersion

of

Adlgl

sut+ic

But th

L= b a

points

Y

irreduciblie alg

Suppose VW is a finite dimensicnal

the Mul

iftse to any quotient ring

s to show that I is
iz iz obsiocus from

114, we hawve

the {inwverses
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wector space, and

-

Then the map I

1.8 defines a bijection from the set of G-inwvariant



and 1.3@, it i

prime ideals in S{Y) onto the set of G-invariant irreducibie

algebraic warieties in u¥,

Taking into account 1

Conjecture 1.22.

With Adig

s

from the st of comple

i
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Euppgge =]

z in Definition
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theorem, Lemma 1.1%, an

oy reasonable to

formuliate
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1.18,

adigr —invariant irredocible algeb

The First thing to be said abou

false, ait least i+ "natural’ iz to be
meaning. In sesctions 4, 5, and &, we
assembled byvw Borho, Joseph, and others
prime" owver "prime’ is dictated byw the
1.27 . For g solwable, Conjecture 1.2

~

rue in that case; a proctf and a

n [&£l. For g sgual to slin,C:,
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ults hawve been giwen by Borho

discussion
no counteresamples

{41 anmd Borho-Jantz
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inite dimensicornal Lie zalgebra

there iz 2 matur

deals in Uigd onto
aic waristies in gﬁz

this conjecturs iz that 1
iven any Eind of reasconabl
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of the histo
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primitive idesls in 210n,Cy d(cf. Conjecture 1.2400) hel

has recently proved the conjecture completely (D123,
Before embarking on a more specific discussion,

narrow the probdlem someswhat. In the commutative caze

e

noncommutative generali

1

= plaved by the maximal

tion

i

ideals,

i

Definition 1.22. an idesal

there 1z &5 s=implse

e write
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ideals asre prime. Melther corverse implication holds: the zero ides
in Example 1.14 iz primitiwve fthis reguires a non-triwvial argument) but

not maximal . Primitive i= unrelated to completely prime: the zero

idesl in the ring of n by n matrices is maximal ‘hence primitiver, but
not completely orime unless no= 1.
Conjecture 1.24. In the setiting of Conljecture 1.22, the bhijection

g
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should hawe the following property: a completely prime idea
primitive (Definition 1.22 iF and only i+ the corresponding
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Aadicy on g*.
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riety is the (Zariski) closure of

bt

Foughly speaking, the Hnown counterexamples to Conjectures .22

and 1.24 imvolwve primitive ideals, and sither orbit closures which ars

i1

not normal, or orbits which are not simply connected. In geometri

language, this suggests that one cught to allow some {possibly

i
bk

ramified: cowverings of the waristies under consideration. Here 1:
wersion of the Mullstellensatz, altered to give such coverings sgual
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1
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Theorem 1.25. Suppose V iz a finite dimensional complex wvector
space. Then there is a natural bijection between the following
two classes of chjects:
) commutative prime C algebras &, equipped with an algebra
homomorphism
Bl -2 A,
making A& a finitely generated S(V)-module;
b irreducible affine algebraic warieties ¥, equipped with a
finite morphism
XX -+ VX,
This bijection sends A& to Spec A.
Az stated, this is more nearly a defind

acquires content only through the addition of Enown geometric facts
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Ut finite morphisms - for example, that they have finite fikbers.
ne of the cbijects in Theorem 1.23(b iz therefore a ramified finite
overing of an irreduciblie subvariety of wE L In Tight of the remarks
receding Theorem 1.25, this suggests the foilowing revision of
njecture 1.2Z.
Conjecture 1.26. Suppose g is a finite dimensicnal complex Lie
algebra Let G be a connected algebraic group equipped with =a
mor-ohi sm
Aol - pautigr,
the imags of which contains adig Then thers is a natursl
bijection between the following two classes of ochjscte:
a2} completely prime € alogebras &, sguipped with
1 an algebra homomorohism
Peliigy —= &,
makKing & & finitely ge ated Wigh-module:; and
2 oz tlocally ted) algebraic action of G on & by
automorphisms, extending the action é&d on the image of Uigy.
By irreducible affine algebraic warieties ¥, esgquipped with
1y & Finite morphism
e —- QE: and
2y an alogebraic acti of G, compatible with the
morphism T oand the action of G on gx.
This bijection sheould hawve the following properties Write A for
arn algebra as in (22, I for the Kernel of the map $, X for the
corresponding warist, and W for the imags of W
i The following zre sguivalent: I ie a primitive ideaiy & i
a primitive ringy W is the claosure of 2 single adigd orbit. I+ G
iz a Ffinite cower of Adig this iz sguiwvalent to reguiring o
e the closure of a2 zingle G orbkiti.

i




._11_.

i1y The Gelfand-Hirilloe dimension (cf. ssction 2 of & (or
oof UigrsId dis equal to the dimension of the warisiy ¥ Cor Wi
iiir & iz dzomorphic as a module for G dbut not as an

This iz our proposed wersion of the Digsmier conjeciurs. 1t iz
not 3 refinsment or extension of Dismier’s ocriginal suggesstions for
solwable groups, Jjust azs Theorem 1,25 is mot an improvement on the

Mulletellensatz. The difficulty is that, although the zalosbras ziiowed

in & inciude the completely prime guotients of Udgd, we do nolt Moow how
tooidentify the set of warieties in (b)Y to which they corrsspond. The
natural guess would be that they are the subvarieties of gty but this

= ruled out byw the sxamples of Borho and

e

Example 1.27. Suppose g is 172,08, the Lie algebrs of two Dw

matrices of trace zero. WMrite O for the Casimir slement oFf Ligh.

We normalize it so that its esigernwvaliue in the n dimensional
reprecentation of g is n =1, For z¢C, write I, for the ideal

always primiitive and

in
(21
L
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0
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i

generated by O-{zc-13, Thi:

it

compistely prime: 1t 1= madimal unless =z i & non-ero intecer.

Let I™ dencte the annihilator of the n dimensicnal irreducible
representation. The guotient of Wigy by Ifhis idesl is isomorphic
to the ring of n by n matrices. Therefore I is zlwavs maximal,

and it is completely prime only 14 n=1, This the

primitive i . The only other prims idesl] in UWigl ie the zero

CL

Y

1

=

i

idesal: it iz completeiy prime.

The space QE may be identifisd with g using the irace form.
The ocrbits of &digy on 1t are
ol = ¢o:
zS2 i
g, = orkit of .

51
i
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A1l of these are closed except for Qg ., the closure of which is
e = - 1
Jg = Dguol.

¥

e can make an obwiocus correspondsnce betwesn orbit closures and
completely prime primitive ideals. By attaching all of o to the
zero ideal, we ses that Conjecture 1.22 holids in this case,

With respect to Conjecture 1.24, we concentrate an primitive

algebras. IFf G is Adigr, any ¥ as in Conjecturs 1.280B) covering
an orbit closure must be squal to the orbkit closure. (The

I do not ¥rniow
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if it is true.) Let us take G to be SLI2,C), with the conjugation
action on g. Then we can take ¥ to be CF with the naturzal action,
and T to e the map

- T L E }E

) i ¥ B
'ﬂ'.'.s_i ;;:.2.-‘ = - - =
— L -
x;.‘,,-x ;..1.:—.‘_:.:

tThis is the moment map for the standard svmplectic siructurs on
Ce.) This is a two-fold cover of Vg, ramified a2t 8. The

corresponding algebra iz the Mewl algebra &y, consisting of
polynomial coefficient differential operators in one wariable, ke

0
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makke G act on Ay by identifying the two dimenszional s=pa

i

generators {spanned by ® and dodwd with CF: that § preserwes th

detining relation amounts fto the Ffact that SLIZ,0) opresserwves the
zymplectic form on CZ., To define a map $ of Uigd into Ay, we need
to specity & bLie subaligebra of Fy isomorphic to g. Such a
subalgebra is generated by = and d</dx®, The image of Uig
consists of the sven operators: the Hernel of ¢ fturns ocut to be
Tw. fiMotice that this is not the ideal assocciated to the image of
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dimensional Lie algebras. The class of algebras for which an adicint

group is defined in Definiticon 1.18 includes the Hac-Moody algebras.

i

Borho has informed me that these seem not to hawve an interesting
primitive ideal theory. This iz certainly consistent with the fact
that the proocf of the Mewl-Kac character formula uses a Casimir element

which iz not in the enwveloping algebra, but only in some sort of
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completion. Stil the problems considered here do make sense whenswver
Definition 1.18 applies. In that direction, M. &rtin has pointed out

too ome that Theorem 1.7 remains trues 14 4 iz only assumed to Qe of

ardinality of the
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countable dimensian., Chihat matter

ground field should exceed the dimensicn of W.) Something like

Conjecture 1.24 may therefore be true for Lie algebras generated Dy &
finite {or even countable) set of ad-locally Ffinite slements. The

example of Kac-Moody algebras suggeste that some ring other than Uig

Much of what iz new in these notes comes from joint work in
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to the materi;
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progress with Dan Barbaschy thi

on representation theory., It is & pleasure to thank him for countless
mroductive discussions. Walter Borho has helped me to understand the

subject of primitive ideals in general, and his ocwn work in particular;

the latter provides most of the svidence for Conjecture 1,24,
Proposition 7.12 and the example in section & arcse from suggestions of

Bis. Michael artin and Michel Dufle Kindly prowvided helpful
information in pleasant corversations, saving me from the daunting
prospect of doing sericus library research. Their insights into what

ablie,

i

cught to be trus, what ocught to be false, and what might Qe prow

2. Filtrations, Gelfand-Kirillov dimension, and differential operators
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complex Lie algebra, and G a connected algebra
marphism
DRER el - Autig),
the image of which contains Adig?.
Definition Z2.2. The standard f£iltration
detdinsd b
U, = span of products of at most
Recail that the Poincare-Birkhoff-kitt ith

algebra Sigy. Suppose M is a finite
good filtration of M is an increasin
subspaces
Mp & My e
subject to the Ffollowing conditions:
ar UM o M 3 and

graded S0gr-m

we deti

aee M oof M to be the s

Gelfand-Kirillow dimension Dim M iz

It is equal to the dimension of ~Ass
For more about this definition, se

Good Filtrations exist iF and only IF
generated. They are not unigue, but the

Definition 2.2 immediately suggest
ideals in Uigd and warieties in g”, namel
Thiz iz not the one nesded Ffor Dismier s
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o ois abelian, it produces something called the asssocizted come +or
WMoTr . and not WOIY dtseif. This doss sugosst oz o sharoen

Coniecturs 1.248, however,

Conjecture 2.2, In the zetting of Conjscturs .24, the
correspondence should hawve the Following additional gropesriiss:

iwi mssiligrsIly dis the assoccisted cone for W oin gb.

fx i}
i
I
ros
i

i
ifi

ewidesncse s too

1

ol

s

ity For most of them: it maw well

will hawe to be moditied or discarded. In o1
important to note that we do not assume that, for szamplie,
e % g IR
By Mgy BOUY

wihich indicate that this would

Thers are examples ({31, Example 3.180 ]

e an unressonable reguirement.

As oan illustration, we will consider in section the case of

semisimple orbits in reductive groups. Some of the preliminars

tformalism iz more general; to the extent that it is pnot standard, it
takken from [151. We assume First of 211 that

(2,47 o o= Lig(d:

Fix an algebraic subgroup P of G, and a normal algebraic subgroup Fa
F. =0 that the guotisnt

2. 00 BSRE = T
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We may identify u, for e in g*.
With such identificaticons, n becomes a subspace of it, so that the las
formula in $2.4) makes sense. This shows that 1E may be identitied
with dual of Lie{T), as the notation suggests.

Me want to define a pair of families of objects as in Conldesctur
1.24, which ocught to correspond under that conjecture. Both families
will be indexed by points £ of the wector space LE, e begin with the
warieties. Set

no+ £ = {yiuyl v maps to £ in QE}
(2.7 g = G xp (p + 2D
= {ig,.wr tgelE, weinp + &) 25
Hers  ~ denotes the sguivalence relation
(o) &~ dgp-l,peyr, all peP.
Thiz makes d% a homogenecus affine bundle ocwver GIF. I+ £ is zerc, it
iz the cotangent bundle. There iz 2 natural irvariant symplectic
structure on Xg3 the moment map for this structure is
L2 .8 F'Z'E:E(E =3 g+
Telgay? = gty
Here we use the identificstion of u ss = subspace of HE giwven aftter
L2.8Y .,

The=ze warieties appear at first glance to be of the tyvoe
required by Conjecture 1.2&87{k),., Two things are lackKing. First, the
waristies are only guasi-projective, and need not be affine. ©In our
main example, GF will be proper, 2o its cotangent bundle ¥y cannot be

=



affine. This is probably more a2 reflection on the defects in
Condecture 1.24 than on the example, but we carm in any case sasily

adiust the example: simply rep

of the ring of global regular FMore sericusly, the maoping

Te need not be finite., (To guarantee this, it iz encugh to hawve Te

proper before affinization.) This problem can only be cured by

imposing additional assumptions on G, F, Py, and £. It is certainly

sufficient (but not necessary — see Example 2.13 to require that
(2.9 GAFP e projective,

Mext, we describe the family of algebras. FRoughly spezaking,

izl operators on section of lins
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Bundles on GA°F,

of 1% omc sxponentiate to characters, we need fo bhe 2 JTittle mors

o
iy
ot
ot
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ua

roundabout (Ffollowing [212. In addition, it is helpful Ffor technical

to modifw the parameter £ slightly. Write -ZFy for the

FrEssOns

di J of the character of F on the top exterior power of . Me

-+
b
i
-1
in
e
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1t
1

will zssume that
(2, 18y dal Fy ois trivial on LigiPgi,

=0 tThat we can write

S

£2.18) (B Py o€ t%,

Transiation by Fy is the modification of £ to be introduced later.
On GoPg, the group T acts by right translation; this commutes

with the G action on the left. Consider the algebra

DifFiG Py

of algebraic differential cperators on GsFg. Me have an algebra

homomor phi sm

Uiep@® Uity -+ DifF{GPg) ,

giwven by these two actions Set
2,110 & = centralizer of T in DifFiGEPg}




Since the G and T actions commute, Wigy maps into &, Define I to be

the ideal in & generated by elements of the form

Flotice that these elements are central in &, since the differential of
the T action on differential operators is commutation with Lie(T2.
Finally, define

(2,122 &

I
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an algebra of twisted differential operators on GSP. The map §x

required by Conjecture 1.24 exists by the remarlk after (2.110.

Me consider now the reguirements of Conjecture 2.3 in connection
with this construction., First, it is standard that the algsbra %% has
& filtration {by degree of the cperatorsd, and a symbol calculius.
Together these define an embedding
(2. 130 ar Ag s RITR(GAPIY .

&
i

iRecall that T*(GsP) ie isomorphic to the wariety ¥;.) On the of
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hand, there is ration of the regular functicons on Xg as

well: we say that § belongs to the nth tewel of the Filtration if the
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¥e -3 B/P

-3
fhas degrese at most n. Since the fibers are affine spaces (that is,
principal homogeneous spaces for wector spaces), this makes sense. It
iz gasy to see that the asscciated graded ring for the filtered rin ¥

functions an an affine space iz the ring of polyvnomial functions on the

attached weclor space. Wbe therefore get an embedding
'2:}4:’ or |C/{+F’l3'_!
The inclusions ©2.13) and | come from isomorphisms on the

Jewsl of coherent sheawes on G7F. ke can therefore giwve an 2asy

sufficient condition for sguality.



Lemma 2.15. With notation as above, make the following
assumption: the sheaf cohomology of all the symmetric powers of
the cotangent bundie of GAP wvanishes in positive degree. Then the

inclusions (2.13y and {(2.14) are isomorphisms. In particular,

ble will took at two examples of thisz construction.

Example 2.14. Let G be the group of three by three uppDer

i

13

M

T
et
31

iz

triangular matrices with ones on the diagonal. Its Lie

]
-+
-
=r
]

cansists of strictly upper triangular matrices. In terms

veual basis of matrices, g has basis

e
Caig

i

We take P to be the connected subgroup with Lie algebra spanned by

Foy

&

# and =, and Py to be the one parameter subgroup generated

e may identify T, the guotisnt of F bvw P, with the one parametsr

subgroup generated by z3 it iz the center of g. This identifies
n o+ 5= {xgFinixy = 8, niz) = £2
Mrite % for the one parameter subgroup generated by v,
Multiplication defines an algebraic iscmorphism
Fow 5 - G,

Consequently, the bundle product of (2.7 simpl s tTo

Ky ZFSow ip + &)
I¥ we identify 5 and p+E with €, and QE with €% (a1l in more or
Tess obwiocus wawsr, then we compute

Adisr el = v — =z (s£5l

Meis, i) = 125,1,5).,

Ewvidently E% iz a finite map i+ and only iF £ is not zeroc. In

that case, it is an isomorphism onto a single orbkit.

Tgebra DIFFIG5FPY may be identified with the

m

Similariy, the

Wewl algebra of polvnomial cosfficient differsntial operators in




two wariables. The action of T ie by transiation in the second
wariable: so the ring & consists of operators in two wvariables,

mending anly on the Ffirst. The map of (2,110

&
s
e
=g
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The remarks abowve now 2llow us to compute that & may be

identified with =z MWevl algebra in one wariable fwhich should be

thought of as DIFFI5 . Specificallw,
111,___) sy o= c_:‘:-;

Thus Ay is a finitely generated Wig)-modoise 14 and only iF £ is

& it is actuslly a homomorphic image of

]
w
i

ot zero:; and in that

~

This example shows that the finiteness properties of T and by

tor

s

Tosely related, as they should ke if the differential oper

struction is to be well related to Conjecture .24, 1t also shows

GSF need not be projective for W

[}

Example 2.17. Let g

e as in Examples .14 and 1,28, and G=adigr.

e use the notation from those examples. Up to G conlugacy, there

re onty two connected proper subgroups of G: the strictly upper

trices M, and the diagonal matrices H. be identify

i

o m

i

triangul
these with C and C*, respectivelw. Take P and T to be equal to
and F@ to ke triwvial. Arguing as in the prewvicous sxample, wWe Can

identify Xz with HxC, and &g with Diff{H)., The maps ¥

JIT

coordinates ars




_..EI_
Tghe sty = tey + s-lfes; (=40, 2400
teley) = —sDg
zsz::_‘,:._.;x = =-1E

The first map is not finite - the image is the complement of a

line (if £ is not zero), and so iz not closed. It is also easy t

see that Ag iz not finitely generated as a Ulg module. WMe

therefore get neither Kind of cbiect needed for Conjecturs 1.2&.

It would of course be interesting to find 2 general modification

of the differential cperator construction which does work here.

In the language of geometric quantization, Example 2.17
corresponds to a polarization satisfying the Pukanszly condition, at
least if £ is not zero This corresponds to the fact that the image o
Tz is & single orbit. One can get ewven worse behavior by taking P to
be A. In this case the polarization does not satisfy the Pukanszky
condition. The map Tz then hits one point on the line of G-fixed
points in g*, in addition to the open orbit.
2. Differential operators on flag varistiss
For the remaindesr of these notes, we will assume that

URCTN B G is a connected reductive algebraic group.
For the rest of this section, we Fix 2 parabolic subgroup P oof G, and

let Py be the commutator subgroup of P, Choose a Lewi decomposition
(2.2 Tal Fo= M

of F. IF we write My Ffor the commutator subgroup of M, then

DECIRCH IS <] Pag = Mgh

Choose a Cartan subgroup H of M, and write b Ffor its Lie algebra.
Zimitarly, write Z0My Ffor the center of M, and zimy for its Lis
algebra. Then

PE.2)ic) b= thOmgy + zimd.

On the other hand, the group T of (2.5 may be identified with th

&

(Al




qugti

ent of ZiM) by ite (Ffiniter intersection with Mg. Combining this

with (32,2300 giwes identifications
(ELEY (o t* = z¢m ®
(3.2 0el h* = t% + (hOmg®
Write
LRCINCH I Al
for the set of rocts of h in g, regarded as a subset of K™, Fix a set
A im.hy of positive roots of b oin m. Define
P S B + = + 7 - 7
2.3 Dk A lo,hy = A im,hr Y C-iroocts of b oin opid
URCIRC H I ol Pg = % = o
B ot ;

e A (mah
DRI S ) po= ok R e

weat
It Follows fthat
PR . - %
1,3=_:{)an) j_lﬁ & l._*_n,,’f)“ﬁ
and
DRCIRC PR 3 = Pg + Py
foF . 13,22 led and the definition of Py before (2018320,

Me begin with some standard facte about the maps T fcf. (Z.8370

in this situsation. We will often make use of a2 nondegenerate symmeiric
imvariant bilinear form <,% on g and related spacesy it iz ofien

this

ul to assume {as we may) that the roots have positive length in
foarm.
Lemma 2.4. With the notation (3.1>-{(2.3>, the constructions of
{2.50-{2.12) have the following properties.

a) The homogenecus space G/F is a s=imply connected projective
variety, so all ithe maps K% are proper.

B} The image of ﬁ% iz the closure of a single orbit of G on
g*, which we call Q%. Oecer Q%, the map K% iz a finite cowvering.

c} The orbit g% ic semisimple {or, equivalently, closed) i+



el
i

fal

and only 14 <o, € is not zeroc for any roct o« of K in o. In that
case, ﬁg is an isomorphism ontc its image.

d Q% iz pilpotent if and only if £ is zero.

i

sltightly more technical, though not really difficult, The experits may

find them =2 little more comprehensible after a short technical

digressicocn. WMrite

= caenter of Uig:

03
L
P4
i}

MWMig.hy = WMewl group of b in g

st

1
"

b,
The Harish-Chandra isomorphism identifies mazimal idesls in Zdgo

grsd with W orbits on b5,

o1

tintipitesimal charac

Lemma 3.7. MWith notation as above and in (2.12), the Ui{gl-module

A% has infinitesimal character £+fPz. That is, the Kernel of be

meets Z(q) in the maximal ideal corresponding to the weight 5+P5.
Motice that the shift here is not the same as the one introduced befors
C2.12 . It is sxactly the infinitesimal character of the augmeniation
ideal in Uimgd .

Definition 2.8. Fix & weight » in QE, We sayw that » iz integral

it}

Me szyw 1t is pon-negative on o i+ the same number iz not

negative integer. ke sayv 2 is dominant iF it is non-npegative on l
every positive rooct, and integral if every rooct is integral.

Fimnally, we say that » is reqgular iFf it is not orthogons

root.,

Theorem 2.9 ({21, [53). With notation as above, the differentizl

acperator ring

Ay = DiffgiBfP}

g




has the following properties.

it

ES)

By It

iz isomorphic as

funciions on ithe wvariety X%

ar

c? fAssume that %+PB ic dominant.

from Uig) onto ﬁ%.
dz

for £+P5, we have

ie Ffinitely generated as

=3

{ct.

£

E
=

module for G to the -

(2.73).,

a Uigd-module.

More precisely,

ar R{X%D

#Azsume that for every positiwve rooci o which

1=

-

Then @g iz a surjection

integral

ing of reguiar

{8 & @,

Then Q% iz a primitive algebra
Fart {za) i= rather easy. Partibkd relies on the facit, proved by ETHiIK,
that the cotangent bundle of GAF satisfiss the condition in Lemma 2,15
Fart (o is Fairly subtle, and iz one of ihe KHewvs fto fhe
Beilinson-Bernetein Tocalization theoryw. Fart (dd iz a consecuencs of
Froposition 8.5 of [231. {(Bernsfein has pointed cut to me that the
same proposition allows one to recowver halfd of the Beilinson-Bernsisin
theorv: for sxample, funder the hypothesis of (diy, the space of globs
sections of an irreducible sheatf of Diff . (G’P)-modules is arn
irreducible Ag-module for zerocd. & special case of this is part of
Theorem 2.& helow. It seems wery lTikelyw that %% ig always primiiive,
Bt I odo not Know how to prowve this.

Me can now make precise the contribution which these
differential operator rings should make to Conjeciurse 1.248 falwavs in
the setting of (3.10~032,.303 fne should restrict attention to thoss £
satisfywing the condition of Theorem 23.70dd I+ we take the algebra of
C1.280 0 to be A (cf. ©2.12)), then the var;etv of {1.2&)¢b) should
e the af+inization 13 . Thie pair satisfies (ix-0iiin
of Comdecture 1,024, Conjecture 2.3, Tt should Qe

s



emphasized again that the proofs of these asserticons are dus to Borho
ard Brylinski and othersy in arny case they are not original .l

There is one case in which this construction should be the whole

Theorem 3.18 {([1&3y. Suppose G is GLin) or PGL{n>. Let {X,M be
a pair satisfyving the hyvpotheses of Conjecture 1.24{b3; and assume
that W(x) is the closure of a single orbit of G. Then T is an
isomorphiem onto that orbit closure. Furthermore, there iz 3
parabolic subgroup P of G; and a weight £ in 1* {cf. (3.2)0dd3}
satisfyving the hyvpothesis of Theorem 2.%{(d), such that X, T is
isomorphic in & G-equivariant way to {X%,ﬁg) {cf. (2.7 and
(2.8,

In conjunction with the results of [51, this thecorem implies that the

algebras ﬁ% are alwavs primitive guotients of Wigr f(still For GLIpdo

Mosglin’s result [18]1 savs that they exhzausi the completsly prime

primitive guotients of Uigd. That the correspondence is one to ane is

-
M
Al
AN
ot
i

werified in [F71.  For GLOn?) and primitive algebras, Conjecture
therefore reduced to the coniecture that any primitive alogebra z2s in
Conjecture 1.24808) must e 2 guotient of Uigd., &s example 127 shows,
the situation is somewhat more complicated for SLOnd .

4. Borho's counterexamples in Bg

In thiz section, we will make explicit some aspecits of the

irn the case of the zimple Lie

-"l'

gensral constructions in Se ne 2 and 3
algebra of type Bp. Then, following Borho [3], we will ses how this

thut not in Conjecture 1,280, It

£
Loy
U
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fat

teads to problems in

iz comesnisent to take G to be Spidd, the group of linsar

transformations preserwving the standard symplectic form on c4., Fix

i

Borel subgroup B of G, and & Cartan subgroup H contained in B. e uss

i the roots of B oin

i:'!

il
i

fers ta

il

l'[l

notation as in (2,303 in particular, 4




[N
7

oSk, There are exactly two proper parabolic subgroups sirictly

cantaining B, Write Pl for the cre with a tong roct in its Lewi
factor, and FZ for the other. We will use al] the notaticn of Sec
F, with supsrscripts to distinguish betwesen the two parabolics as
necessary . ke may identify QE with CF in such & way that the posi
rocts are
14,1 CE,8, (@8, 2y, (1,1, 01,-10,
The bMew! group acts by permuting and changing the signs of the two
coordinates. One computes
po= g2, 10
(4.2 (Pgyt = i@, 1
(Pg? 2 = ¢y, -,
Me hawve
(4,3 sl ® = pos e 1ge0
(E5 R = (082,878 5400
Ble will use these identifications of the two spaces with €. Lemma
showes that
U I iﬁgbi has infinitesimal charascter (5,13
{%%DE Fas infinitesimal character (0S+1072,08-10720 .,
Define
0,5 (10" = ker (90" in=1,2),
3 2
2 completely prime primitive ideal in Uigd. Heczall the orbits Qin

[RY]

defined in Lemma

W

carrespond to thi

i
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that this lezads to a correspondence which is not well-detined.
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4., In Conmjecture 1,22, the idesl {IEBH shoul

orbit for rather to its closured. The difficul

I'[.l

s

[N

i

i



Thess are the only coincidences. In the Ffirst case, we hawve thersfors

azsociated two different idealzs to 2 single orbit: and in the sscond,
two different orbits correspond to the sams idesal. These problems can
e cursd by Ffiddling with the F shift before (2,122, but not in any
ressonable way.

Conjecture 1.24 disposes of these difficultiess. Thers arse no
coincidences among the algebras IH%‘“ ar the corresponding warieties.
The first formula of (4.4 is replaced by the existence {after
a¥ffinizationy of 2 two-fold ramified
T4, T la i:'.::{:E’l) E.

The second corresponds to a2 oroper inclusion
(4.7 (k) gy T C Ay L
Thess sdxamples show that {ﬁﬁbi cannot be squal to the image of Uig:

inside it, and that (Eabi cannot map isomorphically onto an orbift

closure. Theyw arse the only exampies of these fwo phenomena (for

twisted differentizal ocperator algebras) in BE”
Me should mention that this sxample also shows that the
differential operztor construction of section 2 is not adequate fo give

e
o
]
i
o
B

' completely prime primitive ideals. OF coursze one must also

o

parabolic subgroups B and Gy but ewven after these are included, one
finds that one orbit of G on g¥ {the minimal nilpotent one, which is
four dimensiconall, and one completely prime primitive ideal (the Joseph
ideal) are missing. OFf course they should correspond in the Dizmier
conjecture: but the theory lacks 2 general method like that of ssction
2 to implement this corresspondence

Z. Joseph’s counterexamples in Go.

Pa]

In this sectiaon, we take G to be the complex oroup of twvoe G-,

and recall Joseph’s counterexample to Conjecture .22 from [141. The

unltike Borho's counterexamples described in
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Section 4, it does not require any precise guess about what the

]
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corresnondence bhetween orbits and ideals

Borho's counterexamples could be repaired by an {apparently unnaturall

i

change in the P shift in the definition of the correspondence.’

Krnown from the work

W

~t
B
m

Here iz an ocutline argument. It i

e

of Dynkin [18] that there is exactly one orbit of G on g of dimension

2. Joseph shows that there are exactly two completely prime primitive
ideals of that Gelfand-Kirillow dimensicon. This means that there
cannot be any dimension preserving bijection between completely prime
primitive ideals and orbits on gﬁ in this case. The calculation begins

with the following resuli, which is well Known.
Lemma S.1. Suppose G is a connected reductive algebraic group
with Lie algebra g. Use notation as in (3.3, Fix a regular
weight » in h*. Set
R{») = set of integral roots for 2 f(cf. Definition 3.87
Wi{x) = MWeyl group of RO
Let I be the unique maximal ideal in Uig) of infinitesimal
character 2 {(cf. Lemma 23.7).
a) The Gelfand-Kirillov dimension of U{g)/I is equal to
fdig,h> ! - [R{XY 1
here we use wvertical bars to dencte the cardinality of a set.
b> Suppose F is an irreducible finite dimensiconal
representation of G. MWrite m{£,F)> for the multiplicity of a
weight £ in F. Then the multiplicity of F in Uig)s1 is equal to

= det{wimiwr—»,F).
weld{xd
For G of type Go, we can identify h* with
p el ¥
(3 ,v,z0 607 [stytz = A3

The Weywl group is generated by permutaticons of the coordinates and

]

calar multiplication by —-13 it has order 12, The rocts are



and their warious

roots in 211. A

are integers.
Defins

CELEN Cald

Becauss thesese dif

of integral roots

DRI IR )

z svstem of twvpe

CELEY o I, =

4
Zince x; is regul

elfand-Kirillow
Propositicon
are prime.
the envelopil

straightf

"

primitive ideal

therefore

M

.
M

thiz, we make exup

irreducibl

multiplticity in U

= (2,-1,-13, F = {@,1,-1}

conjugates under the bkeyl group; thus there are 12
weight is integral exactly when all its coordinates

My o= 41,072,300, e = L2,-152,-372) .
fer by an integral weight, they hawve the same swslem H
i and in fact one calculates easily that

B o= {ko, EEX,

fy % Ay, Define
maximal ideal inm Ulgy) of infinitesimal character ;.
ar, Lemma S.ita) and (5.3 (b) show that I; has
dimensicn 8. One of the main resulisof [141 i=

5.4, {j=1,2» defined above

The primitive ideals IJ

They are the only completely prime primitive ideals in
ng algebra of Gp having Gelfand Kirillov dimension 8.

rels

<,

T~
H

P

orward consequence of Joseph’'s work on Goldie =

mroposition holds, or there are no commietely prime
of Gelfand-Kirillow dimension 8. The point of [14]1 is
truct szuch an ideal, more or less by hand.
r the eight dimensicnal G orbit in gﬁ, and W for itz
goes on to claim in [141 that

gr Uig? ,.!"I. = ROl
ar functicne on V. This is the same as the claim that
ideal in S{g). He cffers no proof of this claim; and
njecture 1.2&. Fortunately, (5.5 iz false. To ses
licit the formula in Lemma 5.10b) for these Ccases.
& finite dimenszional representation F of G. Then iis
fgrsly is



mi@,Fr — mig,Fr — miZB,F) + mic+tZE,F);
arnd in Wighole,

mi@,Fy — miZa,Fr - miB,F) + miZatE,F2.

The only weights of the sewven dimensional representation Fs of Gn are
and the W conjugates of £, all cccurring once, It follows that Fs
cccurs once in UWigl Ty, but not at all in Uigr 1. This contradicis
(5.5 .

On the other hand, Joseph's analysis does show that the two

oraded algebras gr Uigd A1, have the same multiplicity (leading term of

. i

the Hilkert polvrnomial? . Conjecture 1.28 therefore forces
Conjecture 5.46. The ideal gr I in Sigd is completely prime; it

iz the ideal of the eight-dimensicnal wariety VU defined above.

by

The ring of functicons on the orbkit O itself - equiwvalently, the
normalization of RV - is isomorphic as a G-module to gr Uigr 1y
Becsuse of the multiplicity formulas giwven abowe, these are purely

tions., In particular, the conjscture asserts

i

algebro-geometric que:
that & 12 mot normal.
There is ancther interesting phenomenon which first appears in

: in the setting of {sav) Thecrem 2.7:(d), it can happen that the

i

geometric map b iz an isomorphism onto a semiszimple orbit while Ty i
not surjective. This is implicit in [11, and represents joint wark

with Dan Barbasch. Consider

L5 T laD I = maximal ideal in Uig) of infinitesimal character £
LTk & o= Uigrsl,

1 =
=% A

i+
i

The resul of Lemmzs 5.1 do not apply here, since B iz not regu

Howewer , appropriate generalizations may be found in [11. In

particular, one can compute that the multiplicity of & tvpical

dimensicnal representation F of G in A is

i1

irreduciblie finit

=

o
=
=
n
|
4
T
Tl



Me now place cursslwess in the setting of section 2, making F a

.+

carabolic subgroup with the root

i e
in Aim.hr. ke take
2 o= [1S2,8, 1520

there is now a unigque choice of F satisfying the condition in Theorem

2.70dy . By Lemma 3.7, the differential cperator ring

JiT

infinitesimal character
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that I i= the Kernel of %o, That i=, there is an inclusion

Theorem Z.¥00) calculates the multiplicity of

e
-
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1]

is the map &

WJiT
..

. It is

I

oJIT

irreducible F in
5,187 miB . F) - miw,Fr.

This differs from 5.8 {for example on the sewven dimensicnal

dimensicn 18, it Follows

Ry A

representation, so the inclusion in (5.9 is strict. 0On the other

hand, Lemma 2.4 shows that Mg is an isomorphism onto a single
semisimple orbit.

ame example (=till Joint work with Barbasch) contradic

-]
-
e
iy
1]

azpect of the philosophy of coadjoint orbhits {cf. section 7r. Ther

w

a one dimensional unitary char
induced representation

T = Ind ¥
of G has infinitesimal character (B, B . (& unitar epresentation
complex Lie group comes equipped with two infinitesimal characters
The method of coadjoint orbites would associate this representation

the aorbit Qg, and predict that it should be irreducible. In fact

cter « of P, such that the unitarily




plits into two irreducible pisces. Howeswver, T itself {or zat least i

)

Harish-Chandra modulelr actuzally admi

irreducible module Ffor the algebras S&c® fAg. In this picture, the
g =

Y
o
sl
i
s
i
e ol
o
m

greqsetoping algebr subalgebra A®a. Be will purszus the

-

ideas suggested by this example in section 2.

4. Spi8) and the role of non-normality

L

.t that th
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Froposition 5.4 and Conjecture

=
i)

oE
non-normality of orkit closures can influence primitive ideal theory,
az Conjecture 1.24 implies it must. Since I hawve not checked whether

the orbit in G is zactually non-normal, howswver, this examp

conclusive. In this section we will investigate an orbit whosze closu

is known to be non-normal, and look for effects on primitive idesal

theory. We take G to be Spi8), the group of linear fransformations

. - . = . N - -
preserving the standard symplectic form on C%; it is simple of twpe O4.

Fix a Borel subgroup B of G, and a Cartan subgroup H contained in E.
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by permuting and changing the =i

e
1
~
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The MMewl group
coordinates. Define P to be the parabolic subgroup conts

containing in its Lewl factor the zimple roocts

(&.2) gy - &

(6.3 Pa = (%,-%,2,1
# T S § e
t* = ((5/2,58/2,0,0) |£¢C}

Proposition £.4. The map

is surjective except when &=%1. For those wvalues, the image iz

rotation as in (3.3). Me may identify h™ with c? in such a WaY

=




proper subalgebra of full multiplicity in é%; that is, the Uig?
module

Mg omit the proof, but hints will ke given when we dizcuss the
representation—theorsetic aspects of this sxample in section .
One interesting consequence of Proposition &.4 is that &g and

A

¥

im ®. hawe the same Ffaithful simple modules. Thisz $folliows from

1T

Proposition &.5. Suppose Ry and Ry are primitive rings. Assume
that the left and right annihilators of Ro/Ry in Ry are not zero.
Then any faithful simple R, module is alsc simple as an Ry module;
and conversely, any Ffaithful simple Ry module has a unigue Ro

module structure.
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Froof. Supposse Mo

right annihilator of RosRy in Ry. Then JM is egual to M. It Ffollows

2 1
easily that o o M is zero. Al temsor products will be over Ry
Bye lett exactiness, we thersfore have a surjection
The first term here is M itself. MWrite N for the second; it is an Rg
module. Since M is simple, M is sither isomorphic to M oor zero. Bow

1 - i
the Kernel K of the map from M to M is & gquotient of Tar *iR-sR, .M. &=

P -

)
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Fecall now From (2.7 and (2.8

[In]

corresponding o the algsbras &,
Proposition &.8 {[171). In the setting of (4.1} to (&4.32), the map

T is an isomorphism onto its image except when £=8. In that




~ S}

case, its image Vg is a non-normal wvariety (the closure of the
nilpotent orbit Qg3 and the affinization of Wy is the
normalization map for Vg,

Proof. Since the wari smocth, it and its affinization are

normal It is shown in Mo ie not mormal.  The proposition will
follow from this fact and Lemma 2.4, once we Know that TG is

birational. This follows from the fact that Qp is simply connected;

ricd

-~

his in turn is a consequence of the connectedness of the

it, which can be computed directly., O.E.D.
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Becauses of Propositions 4.4 and S.4, it is clear how to extend

the suggestions before Theorem 32.18 towards Conjecturs 1,24 in this

subrvvariesty Wy of o, It i= not a trivial matter to compute either

Rillg? or im $#; as a G module, so property (iii) of the conjecture is
already hard to werify.

7. Representation theory: complex groups

emf

nothis secticn and the next, we consider the relationship

[n)

between ideal theory and representation theorw.

i

a topological group. & unitary

1]

Definition 7.1. Suppose H i

representation of H is & pair W, with W s complex Hilbert

zpace and T a homomorphism of H into the group of invertible

neformation

]

Vimnear tr

i

¥

F W, subject to the following conditions:
a) The map
Hox U o==2 U, (hywd == Tohow
ie continucous,
by For every h in H, the operator Wih) is unitary. That is,

CWO R g WO Rl = Dol

I

i

,..
i
2
1
-
4
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1
L
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e that the representation is irredycible 1f

;“'[T
i
b1




and no proper closed subspace of W ois inwvariant onder 211 %

rators WihY.

i

(i:l

The foliowing result is included to indicate the Kind of

connection one would like between group representations and Lie algebra

Proposition 7.2. Suppose H is a connected, simply connected real
Lie group. Then there is= a bijection {(defined by differentiatiomn
between finite dimensional unitary representations of H, and
finite dimensional skKew-adjcint representations of Lie{H). (By
the latter, we understand Lie algebra homomorphisms ¥ of Lie(H)
into the operators on a finite dimensional Hilbert space U,
satisfying

CMOKIw ,wlr = —dw KiXiw>
for all X in Lie{H) and v,w in ¥.> This bijection preserves
irreducibility.
Corollary 7.3. In the setting of Proposition 7.2, write h for the
complexified Lie algebra of H. Then the annihilator of an
irreducible unitary reprecsentation of H is a well-defined
primitive ideal in Udh).

There are several cbstacles to extending these resultis
infinite dimensiconal representations. The differentiation referred to
in the first is
DR Mot = Tim (W0 enpl f3) dw—ui L,

L8
This limit exists only as for v in & dense subspace of 4, which leads

to sericus techrnical problems when one tries to recover a oroup
= = F

.1
L}

U 2
0
=
]

A
%
s
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i

natural common domain W5 for all the Lie zlgebra cper
an irreducible Lie algebra representation in the algebraic ssnse. It=

annihilator in WiR) is therefore not cbwviocusly a primitive ideal.




Dixmier has dealt with the second problem in general (of. [F12, but for
our purposes the following result of Harish-Chandra will suffice.
Thecrem 7.3 ([121>. Suppose Gy is a real connected reductive Lie
group. MWrite gy for LieiB) and g for its complexification. Let
(M, be an irreducible vunitary representation of Gy. Then there
is a dense subspace Ug of V {contained in Uw}, with the following
properties:
a} For v in Vg and X in gy, the limit ¢(7.4) exists and
belongs to Vg,
B The representation (M,Vg2 of gy is algebraically
irreducible.
€} For X in gy, the operator WX is skew-adjcint with
respect to the pre-Hilbert space structure on Vg.
Harish-Chandra describes precisely how to find Mpi it is unigue up ifo

the choice of 2 maximal compact subgroup of G. He goes on to

characterize precissly which Lie algebra representaticons can arise in
this way, giwving a dictionary exactly analogous to the one in

i

Froposition 7.2 between group representaticons and Lie algebr
reprezsentations.  This will not concern us directly, howswver.

Definition 7.4. Suppose (1,4 iz an irreducible unitary

representation of the connected reductive real Lie group Gy. The
anpnihilator of M, Annim, is the annihilator in Wor of the
irreducible Lie algebra representation (T,Y5) given by Theorem

1

It is an esasy consequence of Harish-Chandra’s results that anndm i

Y

well-defined, even though VW iz not unigue.

1
i

Definition 7.7. Suppose by iz a real Lie algebra, and b is 1%

comptesification. The star anti-sutomorphism of Uik iz the
anti-lingar antiavtomorphism characterized by




the formulsz

i

The point of this definition i

7L LAR VDRI WIS T

walid for example for v and w in Vg and u

i}

=

Theorem 7.3. &n immedizate consequence i

e T is an irreducible unitary representation

=

[u}

Corallary 7.9. Supp
of the connected reductive Lie group Gy. %hen the primitive ideal
AR is invariant under the star anti-avtomorphism of Udg
{(Definition 7.7).
Lemma 7.18. Suppose H is a complex Lie group. Write h for the
Lie algebra of H {a complex Lie algebra), and hy for the
underlying real Lie algebra {cbtained by forgetting the scalar
multiplication by iY. MWHrite hy for the complexification of hy.
Then there is a natural isomorphism
he = hy + hp,

a direct sum of Lie algebras. The first summand is isomorphic to
h; and the second to the complex conjugate algebra. The star
anti-automorphism (Definition 7.7 interchanges these two
summands.

Proof. MWrite j for the operation of multiplication by i on hy this is

a real linear fransformation of By and so defines a complex linear

transformation <still called j» of hr. The two summands are the plus
and minus 1 eigenspaces of j:
by = Caix-1jxy [Heh?

hp = (R0X+1 K I¥ehd

These formulas are written to exhibit the required isomorphisms of the

-
s i
i
Hi]
]
3
it

summands withh and its complex condugate. The zssertions of

re all now ezxsy to owerify. G.E.D.

m

Proposition 7.11. Suppose G is a complex reductive algebraic




group. WMith notaticon as in Lemma 7.18, any primitive ideal I in
UWigp? is of the form \
I = 1;®Uigp + U{g»®Ig,
with Iy and Ip primitive ideals in Uigy > and Ulgp? respectively.
Consequently, the primitive guotient iz of the form
Uigpr 71 = (U(QL}/IL}Q(U(QR)!IR}.

annihilator of an irreducible

e

Proof. Bw Duflo” th th

I'[l

oreEm, i

[H]
iH]
i)

et
(s =
et

highest weight module WV for gp. is an elementary exercise fo show
that such a module must be of the form ULQLﬁ?, with the +factors
irreducible highest weight modules for g and gp, respectively. The
proposition follows.,  GLE.D.

The resull is presumably true for any complex Lise algebra; ons
zhould use the results of Moeglin and Rentschler on primitive ideals in
i <

1 L theoram.,

]
i

o replace the application of Dufl

1 J.l
i
I

sner

31:
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Proposition 7.12. Suppose G is a complex reductive algebraic

group, and % is an irreducible unitary representation of G. HWrite

I = Ann{T {(Definition 7.4, and use the notation of Proposition

7.11. Then I\ and Ip are completely prime primitive ideals; and
Ip = ¢I %

(Definition 7.7).

Proof. By Proposition 7.11, the idezls in guesticon are primitiwve, and
the last assertion follows Ffrom (7.8) . Soowe only hawve to show that

i
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1]
ot
=

A
s
4
Bk o

N
L
T
e
s
i

there are no zero divisors in Uig 270 . Thi
following obserwation, for which [ am grateful to I, Kaplansky.
Lemma 7.13. Let R be a prime ring without non—-zero nilpotents.

Then R has no zero diwvisore; that is, R is completely prime.

ble postpone the proof for a2 moment, and complete the argument for
Froposition 7,12, Let u ke an slement of UigL) not belonging to Iy 5 we

g
i
-
o
iy
Al
3
i1
=

need only show that u® does not belong to Iy - Let Vg be




Ty

— -

F.3. By assumption, u does not annihilate Vg3 =0 there is an element w
of g such that u.ow is not zero. (Me have dropped the W used sarlisr,
returning to module notation.r Since Y is & pre-Hilbert space, it
follows that
LR TR | T <

By (7.8, thiz amounts to

LUy e OB
It follows that {u®u).w is not zero, Fepeating the argument, we find

tu¥u cu®uy e = 8,
By the last assertion of Lemma 7.18, u# belongs to Wiggr. Conseguently
it commutes with u, and the formula above may be rewritten as

w2,y = 8,
In particular, u€ does not annihilate Wi so it does not belong to I
ag we wished to show., G.E.D.
Proof of Lemma 7.13. Suppose a and b are non-zero elements of F. be
want to show that ab is not zero. EBecause R iz prime, we can find an
glement x of R such that bxa is not zero icf. Definmition 1.140a0 .7
Because R is assumed to contain no nilpotents, it follows that

thxad T = (hud (ab) xa)d

is non-zero: o abk is non-zero. G.E.D.

Froposition 7.12 provides a wery simple direct correspondence
from irreducible unitary representations to complietely prime primitive
ideals, in the case of complex reductive algebraic groups. (For
general complex groups, only the generalization of Lemma 7F.11 is
tacking, and this should not be sericus.) The correspondence is not
surjective (that is, certain completely prime primitive ideals do not
arise in this way), but only for rather dull reascns: in the setting of
zection 3, one gets ideals parametrized roughly by a1l elements of t*
but unitary repressntations parametrized only by those whose imaginary
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between CF and RT = 20,
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There is anocther way to wisw th

statement of the Kirillow-Hostant "ohilosophy of coadicint orbits® i

S . A Wery ocrude

differentiales of unitary characters. This is the differenc

W

Coniescture 7.14. ZSuppose G is & complex reductiwve algebraic
group,.  Then there is a natural one-to-finite rrespondence from
the =t of integral orbits of G on gE, to the set of finite length
unitary representations of G.
tAn element n oof g§ is said to be integral if i{Im x) is the
differential of a2 unitary character of the identity component of the
stabilizer Goxd .}
The Kirillowv-Kostant philosophy is actually much more general

m

and fin favorable circumstances) more

X4

would indicate., Our purposes here, howewver, is not to rehe:

e

pecitic than Conjecture

.14

the

great successes of this philosophy, but to indicate how Conjecture 1.

may suggest wavs to sharpen it. & reasconable treatment of

o

aquestion is bewvond the scops of these notes; but here is

Bra with
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I+ /A is an algebra over C, we write &% for the
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scalar multiplication by i replaced by its negative.

Conjiecture 7.15. Supposze G i

1

group.  Let O be an integral orbit of G on gE, and let

e closure of O considersd in

4
i
e

the ramified cowvers o

1.24802 . Let & be the corresponding algebra (Clonjectur

To ¥ and some additional data there corresponds a unit

representation (W of G, of Finite length. The Hari

that

Fir

th

Conjsciurs

ar ::‘__x

algebra ocwver R, but with the operation

a complex reductive algesbr

Sr o e

alsoc with the structure of a faithful A® &% module, compatible

with the gp action and the algebra homomorphism & of

Malsl

[ R=1

ety

n



1.28010 . fAs an A® A" module, Ve le drreducible,

There are z number of things to notice here, First, it should
e emphasized that one cannol expect to get zl] irreducible unitary

representations of G from Conjecture 7.15: this fzails even for GLIZ,C

2till, one should get encugh unitary representations to solwe most

i

interesting harmonic analwsis problems. (0Ff course "interesting® her
has no precise meaning, but it does not ssem inconceiwable that such a
meaning could ke found.) In any case, this is a familiar problem
the orbit method, and needs no further comment here.

Second, the orbit method as it ie uvsually formulated asks for an

irreducible unitary representation attached to 0. &z the example at

w

the end of section 5 shows, this iz not alwave an esasily attainable

Conjecture 7.15 tries to indicate why this is the case: the
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epresentation iz

-

irreducibility under the bigger algebra, then study the relaticnship

between the bigger algebra and the image of Uiged inside it. &n

Fimallw, it may be that Conjecture 7.15 will contribute more to

o+

b

M

primitive ideal theory than to unitary representation theory, for

il

tarti

i
w

-

following reason. Suppose that, g from O and the other data,
one manages to construct a2 unitary representation. Then it is
rezsonable to hope that the algebra A0 &% should be mufe or less
Wisible in the construction. One could then prove & to be completely
prime byv the argument of Proposititon 7.12. Thizs would Be 2 start in
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the directicon of Conjecture 1.24. In fact the partial results of
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section 2 arocse in morse or jess
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cperator rings on GSP haz close tie




with the theory of unitary representations induced From F oto § (cf.
section 8. From thisz perepective, the paper [211 lwhich discussess

attaching a unitary representation to the minimal coadicint orbitl
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could e regarded
2. Representation theory: real groups

The philocsophy of orbits for real groups is much more zubtle,
arnd I do not Know how to formolate even a conjeciure as preciss 22

715, A few things are clear, however., (See for sxample the

-
)
a2
i
1
-
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quantization in [11] For more detailis on the
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general philosophy.? Let Gy be =a connected real reductiwve Lie groun,

£

and gy its Lie algebra. Fix an orbit Oy of Gy on (g™, and a point »

tabilizer of ».

m
i

. MWrite Gixly for the identity component of th
This group preserves a symplectic form O oon

E = gy gixly,
giwving rise to a homomorphism of Gixlg into the swmplectic group

Sp{E,w . The metaplectic double cover of SpiEY now induces a central

1 -

e}

1,83 =% B 0 =% Gl -3 1,
We zay that » {or 040 is admissible if ix is the differential of =
character A of G (3, such that

ATEy = -1,

For complex groups, the metaplectic double cower splits, so admiszsible
iz the szame as integral idefined after Conjecture 7,143,
Here iz the analogue of Conliecture 7.14.
Conjecture 8.1 (Kirillow-Hostant). Suppose Gy is a real reductive
Lie group. Then there is & natural one-to-finite correspondencs

from the set of admissible orbits of Gy on (g »¥®, to the set of
finite length unitary representations of Gy,

The main weakness of thisz formulation is that one should probably star



wiith some sort of union of sewersl orbits, 211 wiith the same

complexification, hawving a connected ciosure. In SLIZ,RY, for sxample,
the union of the two nilpotent hald cones should correspond to the

zpherical principsl series representation with paramestsr zero fwhich is
irreducibler. [ do not Know & precise formuiation which is reasonable.

This interferes wiih generalizing Conjecturs
something. First, it iz helpful to define the znalogue of the star
anti-automorphiem of Uigy (Definition 7.7 on the swmmeiric algebra.
For p in Sig) and f in g%, we can define

S

pROFY = Sipi-gfry,

Here we write O for comple: condugation. CFy]

Dl
)
pU
i
ot

iwelv, the
definition giwven +for Wigd works eoually well heres.) Motice that star
iz anti-linear: but it iz actually an automorphism fand not just an

gtomorphism? since Sdg) is commutative, Finally, notice that if

anti-a
£ iz any subset of (glbﬁ, then the ideal detined by 12 is stable under
star.

i

Conjecture 2.2. Suppose Gy isg & real reductive Lie group, gy it

Lie algebra, and g the complexification of gy. Let G be a complex

o, such that the

Pl

reductive algebraic group with Lise algebr;
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inclusion of Lie algebras exponenti = to & group homomorphism of
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it

Gy inmto G, Fix an admissible coadjoint orbit Oy of Gy, and

g for the complexification of i0y. Let ¥ be cone of the ramified

of the ol

M

coner of O considered in Conlecture

1 l‘l
P

=N

r

Aesume that Boxy is endowed with an anti-linear

fanti-ldavtomorphism star, which is compatible (wia the map from ¥

to gv) with star on Sdgd. Under these assumptions, the

corresponding algebra A is (that iz, is conjectured to be) endowed
with an anti-linear anti-automorphism "star”, consistent with the

one on Wigd dedined in Definition 7.7.



To o all this and soms additional data, there corressponds &
finite length unitary representation (LW of Gy, The
Harish-Chandra module Vg of W (Theorem 7.50 1z endowed with the
structure of an & module, extending the Wigr action and satisfving
CFLEY For o az2il ou o in &, Under some mild gesometric hwpotheses on the

other data, V5 should be irreducible or zero as an & module.

11 of the commente made after Condecture 7.15 apply here as
well. FRather than expand on them, we turn to a setting where the
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Me continue to assume that G, is a connected real reductive Lie

4
i
group, and that G iz as in Conjecture 8.2, Let o be & parabolid

]

ubatgebra of g.  fAssumes that

the intersection m of o owith ite complex conjugate o
— = ; - :'5 4

(8,3
is a Lewi factor of o.
Mo wee the notation of section 3. The Lie algebras m and 1 are

defined ower R: we use z subscript | to indicate their intersections

with g
Lemma 8.4. With notation as above, the normalizer of p in Gy is a
connected subgroup My, with Lie algebra my. Fix a weight £ in Li.
Extend £ to a linear functional on all of g by making it zeroc on
the commutator subalgebra mg of m (cf. (3.2)), and on the nil
radicals n and n~ of p and p . Write » for the restriction to gy
aof —i%.

a) The stabilizer of » in Gy contains My; they are equal if
and cnly if {x,%> is not zeroc for any root oo of h in g (cf. Lemma
2.4,

b The linear functional A is real-valued if and only if %
takes purely imaginary wvalues on 1.

c) &ssume that the conditions in (a) and (B} are fulfilied.



o

Then » is admissible {(defined before Conjecture 8.1) if and only
if ix-pPy (cf.3.3) is the differential of a unitary character A" of

My .

This is straightforward., Partic) is {at least) a folk theorem.
Definition 8.5 In the setting (8.3}, the weight £ in 3§ iz calied
agmissind if £-py is the (restriction to I of thed differential
cf & unitary character A (5) of My

Lemma S2.4:0c) shows that this notion of admissibility is clasely related

to the one defined at the beginning of this ssction.

Theorem 8.4. Suppose we are in the setting (8.3), and £ 1= an
admissible weight in i* {Definition 8.5). Assume that £ satisfies
the positivity condition

Re {x,8> 2 8
for every roct « of t in p . Then there is a natural unitary
representation V(£ attached to p and §. Its Harish-Chandra
module carries a natural action of the differential operator
algebra ég {ctf. Theorem 3.9}, satisfving the reguiremenits of
Conjecture 8.2,

Sketch of proof. The unitary representation is the ons whose

Harish-Chandra module was dencted QE—{ﬁN} in [241; it is obtained by

applwving a "cohomological parabolic induction funcior® fcof. O o o

AT, Its unitarity is established in [23] That same paper sssentizally

provces that Wigr is obtained by & trarsliation functor from &

corresponding representation VWOE ), with £7 wvery reguiar. [t is Hnown
that WIE) is irreducible under Q% fwhich is just the image of Uigr bDw

Theorem 2.9{cy. Finally, it iz easy to show that the differentizl

operator algebras behave well under the transiation principle. Futling

a1l these things together, we find by s formal argument that &g acts



G-

#Although he might wish to discwn this incarpaticon of it, [ am
grateful to Joseph Bernstein for showing me the preceding argument.

la o

We can now explain part of the proof of Proposition 4.4, The mos
difficult part is to show that {sayd #; is not surjective. OF course

it suffices to exhibit a simple module for Ay which is not simple as a

)

i

Uigd module. We use the preceding theorem, with Gy the split real form
of G fthe swmplectic group in eight real dimensionsd, and a well-chosen
. The fact that Wil is reducible is in principle computablie +rom the

Harhdan—busztig conjectures; in fact the much simpler tricks from [Z8]

Gelfand-FKirillow dimension than one might first guess

falf the dimension of the orbit. Because of Proposition &.5%, this 18 a

i
]

necessary feature of an example: any faithful simple Ay module is al

ooy module.

W

simple as
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