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1 Introduction

Much of what I will say depends on analogies between representation theory
and linear algebra, so let me begin by recalling some ideas from linear alge-
bra. One goal of linear algebra is to understand abstractly all possible linear
transformations T of a vector space V . The simplest example of a linear trans-
formation is multiplication by a scalar on a one-dimensional space. Spectral
theory seeks to build more general transformations from this example. In the
case of infinite-dimensional vector spaces, it is useful and interesting to intro-
duce a topology on V , and to require that T be continuous. It often happens
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(as in the case when T is a differential operator acting on a space of functions)
that there are many possible choices of V , and that choosing the right one for
a particular problem can be subtle and important.

One goal of representation theory is to understand abstractly all the pos-
sible ways that a group G can act by linear transformations on a vector space
V . Exactly what this means depends on the context. For topological groups
(like Lie groups), one is typically interested in continuous actions on topolog-
ical vector spaces. Using ideas from the spectral theory of linear operators,
it is sometimes possible (at least in nice cases) to build such representations
from irreducible representations, which play the role of scalar operators on
one-dimensional spaces in linear algebra. Here is a definition.

Definition 1.1. Suppose G is a topological group. A representation of G is
a pair (π, V ) with V a complete locally convex topological vector space, and π
a homomorphism from G to the group of invertible linear transformations of
V . We assume that the map

G× V → V, (g, v) 7→ π(g)v

is continuous.
An invariant subspace for π is a closed subspace W ⊂ V with the property

that π(g)W ⊂W for all g ∈ G. The representation is said to be irreducible if
there are exactly two invariant subspaces (namely V and 0).

The flexibility in this definition—the fact that one does not require V to be
a Hilbert space, or the operators π(g) to be unitary—is a very powerful tech-
nical tool, even if one is ultimately interested only in unitary representations.
Here is one reason. There are several important classes of groups (includ-
ing reductive Lie groups) for which the classification of irreducible unitary
representations is still an open problem. One way to approach the problem
(originating in the work of Harish-Chandra, and made precise by Knapp and
Zuckerman in [KZ77]) is to work with a larger class of “admissible” irreducible
representations, for which a classification is available. The problem is then to
identify the (unknown) unitary representations among the (known) admissible
representations. Here is a formal statement.

Problem 1.2. Given an irreducible representation (π, V ), is it possible to
impose on V a Hilbert space structure making π a unitary representation?
Roughly speaking, this question ought to have two parts.

(1.2)(A) Does V carry a G-invariant Hermitian bilinear form 〈, 〉π?

Assuming that such a form exists, the second part is this.

(1.2)(B) Is the form 〈, 〉π positive definite?
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The goal of these notes is to look at some difficulties that arise when one
tries to make this program precise, and to consider a possible path around
them. The difficulties have their origin exactly in the flexibility of Definition
1.1. Typically we want to realize a representation of G on a space of functions.
If G acts on a set X , then G acts on functions on X , by

[π(g)f ](x) = f(g−1 · x).

The difficulty arises when we try to decide exactly which space of functions
on X to consider. If G is a Lie group acting smoothly on a manifold X , then
one can consider

C(X) = continuous functions on X,

Cc(X) = continuous functions with compact support,

C∞
c (X) = compactly supported smooth functions.

C−∞(X) = distributions on X.

If there is a reasonable measure on X , then one gets various Banach spaces
like Lp(X) (for 1 ≤ p < ∞), and Sobolev spaces. Often one can impose
various other kinds of growth conditions at infinity. All of these construc-
tions give topological vector spaces of functions on X , and many of these
spaces carry continuous representations of G. These representations will not
be “equivalent” in any simple sense (involving isomorphisms of topological
vector spaces); but to have a chance of getting a reasonable classification
theorem for representations, one needs to identify them.

When G is a reductive Lie group, Harish-Chandra found a notion of “in-
finitesimal equivalence” that addresses these issues perfectly. Inside every ir-
reducible representation V is a natural dense subspace VK , carrying an irre-
ducible representation of the Lie algebra of G. (Actually one needs for this an
additional mild assumption on V , called “admissibility.”) Infinitesimal equiv-
alence of V and W means algebraic equivalence of VK and WK as Lie algebra
representations. (Some details appear in section 4.)

Definition 1.3. Suppose G is a reductive Lie group. The admissible dual of
G is the set Ĝ of infinitesimal equivalence classes of irreducible admissible rep-
resentations of G. The unitary dual of G is the set Ĝu of unitary equivalence
classes of irreducible unitary representations of G.

Harish-Chandra proved that each infinitesimal equivalence class of admis-
sible irreducible representations contains at most one unitary equivalence class
of irreducible unitary representations. That is,

(1.4) Ĝu ⊂ Ĝ.

This sounds like great news for the program described in Problem 1.2. Even
better, he showed that the representation (π, V ) is infinitesimally unitary
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if and only if the Lie algebra representation VK admits a positive-definite
invariant Hermitian form 〈, 〉π,K .

The difficulty is this. Existence of a continuousG-invariant Hermitian form
〈, 〉π on V implies the existence of 〈, 〉π,K on VK ; but the converse is not true.
Since VK is dense in V , there is at most one continuous extension of 〈, 〉π,K to
V , but the extension may not exist. In section 3, we will look at some examples,
in order to understand why this is so. What the examples suggest, and what
we will see in section 4, is that the Hermitian form can be defined only on
appropriately “small” representations in each infinitesimal equivalence class.
In the example of the various function spaces on X , compactly supported
smooth functions are appropriately small, and will often carry an invariant
Hermitian form. Distributions, on the other hand, are generally too large a
space to admit an invariant Hermitian form.

Here is a precise statement. (We will write V ∗ for the space of continuous
linear functionals on V , endowed with the strong topology (see section 8).)

Theorem 1.5. (Casselman, Wallach, and Schmid; see [Cas89], [Sch85], and
section 4). Suppose (π, V ) is an admissible irreducible representation of a re-
ductive Lie group G on a reflexive Banach space V . Define

(πω, V ω) = analytic vectors in V ,

(π∞, V∞) = smooth vectors in V ,

(π−∞, V −∞) = distribution vectors in V = dual of (V ′)∞, and

(π−ω , V −ω) = hyperfunction vectors in V = dual of (V ′)ω.

Each of these four representations is a smooth representation of G in the
infinitesimal equivalence class of π, and each depends only on that equivalence
class. The inclusions

V ω ⊂ V∞ ⊂ V ⊂ V −∞ ⊂ V −ω

are continuous, with dense image.
Any invariant Hermitian form 〈, 〉K on VK extends uniquely to continuous

G-invariant Hermitian forms 〈, 〉ω and 〈, 〉∞ on V ω and V∞.

The assertions about Hermitian forms will be proven in Theorem 9.16.
The four representations appearing in Theorem 1.5 are called the minimal

globalization, the smooth globalization, the distribution globalization, and the
maximal globalization respectively. Unless π is finite-dimensional (so that all
of the spaces in the theorem are the same) the Hermitian form will not extend
continuously to the distribution or maximal globalizations V −∞ and V −ω.

We will be concerned here mostly with representations of G constructed
using complex analysis, on spaces of holomorphic sections of vector bundles
and generalizations. In order to use these constructions to get unitary repre-
sentations, we need to do the analysis in such a way as to get the minimal or
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smooth globalizations; this will ensure that the Hermitian forms we seek will
be defined on the representations. A theorem of Hon-Wai Wong (see [Won99]
or Theorem 7.21 below) says that Dolbeault cohomology leads to the maximal
globalizations in great generality. This means that there is no possibility of
finding invariant Hermitian forms on these Dolbeault cohomology representa-
tions except in the finite-dimensional case.

We therefore need a way to modify the Dolbeault cohomology construction
to produce minimal globalizations rather than maximal ones. Essentially we
will follow ideas of Serre from [Ser55], arriving at realization of minimal glob-
alization representations first obtained by Tim Bratten in [Bra97]. Because of
the duality used to define the maximal globalization, the question amounts to
this: how can one identify the topological dual space of a Dolbeault cohomol-
ogy space on a (noncompact) complex manifold? The question is interesting
in the simplest case. Suppose X ⊂ C is an open set, and H(X) is the space
of holomorphic functions on X . Make H(X) into a topological vector space,
using the topology of uniform convergence of all derivatives on compact sets.
What is the dual space H(X)′?

This last question has a simple answer. Write C−∞
c (X, densities) for the

space of compactly supported distributions on X . We can think of this as the
space of compactly supported complex 2-forms (or (1, 1)-forms) on X , with
generalized function coefficients. (A brief review of these ideas will appear in
section 8). More generally, write

A(p,q),−∞
c (X) =compactly supported (p, q)-forms

on X with generalized function coefficients.

The Dolbeault differential ∂ maps (p, q)-forms to (p, q+1) forms and preserves
support; so

∂ : A(1,0),−∞
c (X)→ A(1,1),−∞

c (X) = C−∞
c (X, densities).

Then (see [Ser55], Théorème 3)

(1.6) H(X)′ ' A(1,1),−∞
c (X)/∂A1,0

c (X).

Here the overline denotes closure. For X open in C the image of ∂ is
automatically closed, so the overline is not needed; but this formulation has
an immediate extension to any complex manifold X (replacing 1 and 0 by the
dimension n and n− 1). Here is Serre’s generalization.

Theorem 1.7. (Serre; see [Ser55], Théorème 2 or Theorem 8.13 below). Sup-
pose X is a complex manifold of dimension n, V is a holomorphic vector bun-
dle on X, and Ω is the canonical line bundle (of (n, 0)-forms on X). Define

A0,p(X,V) = smooth V-valued (0, p)-forms on X



6 David A. Vogan, Jr

A(0,p),−∞
c (X,V) = compactly supported V-valued (0, p)-forms

with generalized function coefficients.

Define the topological Dolbeault cohomology of X with values in V as

H0,p
top(X,V) = [kernel of ∂ on A0,p(X,V)]/∂Ap−1,0(X,V);

this is a quotient of the usual Dolbeault cohomology. It carries a natural locally
convex topology. Similarly, define

H0,p
c,top(X,V) = [kernel of ∂ on A(0,p),−∞

c (X,V)]/∂A
(p−1,0),−∞
c (X,V),

the topological Dolbeault cohomology with compact supports. Then there is a
natural identification

H0,p
top(X,L)∗ ' H0,n−p

c,top (X,Ω ⊗L∗).

Here L∗ is the dual holomorphic vector bundle to L.

When X is compact, then the subscript c adds nothing, and the ∂ opera-
tors automatically have closed range. One gets in that case the most familiar
version of Serre duality.

In Corollary 8.14 we will describe how to use this theorem to obtain Brat-
ten’s result, constructing minimal globalization representations on Dolbeault
cohomology with compact supports.

Our original goal was to understand invariant bilinear forms on minimal
globalization representations. Once the minimal globalizations have been iden-
tified geometrically, we can at least offer a language for discussing this problem
using standard functional analysis. This is the subject of section 9.

There are around the world a number of people who understand analysis
better than I do. As an algebraist, I cannot hope to estimate this number.
Nevertheless I am very grateful to several of them (including Henryk Hecht,
Sigurdur Helgason, David Jerison, and Les Saper) who helped me patiently
with very elementary questions. I am especially grateful to Tim Bratten, for
whose work these notes are intended to be an advertisement. For the errors
that remain, I apologize to these friends and to the reader.

2 Compact groups and the Borel-Weil theorem

The goal of these notes is to describe a geometric framework for some basic
questions in representation theory for noncompact reductive Lie groups. In
order to explain what that might mean, I will recall in this section the sim-
plest example: the Borel-Weil theorem describing irreducible representations
of a compact group. Throughout this section, therefore, we fix a compact
connected Lie group K, and a maximal torus T ⊂ K. (We will describe an
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example in a moment.) We fix also a K-invariant complex structure on the
homogeneous space K/T . In terms of the structure theory of Lie algebras, this
amounts to a choice of positive roots for the Cartan subalgebra t = Lie(T )C

inside the complex reductive Lie algebra k = Lie(K)C. For more complete
expositions of the material in this section, we refer to [Kna86], section V.7, or
[Hel94], section VI.4.3, or [Vog87], chapter 1.

Define

(2.1)(a) T̂ = lattice of characters of T ;

these are the irreducible representations of T . Each µ ∈ T̂ may be regarded as
a homomorphism of T into the unit circle, or as a representation (µ,Cµ) of T .
Such a representation gives rise to a K-equivariant holomorphic line bundle

(2.1)(b) Lµ → K/T.

Elements of T̂ are often called weights.
I do not want to recall the structure theory for K in detail, and most of

what I say will make some sense without the details. With that warning not
to pay attention, fix a simple root α of T in K, and construct a corresponding
three-dimensional subgroup

(2.2)(a) φα : SU(2)→ K, Kα = φα(SU(2)), Tα = Kα ∩ T.

Then Kα/Tα is the Riemann sphere CP1, and we have a natural holomorphic
embedding

(2.2)(b) CP1 ' Kα/Tα ↪→ K/T.

The weight µ ∈ T̂ is called antidominant if for every simple root α,

(2.2)(c)) Lµ|Kα/Tα
has non-zero holomorphic sections.

This is a condition on CP1, about which we know a great deal. The sheaf
of germs of holomorphic sections of Lµ|Kα/Tα

is O(−〈µ, α∨〉); here α∨ is the
coroot for the simple root α, and 〈µ, α∨〉 is an integer. The sheaf O(n) on CP1

has non-zero sections if and only if n ≥ 0. It follows that µ is antidominant if
and only if for every simple root α,

(2.2)(d)) 〈µ, α∨〉 ≤ 0.

Theorem 2.3. (Borel-Weil, Harish-Chandra; see [HC56], [Ser59]). Suppose
K is a compact connected Lie group with maximal torus T ; use the notation
of (2.1) and (2.2) above.

(1) Every K-equivariant holomorphic line bundle on K/T is equivalent to Lµ,

for a unique weight µ ∈ T̂ .
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(2) The line bundle Lµ has non-zero holomorphic sections if and only if µ is
antidominant.

(3) If µ is antidominant, then the space Γ (Lµ) of holomorphic sections is an
irreducible representation of K.

(4) This correspondence defines a bijection from antidominant characters of

T onto K̂.

As the references indicate, I believe that this theorem is due independently
to Harish-Chandra and to Borel and Weil. Nevertheless I will follow standard
practice and refer to it as the Borel-Weil theorem.

Before saying anything about a proof, we look at an example. Set

K = U(n) = n× n complex unitary matrices(2.4)(a)

= {u = (u1, . . . , un) | ui ∈ Cn, 〈ui, uj〉 = δi,j} .

Here we regard Cn as consisting of column vectors, so that the ui are the
columns of the matrix u; δi,j is the Kronecker delta. This identifies U(n) with
the set of orthonormal bases of Cn. As a maximal torus, we choose

T = U(1)n = diagonal unitary matrices(2.4)(b)

=







eiφ1

. . .

eiφn


 | φj ∈ R




.

As a basis for the lattice of characters of T , we can choose

(2.4)(c) χj



eiφ1

. . .

eiφn


 = eiφj ,

the action of T on the jth coordinate of Cn.
We want to understand the homogeneous space K/T = U(n)/U(1)n. Re-

call that a complete flag in Cn is a collection of linear subspaces

(2.5)(a) F = (0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn), dimFj = j.

The collection of all such complete flags is a complex projective algebraic
variety

(2.5)(b) X = complete flags in Cn,

of complex dimension n(n− 1)/2. (When we need to be more precise, we may
write XGL(n).) We claim that

(2.5)(c) U(n)/U(1)n ' X.
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The map from left to right is

(2.5)(d) (u1, . . . , un)U(1)n 7→ F = (Fj), Fj = span(u1, . . . , uj).

Right multiplication by a diagonal matrix replaces each column of u by a
scalar multiple of itself; so the spans in this definition are unchanged, and
the map is well-defined on cosets. For the map in the opposite direction, we
choose an orthonormal basis u1 of the one-dimensional space F1; extend it
by Gram-Schmidt to an orthonormal basis (u1, u2) of F2; and so on. Each
uj is determined uniquely up to multiplication by a scalar eiφj , so the coset
(u1, . . . , un)U(1)n is determined by F .

It is often useful to notice that the full general linear groupKC = GL(n,C)
(the complexification of U(n)) acts holomorphically on X . For this action the
isotropy group at the base point is the Borel subgroup BC of upper triangular
matrices:

X = KC/BC.

The fact that X is also homogeneous for the subgroup K corresponds to the
group-theoretic facts

KC = KBC, K ∩ BC = T.

Now the definition of X provides a number of natural line bundles on X .
For 1 ≤ j ≤ n, there is a line bundle Lj whose fiber at the flag F is the
one-dimensional space Fj/Fj−1:

(2.6)(a) Lj(F ) = Fj/Fj−1 (F ∈ X).

This is a U(n)-equivariant (in fact KC-equivariant) holomorphic line bundle.
For any µ = (m1, . . . ,mn) ∈ Zn, we get a line bundle

(2.6)(b) Lµ = Lm1

1 ⊗ · · · ⊗ Lmn
n

For example, if p ≤ q, and F is any flag, then Fq/Fp is a vector space of
dimension q − p. These vector spaces form a holomorphic vector bundle Vq,p.

Its top exterior power
∧q−p

Vq,p is therefore a line bundle on X . Writing

(2.6)(c) µq,p = (0, . . . , 0︸ ︷︷ ︸
p terms

, 1, . . . , 1︸ ︷︷ ︸
q − p terms

, 0, . . . , 0︸ ︷︷ ︸
n − q terms

),

we find

(2.6)(d) Lµq,p
'

∧q−p
Vq,p.

One reason for making all these explicit examples is that it shows how
some of these bundles can have holomorphic sections. The easiest example is
Ln, whose fiber at F is the quotient space Cn/Fn−1. Any element v ∈ Cn

defines a section σv of Ln, by the formula
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(2.6)(e) σv(F ) = v + Fn−1 ∈ Cn/Fn−1 = Ln(F ).

Notice that this works only for Ln, and not for the other Lj . In a similar way,

taking q = n in (2.6)(c), we find that any element ω ∈
∧n−p

Cn defines a
section σω of Lµq,p

, by

σω(F ) = ω ∈
∧n−p

(Cn/Fp).

By multiplying such sections together, we can find non-zero holomorphic sec-
tions of any of the bundles Lµ, as long as

(2.6)(e) 0 ≤ m1 ≤ · · · ≤ mn.

In case m1 = · · · = mn = m, the sections we get are related to the
function detm on K (or KC). Since that function vanishes nowhere on the
group, its inverse provides holomorphic sections of the bundle corresponding
to (−m, · · · ,−m). Multiplying by these, we finally have non-zero sections of
Lµ whenever

(2.6)(f) m1 ≤ · · · ≤ mn.

Here is what the Borel-Weil theorem says for U(n).

Theorem 2.7. (Borel-Weil, Harish-Chandra). Use the notation of (2.4)–
(2.6).

(1) Every U(n)-equivariant holomorphic line bundle on the complete flag man-
ifold X is equivalent to Lµ = Lm1

1 ⊗ · · · ⊗ Lmn
n , for a unique

µ = (m1, . . . ,mn) ∈ Zn.

(2) The line bundle Lµ has non-zero holomorphic sections if and only if µ is
antidominant, meaning that

m1 ≤ · · · ≤ mn.

(3) If µ is antidominant, then the space Γ (Lµ) of holomorphic sections is an
irreducible representation of U(n).

(4) This correspondence defines a bijection from increasing sequences of inte-

gers onto Û(n).

Here are some remarks about proofs for Theorems 2.3 and 2.7. Part (1)
is very easy: making anything G-equivariant on a homogeneous space G/H
is the same as making something H-equivariant. (Getting precise theorems
of this form is simply a matter of appropriately specifying “anything” and
“something,” then following your nose.)

For part (2), “only if” is easy to prove using reduction to CP1: if µ fails to
be antidominant, then there will not even be sections on some of those pro-
jective lines. The “if” part is more subtle. We proved it for U(n) in (2.6)(f),
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essentially by making use of a large supply of known representations of U(n)
(the exterior powers of the standard representation, the powers of the deter-
minant character, and tensor products of these). For general K, one can do
something similar: once one knows the existence of a representation of lowest
weight µ, it is a simple matter to use matrix coefficients of that representation
to construct holomorphic sections of Lµ. This is what Harish-Chandra did.
I cannot tell from the account in [Ser59] exactly what argument Borel and
Weil had in mind. In any case it is certainly possible to construct holomorphic
sections of Lµ (for antidominant µ) directly, using the Bruhat decomposition
of K/T . It is easy to write a holomorphic section on the open cell (for any
µ); then one can use the antidominance condition to prove that this section
extends to all of K/T .

Part (3) and the injectivity in part (4) are both assertions about the space
of intertwining operators

HomK(Γ (Lµ1
), Γ (Lµ2

)).

We will look at such spaces in more generality in section 9 (Corollary 9.13).
Finally, the surjectivity in part (4) follows from the existence of lowest

weights for arbitrary irreducible representations. This existence is a fairly
easy part of algebraic representation theory. I do not know of a purely complex
analysis proof.

Before we abandon compact groups entirely, here are a few comments
about how to generalize the linear algebra in (2.4)–(2.6). A classical compact
group is (in the narrowest possible definition) one of the groups U(n), O(n)
(of real orthogonal matrices), or Sp(2n) (of complex unitary matrices also
preserving a standard symplectic form on C2n). For each of these groups, there
is a parallel description ofK/T as a projective variety of certain complete flags
in a complex vector space. One must impose on the flags certain additional
conditions involving the bilinear form that defines the group. Here are some
details.

Suppose first that K = O(n), the group of linear transformations of Rn

preserving the standard symmetric bilinear form

B(x, y) =

n∑

j=1

xjyj (x, y ∈ Rn).

This form extends holomorphically to Cn, where it defines the group

(2.8)(a) KC = O(n,C).

If W ⊂ Cn is a p-dimensional subspace, then

W⊥ = {y ∈ Cn | B(x, y) = 0, all x ∈W}

is a subspace of dimension n− p. We now define the complete flag variety for
O(n) to be
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(2.8)(b)
X = XO(n) = {F = (Fj) complete flags | F⊥

p = Fn−p, 0 ≤ p ≤ n}.

Notice that this definition forces the subspaces Fq with 2q ≤ n to satisfy
F⊥

q ⊂ Fq ; that is, the bilinear form must vanish on these Fq . Such a subspace
is called isotropic. Knowledge of the isotropic subspaces Fq (for q ≤ n/2)
determines the remaining subspaces, by the requirement Fn−q = F⊥

q . We get
an identification

XO(n) ' chains of isotropic subspaces (Fq) = (F0 ⊂ F1 ⊂ · · · ),(2.8)(c)

with dimFq = q for all q ≤ n/2.

The orthogonal group is

(2.8)(d) O(n) = {v = (v1, . . . , vn)|vp ∈ Rn, B(vp, vq) = δp,q},

the set of orthonormal bases of Rn. As a maximal torus T in K, we can take
SO(2)[n/2], embedded in an obvious way. We claim that

(2.8)(e) O(n)/SO(2)[n/2] ' XO(n).

The map from left to right is
(2.8)(f)
(v1, . . . , vn)SO(2)n 7→ F = (Fp), Fp = span(v1 + iv2, . . . , v2p−1 + iv2p).

We leave to the reader the verification that this is a well-defined bijection, and
an extension of the ideas in (2.6) to this setting. (Notice only that O(n) is not
connected, that correspondingly X has two connected components, and that
the irreducibility assertion in Theorem 2.3(3) can fail.) The space X is also
homogeneous for the (disconnected) reductive algebraic group KC = O(n,C),
the isotropy group being a Borel subgroup of the identity component.

Finally, consider the standard symplectic form on C2n,

ω(x, y) =
n∑

p=1

xpyn+p − xn+pyp.

The group of linear transformations preserving this form is

(2.9)(a) KC = Sp(2n,C);

the corresponding compact group may be taken to be

K = KC ∩ U(2n).

(Often it is easier to think of K as a group of n × n matrices with entries
in the quaternions. This point of view complicates slightly the picture of KC,
and so I will not adopt it.) Just as for the symmetric form B, we can define
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W⊥ = {y ∈ C2n | ω(x, y) = 0, all x ∈W};

if W has dimension p, then W⊥ has dimension 2n − p. The complete flag
variety for Sp(n) is
(2.9)(b)
X = XSp(2n) = {F = (Fj) complete flags | F⊥

p = F2n−p, 0 ≤ p ≤ 2n}.

Again the definition forces Fq to be isotropic for q ≤ n, and we can identify

X ' chains of isotropic subspaces (Fq) = (F0 ⊂ F1 ⊂ · · · ),(2.9)(c)

with dimFq = q for all q ≤ n.

The complex symplectic group KC = Sp(2n,C) acts holomorphically on the
projective variety X .

The complex symplectic group is
(2.9)(d)

Sp(2n,C) = {v = (v1, . . . , v2n) | vp ∈ C2n, ω(vp, vq) = δp,q−n (p ≤ q)},

This identifies KC with the collection of standard symplectic bases for C2n.
The compact symplectic group is identified with standard symplectic bases
that are also orthonormal for the standard Hermitian form 〈, 〉 on C2n:

(2.9)(e) Sp(2n) = {(v1, . . . , v2n) | vp ∈ C2n, ω(vp, vq) = δp,q−n,

〈vp, vq〉 = δp,q (p ≤ q)},

As a maximal torus in K, we choose the diagonal subgroup

(2.9)(f) T =








eiφ1

. . .

eiφn

e−iφ1

. . .

e−iφn








' U(1)n.

We claim that

(2.9)(g) Sp(2n)/U(1)n ' XSp(2n).

The map from left to right is
(2.9)(h)

(v1, . . . , v2n)U(1)n 7→ F = (Fp), Fp = span(v1, . . . , vp) (0 ≤ p ≤ n).

Again we leave to the reader the verification that this is a well-defined bijec-
tion, and the task of describing the equivariant line bundles on X .
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3 Examples for SL(2, R)

In this section we will present some examples of representations of SL(2,R),
in order to develop some feeling about what infinitesimal equivalence, minimal
globalizations, and so on look like in examples. More details can be found in
[Kna86], pages 35–41.

In fact it is a little simpler for these examples to consider not SL(2,R)
but the isomorphic group

(3.1)(a) G = SU(1, 1) =

{(
α β

β α

)
| α, β ∈ C, |α|2 − |β|2 = 1

}
.

This is the group of linear transformations of C2 preserving the standard
Hermitian form of signature (1, 1), and having determinant 1. We will be
particularly interested in a maximal compact subgroup:

(3.1)(b) K =

{(
eiθ 0
0 e−iθ

)
| θ ∈ R

}
.

The group G acts on the open unit disc by linear fractional transforma-
tions:

(3.2)(a)

(
α β

β α

)
· z =

αz + β

βz + α
.

It is not difficult to check that this action is transitive:

(3.2)(b) D = {z | |z| < 1} = G · 0 ' G/K.

The last identification comes from the fact that K is the isotropy group for
the action at the point 0.

The action of G on D preserves complex structures. Setting

(3.2)(c) V −ω = holomorphic functions on D,

we therefore get a representation π of G on V −ω by

(3.2)(d) [π(g)f ](z) = f(g−1 · z) = f

(
αz − β

−βz + α
.

)

The representation (π, V −ω) is not irreducible, because the one-dimensional
closed subspace of constant functions is invariant. Nevertheless (as we will see
in section 4) the Casselman-Wallach-Schmid theory of distinguished global-
izations still applies. As the notation suggests, V −ω is a maximal globalization
for the corresponding Harish-Chandra module

(3.2)(e) V K = polynomials in z
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of K-finite vectors.
In order to describe other (smaller) globalizations of V K , we can control

the growth of functions near the boundary circle of D. The most drastic
possibility is to require the functions to extend holomorphically across the
boundary of D:

(3.3)(a) V ω = holomorphic functions on D

This space can also be described as the intersection (over positive numbers
ε) of holomorphic functions on discs of radius 1 + ε. Restriction to the unit
circle identifies V ω with real analytic functions on the circle whose negative
Fourier coefficients all vanish. There is a natural topology on V ω, making it
a representation of G by the action π of (3.2)(d). As the notation indicates,
this representation is Schmid’s minimal globalization of V K .

A slightly larger space is

(3.3)(b) V∞ = holomorphic functions on D with smooth boundary values.

More or less by definition, V∞ can be identified with smooth functions on the
circle whose negative Fourier coefficients vanish. The identification topologizes
V∞, and it turns out that the resulting representation of G is the Casselman-
Wallach smooth globalization of V K . Larger still is

(3.3)(c) V (2) = holomorphic functions on D with L2 boundary values.

This is a Hilbert space, the square-integrable functions on the circle whose
negative Fourier coefficients vanish. The representation of G on this Hilbert
space is continuous but not unitary (because these linear fractional transfor-
mations of the circle do not preserve the measure). Of course there are many
other function spaces on the circle that can be used in a similar way; I will
mention only
(3.3)(d)
V −∞ = holomorphic functions on D with distribution boundary values.

This is the Casselman-Wallach distribution globalization of V K .
We therefore have

V ω ⊂ V∞ ⊂ V (2) ⊂ V −∞ ⊂ V −ω.

These inclusions of representations are continuous with dense image. Holo-
morphic functions on the disc all have Taylor expansions

f(z) =

∞∑

n=0

anz
n.

We can describe each space by conditions on the coefficients an; these descrip-
tions implicitly specify the topologies very nicely.
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V −ω ↔ {(an) |
∞∑

n=0

|an|(1− ε)
n <∞, 0 < ε ≤ 1}.

V −∞ ↔ {(an) | for some N > 0, |an| < CN (1 + n)N}.

V (2) ↔ {(an) |

∞∑

n=0

|an|
2 <∞}.

V∞ ↔ {(an) | for every N > 0, |an| < CN (1 + n)−N}.

V ω ↔ {(an) |

∞∑

n=0

|an|(1 + ε)n <∞, some ε > 0}.

4 Harish-Chandra modules and globalization

In this section we will recall very briefly some general facts about represen-
tations of real reductive groups. The first problem is to specify what groups
we are talking about. A Lie algebra (over any field of characteristic zero)
is called semisimple if it is a direct sum of non-abelian simple Lie algebras.
It is natural to define a real Lie group to be semisimple if it is connected,
and its Lie algebra is semisimple. Such a definition still allows some techni-
cally annoying examples (like the universal cover of SL(2,R), which has no
non-trivial compact subgroups). Accordingly there is a long tradition of work-
ing with connected semisimple groups having finite center. There are several
difficulties with that. As we will see, there are many results relating the rep-
resentation theory of G to representation theory of subgroups of G; and the
relevant subgroups are rarely themselves connected and semisimple. Another
difficulty comes from the demands of applications. One of the most important
applications of representation theory for Lie groups is to automorphic forms.
In that setting the most fundamental example is GL(n,R), a group which is
neither connected nor semisimple.

Most of these objections can be addressed by working with algebraic
groups, and considering always the group of real points of a connected re-
ductive algebraic group defined over R. (The group GL(n) is a connected
algebraic group, even though its group of real points is disconnected as a Lie
group.) The difficulty with this is that it still omits some extremely important
examples. Some of the most interesting representation theory lives on the non-
linear double cover Mp(2n,R) of the algebraic group Sp(2n,R) (consisting of
linear transformations of R2n preserving a certain symplectic form). The “os-
cillator representation” of this group is fundamental to mathematical physics,
to the theory of automorphic forms, and to classical harmonic analysis. (Such
an assertion needs to be substantiated, and I won’t do that; but here at least
are some interesting references: [Wei64], [How88], [How89].)

So we want to include at least finite covering groups of real points of
connected reductive algebraic groups. At some point making a definition along
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these lines becomes quite cumbersome. I will therefore follow the path taken
by Knapp in [Kna86], and take as the definition of reductive a property that
usually appears as a basic structure theorem. The definition is elementary and
short, and it leads quickly to some fundamental facts about the groups. One
can object that it does not extend easily to groups over other local fields, but
for the purposes of these notes that will not be a problem.

The idea is that the most basic example of a reductive group is the group
GL(n,R) of invertible n× n real matrices. We will recall a simple structural
fact about GL(n) (the polar decomposition of Proposition 4.2 below). Then
we will define a reductive group to be (more or less) any subgroup of some
GL(n) that inherits the polar decomposition.

If g ∈ G = GL(n,R), define

θg = tg
−1
, (4.1)(a

the inverse of the transpose of g. The map θ is an automorphism of order 2,
called the Cartan involution of GL(n). Write O(n) = GL(n)θ for the subgroup
of fixed points of θ. This is the group of n × n real orthogonal matrices, the
orthogonal group. It is compact.

Write gl(n,R) = Lie(GL(n,R)) for the Lie algebra of GL(n) (the space
of all n × n real matrices). The automorphism θ of G differentiates to an
involutive automorphism of the Lie algebra, defined by

(4.1)(b) (dθ)(X) = −tX.

Notice that if X happens to be invertible, then (dθ)(X) and θ(X) are both
defined, and they are not equal. Despite this potential for confusion, we will
follow tradition and abuse notation by writing simply θ for the differential of
θ. The −1-eigenspace of θ on the Lie algebra is

(4.1)(c) p0 = n× n symmetric matrices.

Proposition 4.2. (Polar or Cartan decomposition for GL(n,R)). Suppose
G = GL(n,R), K = O(n), and p0 is the space of n× n symmetric matrices.
Then the map

O(n) × p0 → GL(n) (k,X) 7→ k exp(X)

is an analytic diffeomorphism of O(n)× p0 onto GL(n).

Definition 4.3. A linear reductive group is a subgroup G ⊂ GL(n,R) such
that

(1) G is closed (and therefore G is a Lie group).
(2) G has finitely many connected components.
(3) G is preserved by the Cartan involution θ of GL(n,R) (cf. (4.1)(a)).
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Of course the last requirement means simply that the transpose of each element
of G belongs again to G. The restriction of θ to G (which we still write as θ)
is called the Cartan involution of G. Define

K = G ∩ O(n) = Gθ,

a compact subgroup of G. Write

g0 = Lie(G) ⊂ gl(n,R).

Finally, define
s0 = symmetric matrices in g0,

the −1-eigenspace of θ.

Proposition 4.4. (Cartan decomposition for linear real reductive groups).
Suppose G ⊂ GL(n,R) is a linear reductive group, K = G ∩ O(n), and s0 is
the space of symmetric matrices in the Lie algebra of G. Then the map

K × s0 → G, (k,X) 7→ k exp(X)

is an analytic diffeomorphism of K × s0 onto G.

One immediate consequence of this proposition is that K is a maximal
compact subgroup of G; that is, that any subgroup of G properly containing
K must be noncompact.

Here is a result connecting this definition with a more traditional one.

Proposition 4.5. Suppose H is a reductive algebraic group defined over R,
and π : H→ GL(V) is a faithful representation defined over R. Then we can
choose a basis of V = V(R) in such a way that the corresponding embedding

π : H(R)→ GL(n,R)

has image a linear reductive group in the sense of Definition 4.3.
Conversely, suppose G is a linear reductive group in the sense of Definition

4.3. Then we can choose H and π as above in such a way that

π(H(R))0 = G0;

that is, these two groups have the same identity component.

Here at last is the main definition.

Definition 4.6. A real reductive group is a Lie group G̃ endowed with a
surjective homomorphism

π : G̃→ G ⊂ GL(n,R)
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onto a linear reductive group, such that kerπ is finite. Use the differential of
π to identify

g̃0 = Lie(G̃) ' Lie(G) = g0 ⊂ gl(n,R).

This identification makes θ into an automorphism θ̃ of g̃0. Define

K̃ = π−1(K) ⊂ G̃,

a compact subgroup (since π has finite kernel). Finally, define

s̃0 = −1-eigenspace of θ̃ on g̃0.

In the next statement we will use tildes to distinguish elements of G̃ and
the exponential map of G̃ for clarity; this is also helpful in writing down the
(very easy) proof based on Proposition 4.5. But thereafter we will drop all the
tildes.

Proposition 4.7. (Cartan decomposition for real reductive groups). Suppose

G̃ is a real reductive group as in Definition 4.6. Then the map

K̃ × s0 → G̃, (k̃, X̃) 7→ k̃ exp∼(X̃)

is an analytic diffeomorphism of K̃ × s̃0 onto G̃. Define a diffeomorphism θ̃
of G̃ by

θ̃(k̃ exp∼(X̃)) = k̃ exp∼(−X̃).

Then θ̃ is an automorphism of order two, with fixed point group K̃.

We turn now to the problem of exploiting this structure for understanding
representations of a reductive group G. Recall from Definition 1.1 the notion
of representation of G.

Definition 4.8. Suppose (π, V ) is a representation of G. A vector v ∈ V is
said to be smooth (respectively analytic) if the map

G→ V, g 7→ π(g) · v

is smooth (respectively analytic). Write V ∞ (respectively V ω) for the space
of smooth (respectively analytic) vectors in V . When the group G is not clear
from context, we may write for example V ∞,G.

Each of V∞ and V ω is a G-stable subspace of V ; we write π∞ and πω for
the corresponding actions of G. Each of these representations differentiates to
a representation dπ of the Lie algebra g0, and hence also of the enveloping
algebra U(g). (We will always write

(4.9) g0 = Lie(G), g = g0 ⊗R C,
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and use analogous notation for other Lie groups.) Each of V ∞ and V ω has a
natural complete locally convex topology, making the group representations
continuous. In the case of V∞, this topology can be given by seminorms

v 7→ ρ(dπ(u)v)

with ρ one of the seminorms defining the topology of V , and u ∈ U(g). Since
the enveloping algebra has countable dimension, it follows at once that V ∞ is
Fréchet (topologized by countably many seminorms) whenever V is Fréchet.
The condition that the function π(g)v be real analytic may be expressed
in terms of the existence of bounds on derivatives of the function: that if
X1, X2, . . . , Xm is a basis of g0, and g0 ∈ G, then there should exist ε > 0 and
a neighborhood U of g0 so that for any seminorm ρ on V ,

ρ(dπ(XI)π(g)v) ≤ CεI ! ε
−|I|

for all multiindices I = (i1, . . . , im) and all g ∈ U . Here we use standard
multiindex notation, so that

XI = X i1
1 · · ·X

im
m , |I | =

m∑

j=1

ij ,

and so on. This description suggests how to define the topology on V ω as an
inductive limit (over open coverings of G, with positive numbers ε(U) attached
to each set in the cover).

It is a standard theorem (due to G̊arding, and true for any Lie group) that
V∞ is dense in V . I am not certain in what generality the density of V ω in
V is known; we will recall (in Theorem 4.13) Harish-Chandra’s proof of this
density in enough cases for our purposes.

One of Harish-Chandra’s fundamental ideas was the use of relatively easy
facts in the representation theory of compact groups to help in the study of
representations of G. Here are some basic definitions.

Definition 4.10. Suppose (π, V ) is a representation of a compact Lie group
K. A vector v ∈ V is said to be K-finite if it belongs to a finite-dimensional
K-invariant subspace. Write V K for the space of all K-finite vectors in V .

Suppose (µ,Eµ) is an irreducible representation of K. (Then Eµ is neces-
sarily finite-dimensional, and carries a K-invariant Hilbert space structure.)
The µ-isotypic subspace V (µ) is the span of all copies of Eµ inside V .

Proposition 4.11. Suppose (π, V ) is a representation of a compact Lie group
K. Then

V K ⊂ V ω,K ⊂ V∞,K ⊂ V ;

V K is dense in V . There is an algebraic direct sum decomposition

V K =
∑

µ∈ bK

V (µ).



Unitary Representations and Complex Analysis 21

Each subspace V (µ) is closed in V , and so inherits a locally convex topology.
There is a unique continuous operator

P (µ) : V → V (µ)

commuting with K and acting as the identity on V (µ). For any v ∈ V and

µ ∈ K̂, we can therefore define

vµ = P (µ)v ∈ V (µ).

If v ∈ V∞,K , then

v =
∑

µ∈ bK

vµ,

an absolutely convergent series.
Finally, define

V −K =
∏

µ∈ bK

V (µ),

the algebraic direct product. The operators P (µ) define an embedding

V ↪→ V −K , v 7→
∏

vµ.

There are natural complete locally convex topologies on V K and V −K

making all the inclusions here continuous, but we will have no need of this.
Returning to the world of reductive groups, here is Harish-Chandra’s basic

definition. The definition will refer to

ZG(g) = Ad(G)-invariant elements of U(g).

If G is connected, this is just the center of the enveloping algebra. Schur’s
lemma suggests that ZG(g) ought to act by scalars on an irreducible repre-
sentation of G, but there is no general way to make this suggestion into a
theorem. (Soergel gave an example of an irreducible Banach representation of
SL(2,R) in which ZG(g) does not act by scalars.) Nevertheless the suggestion
is correct for most representations arising in applications, so Harish-Chandra
made it into a definition.

Definition 4.12. Suppose G is real reductive with maximal compact subgroup
K, and (π, V ) is a representation of G. We say that π is admissible if π has
finite length, and either of the following equivalent conditions is satisfied:

(1) for each µ ∈ K̂, the isotypic space V (µ) is finite-dimensional.
(2) each v ∈ V∞ is contained in a finite-dimensional subspace preserved by

dπ(ZG(g)).
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The assumption of “finite length” means that V has a finite chain of closed
invariant subspaces in which successive quotients are irreducible. Harish-
Chandra actually called the first condition “admissible” and the second “qua-
sisimple,” and he proved their equivalence. It is the term admissible that has
become standard now, perhaps because it carries over almost unchanged to
the setting of p-adic reductive groups. Harish-Chandra also proved that a
unitary representation of finite length is automatically admissible.

Theorem 4.13. (Harish-Chandra). Suppose (π, V ) is an admissible repre-
sentation of a real reductive group G with maximal compact subgroup K.

(1) V K ⊂ V ω ⊂ V∞.
(2) The subspace V K is preserved by the representations of g and K.
(3) There is a bijection between the set

{closed G-stable subspaces W ⊂ V }

and the set

{
arbitrary (g,K)-stable subspaces WK ⊂ V K

}
.

Here W corresponds to its subspace WK of K-finite vectors, and WK

corresponds to its closure W in V .

The structure carried by V K is fundamental, and has a name of its own.

Definition 4.14. Suppose G is a real reductive group with complexified Lie
algebra g and maximal compact subgroup K. A (g,K)-module is a vector space
X endowed with actions of g and of K, subject to the following conditions.

(1) Each vector in X belongs to a finite-dimensional K-stable subspace, on
which the action of K is continuous.

(2) The differential of the action of K (which exists by the first condition) is
equal to the restriction of the action of g.

(3) The action map
g×X → X, (Z, x) 7→ Z · x

is equivariant for the actions of K. (Here K acts on g by Ad.)

Harish-Chandra’s Theorem 4.13 implies that if (π, V ) is an admissible ir-
reducible representation of G, then V K is an irreducible (g,K)-module. We
call V K the Harish-Chandra module of π. We say that two such representa-
tions (π, V ) and (ρ,W ) are infinitesimally equivalent if V K 'WK as (g,K)-
modules.

Theorem 4.15. (Harish-Chandra). Every irreducible (g,K)-module arises as
the Harish-Chandra module of an irreducible admissible representation of G
on a Hilbert space.
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(Actually Harish-Chandra proved this theorem only for linear reductive
groups G. The general case was completed by Lepowsky.) In light of this
theorem and the preceding definitions, we define

Ĝadm =infinitesimal equivalence classes of

irreducible admissible representations

=equivalence classes of irreducible (g,K)-modules.

A continuous group representation with Harish-Chandra module X is
called a globalization of X .

We fix now a finite length (g,K)-module

(4.16)(a) X =
∑

µ∈ bK

X(µ).

In addition, we fix a Hilbert space globalization

(4.16)(b) (πHilb , XHilb)

(For irreducible X , such a globalization is provided by Theorem 4.15. For X
of finite length, the existence of XHilb is due to Casselman.) For the purposes
of the theorems and definitions that follow, any reflexive Banach space glob-
alization will serve equally well; with minor modifications, one can work with
a reflexive Fréchet representation of moderate growth (see [Cas89], Introduc-
tion). The Hilbert (or Banach) space structure restricts to a norm

(4.16)(c) ‖ ‖µ : X(µ)→ R

We will need also the dual Harish-Chandra module

Xdual = K-finite vectors in the algebraic dual of X.

The contragredient representation of G on the dual space (XHilb)′, defined by

(4.16)(d) (πHilb)′(g) = t(πHilb(g−1))

has Harish-Chandra module Xdual. (We will discuss the transpose of a lin-
ear map and duality in general in more detail in section 8.) In particular,
(XHilb)′(µ) = X(µ)′ inherits the norm

(4.16)(e) ‖ ‖′µ : X(µ)→ R

from (XHilb)′. This is unfortunately not precisely the dual norm to ‖ ‖µ, but
the difference can be controlled2: there is a constant C ≥ 1 so that

2 The difference is that the dual norm to ‖ ‖µ involves the size of a linear functional
only on elements of X(µ), whereas ‖ ‖′µ involves the size of a linear functional on
the whole space. The second inequality in (4.16)(f) is obvious. The constant in
the first inequality is an estimate for the norm of the projection operator P (µ)
from Proposition 4.11. The estimate comes from the standard formula for P (µ)
as an integral over K of π(k) against the character of µ.
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(4.16)(f) (C · dimµ)−1‖ ‖′µ ≤ (‖ ‖µ)′ ≤ ‖ ‖′µ.

A Hilbert space globalization is technically valuable in the subject, but it
has a very serious weakness: it is not canonically defined, even up to a bounded
operator. More concretely, suppose thatX happens to be unitary, so that there
is a canonical Hilbert space globalization XHilb∼ (coming from the unitary
structure). The nature of the problem is that the infinitesimal equivalence
of XHilb and XHilb∼ need not be implemented by a bounded operator from
XHilb to XHilb∼ . A consequence is that the invariant Hermitian form on X
giving rise to the unitary structure need not be defined on all of XHilb: we
cannot hope to look for unitary structures by looking for Hermitian forms on
random Hilbert space globalizations. Here is the technical heart of the work
of Wallach, Casselman, and Schmid addressing this problem.

Theorem 4.17. (Casselman-Wallach; see [Cas89]). In the setting of (4.16),
the norm ‖ ‖µ is well-defined up to a polynomial in |µ| (which means the length
of the highest weight of the representation µ of K): if ‖ ‖∼µ is the collection
of norms arising from any other Hilbert (or reflexive Banach) globalization of
X, then there are a positive integer M and a constant CM so that

‖ ‖µ ≤ CM (1 + |µ|)M‖ ‖∼µ .

The proof of this result given by Wallach and Casselman is quite compli-
cated and indirect; indeed it is not entirely easy even to extract the result from
their papers. It would certainly be interesting to find a more direct approach:
beginning with the Harish-Chandra module X , to construct the various norms
‖ ‖µ (defined up to inequalities like those in Theorem 4.17); and then to prove
directly that the topological vector spaces constructed in Theorems 4.18, 4.20
carry smooth representations of G. The first step in this process (defining the
norms) is perhaps not very difficult. The second seems harder.

Theorem 4.18. (Casselman-Wallach; see [Cas89]). In the setting of (4.16),
the space of smooth vectors of XHilb is

XHilb,∞ =





∑

µ∈ bK

xµ | xµ ∈ X(µ), ‖xµ‖µ rapidly decreasing in |µ|



 .

Here “rapidly decreasing” means that for every positive integer M there is a
constant CN so that

‖xµ‖µ ≤ CN (1 + |µ|)−N .

The minimum possible choice of CN defines a seminorm; with these semi-
norms, XHilb,∞ is a nuclear Fréchet space.

Regarded as a collection of sequences of elements chosen from X(µ), the
space of smooth vectors and its topology are independent of the choice of the
globalization XHilb.
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Definition 4.19. Suppose that X is any Harish-Chandra module of finite
length. The Casselman-Wallach smooth globalization of X is the space of
smooth vectors in any Hilbert space globalization of X. We use Theorem 4.18
to identify it as a space of sequences of elements of X, and denote it X∞.

There is a parallel description of analytic vectors.

Theorem 4.20. (Schmid; see [Sch85]). In the setting of (4.16), the space of
analytic vectors of XHilb is

XHilb,ω =





∑

µ∈ bK

xµ | xµ ∈ X(µ), ‖xµ‖µ exponentially decreasing in |µ|



 .

Here “exponentially decreasing” means that there are an ε > 0 and a constant
Cε so that

‖xµ‖µ ≤ Cε(1 + ε)−|µ|.

The minimum choice of Cε defines a Banach space structure on a subspace,
and XHilb,ω has the inductive limit topology, making it the dual of a nuclear
Fréchet space.

Regarded as a collection of sequences of elements chosen from X(µ), the
space of analytic vectors and its topology are independent of the choice of the
globalization XHilb.

Definition 4.21. Suppose that X is any Harish-Chandra module of finite
length. Schmid’s minimal or analytic globalization of X is the space of ana-
lytic vectors in any Hilbert space globalization of X. We use Theorem 4.18 to
identify it as a space of sequences of elements of X, and denote it Xω.

Finally, we will need the duals of these two constructions.

Definition 4.22. Suppose that X is any Harish-Chandra module of finite
length. The Casselman-Wallach distribution globalization of X is the contin-
uous dual of the space of smooth vectors in any Hilbert space globalization
of Xdual. We can use Theorem 4.18 to identify it as a space of sequences of
elements of X, and denote it X−∞. Explicitly,

X−∞ =





∑

µ∈ bK

xµ | xµ ∈ X(µ), ‖xµ‖µ slowly increasing in |µ|



 .

Here “slowly increasing” means that there is a positive integer N and a con-
stant CN so that

‖xµ‖µ ≤ CN (1 + |µ|)N .

This exhibits X−∞ as an inductive limit of Banach spaces, and the dual of
the nuclear Fréchet space Xdual,∞.
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Definition 4.23. Suppose that X is any Harish-Chandra module of finite
length. Schmid’s maximal or hyperfunction globalization of X is the contin-
uous dual of the space of analytic vectors in any Hilbert space globalization
of Xdual. We can use Theorem 4.19 to identify it as a space of sequences of
elements of X, and denote it X−ω. Explicitly,

X−ω =





∑

µ∈ bK

xµ | xµ ∈ X(µ),

‖xµ‖µ less than exponentially increasing in |µ|



 .

Here “less than exponentially increasing” means that for every ε > 0 there is
a constant Cε so that

‖xµ‖µ ≤ Cε(1 + ε)|µ|.

This exhibits X−ω as a nuclear Fréchet space.

When we wish to emphasize the K-finite nature of X , we can write the
space as XK =

∑
µ∈ bK X(µ). It is also convenient to write

X−K =
∏

µ∈ bK

X(µ) = (Xdual)∗.

Our various globalizations now appear as sequence spaces, with gradually
weakening conditions on the sequences:

(4.24) XK ⊂ Xω ⊂ X∞ ⊂ X−∞ ⊂ X−ω ⊂ X−K .

The conditions on the sequences are: almost all zero, exponentially decreasing,
rapidly decreasing, slowly increasing, less than exponentially increasing, and
no condition. All of the conditions are expressed in terms of the norms chosen
in (4.16), and the naturality of the definitions depends on Theorem 4.17. We
could also insert our Hilbert space XHilb in the middle of the list (between
X∞ andX−∞), corresponding to sequences in `2. I have not done this because
that sequence space does depend on the choice of XHilb.

Even the spaces XK and X−K carry natural complete locally convex
topologies (still given by the sequence structure); the representations of g and
K are continuous for these topologies. (The group G will not act on either of
them unless X is finite-dimensional.)

5 Real parabolic induction and the globalization functors

In order to get some feeling for the various globalization functors defined in
section 4, we are going to compute them in the setting of parabolically induced
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representations. Logically this cannot be separated from the definition of the
functors: the proof by Wallach and Casselman of Theorem 4.15 proceeds by
embedding arbitrary representations in parabolically induced representations,
and computing there. But we will ignore these subtleties, taking the results
of section 4 as established.

Throughout this section, G will be a real reductive group with Cartan
involution θ and maximal compact subgroup K, as in Definition 4.6. We want
to construct representations using parabolic subgroups of G, so the first prob-
lem is to say what a parabolic subgroup is. In part because of the possible
disconnectedness of G, there are several possible definitions. We want to take
advantage of the fact that the complexified Lie algebra g (cf. (4.9)) is a com-
plex reductive Lie algebra, for which lots of structure theory is available.

Definition 5.1. A real parabolic subgroup of the real reductive group G is
a Lie subgroup P ⊂ G with the property that p = Lie(P )C is a parabolic
subalgebra of g. Write

u = nil radical of p;

because this is an ideal preserved by all automorphisms of p as a real Lie
algebra, it is the complexification of an ideal u0 of p0. Let U be the connected
Lie subgroup of P with Lie algebra u0; it is a nilpotent Lie group, normal in
P .

This is the most liberal possible definition of real parabolic subgroup. The
most restrictive would require in addition that P be the normalizer of p (under
the adjoint action) in G.

The quotient Lie algebra p/u is reductive, and is always represented by a
subalgebra (a Levi factor) of p. But the Levi factor is not unique, and picking a
good one is often a slightly delicate matter. In the present setting this problem
is solved for us. Because θ is an automorphism of G, θP is another parabolic
subgroup. Define

(5.2) L = P ∩ θP,

a θ-stable Lie subgroup of G.

Proposition 5.3. Suppose P is a parabolic subgroup of the real reductive
group G, and L = P ∩ θP .

(1) The subgroups P , L, and U are all closed in G.
(2) Multiplication defines a diffeomorphism

L× U → P, (l, u) 7→ lu.

In particular, L ' P/U .
(3) L is a reductive subgroup of G, with Cartan involution θ|L.
(4) The exponential map is a diffeomorphism from u0 onto U .
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(5) Every element of G is a product (not uniquely) of an element of K and
an element of P : G = KP . Furthermore

P ∩K = L ∩K

is a maximal compact subgroup of L and of P . Consequently there are
diffeomorphisms of homogeneous spaces

G/P ' K/L ∩K, G/K ' P/L ∩K.

The first of these is K-equivariant, and the second P -equivariant.
(6) The map

K × (l0 ∩ s0)× U → G, (k,X, u) 7→ k · exp(X) · u

is an analytic diffeomorphism.

The last assertion interpolates between the Iwasawa decomposition (the
case when P is a minimal parabolic subgroup) and the Cartan decomposition
(the case when P is all of G, or more generally when P is open in G). We saw
in section 2 (after 2.5) an example of the diffeomorphism in (5), with G =
GL(n,C), P the Borel subgroup of upper triangular matrices, and K = U(n).
In this case L is the group of diagonal matrices in GL(n,C), and L ∩ K =
U(1)n.

How does one find parabolic subgroups? The easiest examples are “block
upper-triangular” subgroups of GL(n,R). I will assume that if you’ve gotten
this far, those subgroups are more or less familiar, and look only at more
complicated reductive groups.

It’s better to ask instead how to find the homogeneous spaces G/P , in
part because construction of representations by induction really takes place
on the whole homogeneous space and not just on the isotropy group P . A
good answer is that one begins with the corresponding homogeneous spaces
related to the complex Lie algebra g, and looks for appropriate orbits of G on
those spaces. We will give some more details about this approach in section
6; but here is one example.

Suppose p and q are non-negative integers, and n = p+ q. The standard
Hermitian form of signature (p, q) on Cn is

〈v, w〉p,q =

p∑

j=1

vjwj −

q∑

k=1

vp+kwp+k.

The group G = U(p, q) of complex linear transformations preserving this form
is a real reductive group, with maximal compact subgroup

(5.4)(a) K = U(p)× U(q).

The group G does not have obvious “block upper-triangular” subgroups; but
here is a way to make a parabolic. Fix a non-negative integer r ≤ p, q, and
define
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(5.4)(b) fj = ej + iep+j , gj = ej − iep+j (1 ≤ j ≤ r)

The subspace
Ir = span(f1, . . . , fr)

is an r-dimensional isotropic plane (for the form 〈v, w〉p,q), and so is its com-
plex conjugate

Ir = span(g1, . . . , gr).

Define

(5.4)(c) Pr = stabilizer of Ir in U(p, q);

this will turn out to be a parabolic subgroup of U(p, q). One checks easily that

θPr = stabilizer of Ir in U(p, q).

Writing Cp,q for Cn endowed with the Hermitian form 〈v, w〉p,q , we find a
natural vector space decomposition

Cp,q = Ir ⊕ Ir ⊕ Cp−r,q−r.

This decomposition provides an embedding

(5.4)(d) GL(r,C)× U(p− r, q − r) ↪→ U(p, q) :

a matrix g in GL(r,C) acts as usual on the basis {fj} of Ir , by tg−1 on the
basis {gj} of Ir, and trivially on Cp−r,q−r. Now it is easy to check that

(5.4)(e) Lr = Pr ∩ θPr = GL(r,C)× U(p− r, q − r).

(I will leave to the reader the problem of describing the group Ur explicitly.
As a hint, my calculations indicate

dimUr = r(2[(p − r) + (q − r)] + r).

If my calculations are incorrect, please disregard this hint.)
The example shows that

(5.4)(f) G/Pr ' r-dimensional isotropic subspaces of Cp,q .

As r varies from 1 to min(p, q), we get in this way all the maximal proper
parabolic subgroups of U(p, q). Smaller parabolic subgroups can be con-
structed directly in similar ways, or by using the following general structural
fact.

Proposition 5.5. Suppose G is a real reductive group and P = LU is a
parabolic subgroup. Suppose QL = MLNL is a parabolic subgroup of L. Then

Q = QLU = ML(NLU)

is a parabolic subgroup of G, with Levi factor ML and unipotent radical N =
NLU . This construction defines a bijection

parabolic subgroups of L↔ parabolic subgroups of G containing P .
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If you believe that the Pr are all the maximal parabolics in U(p, q), and if
you know about parabolic subgroups of GL(r,C), then you see that the conju-
gacy classes of parabolic subgroups of U(p, q) are parametrized by sequences
(possibly empty) r = (r1, . . . , rs) of positive integers, with the property that

r =
∑

rj ≤ min(p, q).

The Levi subgroup Lr of Pr is

Lr = GL(r1,C)× · · · ×GL(rs,C)× U(p− r, q − r).

Parallel analyses can be made for all the classical groups (although the possi-
bilities for disconnectedness can become quite complicated).

We turn now to representation theory.

Definition 5.6. Suppose P = LU is a parabolic subgroup of the reductive
group G. A representation (τ, Y ) of P is called admissible if its restriction to
L is admissible (Definition 4.12). In this case the Harish-Chandra module of
Y is the (p, L ∩K)-module Y L∩K of L ∩K-finite vectors in Y .

The notation here stretches a bit beyond what was defined in section 4,
but I hope that is not a serious problem. The easiest way to get admissible
representations of P is from admissible representations of L, using the isomor-
phism L ' P/U . That is, we extend a representation of L to P by making U
act trivially. Any irreducible admissible representation of P is of this form. On
any admissible representation (τ, Y ) of P , the group U must act unipotently,
in the following strong sense: there is a finite chain

0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y

of closed P -invariant subspaces, with the property that U acts trivially on
each subquotient Yi/Yi−1. One immediate consequence is that the action of
U is analytic on all of Y , so that (for example) the P -analytic vectors for Y
are the same as the L-analytic vectors.

The main reason for allowing representations of P on which U acts non-
trivially is for the Casselman-Wallach proof of Theorem 4.17. They show that
(for P minimal) any admissible representation of G can be embedded in a
representation induced from an admissible representation of P . This statement
is not true if one restricts to representations trivial on U .

So how do we pass from a representation of P to a representation of G?
Whenever G is a topological group, H a closed subgroup, and (τ, Y ) a repre-
sentation of H , the induced representation of G is defined on a space like

(5.7)(a) X = {f : G→ Y | f(xh) = τ(h)−1f(x) (x ∈ G, h ∈ H)}.

The group G acts on such functions by left translation:

(5.7)(b) (π(g)f)(x) = f(g−1x).



Unitary Representations and Complex Analysis 31

To make the definition precise, one has to decide exactly which functions to
use, and then to topologize X so as to make the representation continuous.
Depending on exactly what structures are available on G, H , and Y , there are
many possibilities: continuous functions, smooth functions, analytic functions,
measurable functions, integrable functions, distributions, and many more.

To be more precise in our setting, let us fix

(5.8)(a) Y L∩K = admissible (p, L ∩K)-module;

by “admissible” we mean that Y L∩K should have finite length as an (l, L∩K)-
module. The theory of globalizations in section 4 extends without difficulty
to cover admissible (p, L ∩K)-modules. This means first of all that Y L∩K is
the Harish-Chandra module of an admissible Hilbert space representation

(5.8)(b) (τHilb , Y Hilb).

Using this Hilbert space representation, we can construct the subrepresen-
tations of smooth and analytic vectors, and dually the distribution and hy-
perfunction vectors (duals of the smooth and analytic vectors in a Hilbert
globalization of Y L∩K,dual). In the end, just as in (4.24), we have

(5.8)(c) Y L∩K ⊂ Y ω ⊂ Y∞ ⊂ Y Hilb ⊂ Y −∞ ⊂ Y −ω ⊂ Y −L∩K .

These are complete locally convex topological vector spaces; the inclusions are
continuous with dense image. All but the first and last carry irreducible rep-
resentations of P , which we denote τω , etc. When Y L∩K is finite-dimensional
(as is automatic for P minimal), all of these spaces are the same.

We now want to use these representations of P and the general idea of
(5.7) to construct representations of G. That is, we want to begin with one of
the representations Y of (5.8)(a), and define an appropriate space of functions

(5.9)(a) X = {f : G→ Y | f(xp) = τ(p)−1f(x) (x ∈ G, p ∈ P}.

What we will use constantly is Proposition 5.3(5). This provides an identifi-
cation

(5.9)(b) X ' {f : K → Y | f(kl) = τ(l)−1f(k) (k ∈ K, l ∈ L ∩K}.

The description of X in (5.9)(a) is called the “induced picture”; we may write
Xind to emphasize that. The description in (5.9)(b) is the “compact picture,”
and may be written Xcpt. The great advantage of the first picture is that
the action of G (by left translation) is apparent. The great advantage of the
second is that many questions of analysis come down to the compact groupK.
Eventually we will need to understand at least the action of the Lie algebra g

in the compact picture; a formula appears in (5.14)(d). For the moment, notice
that an element of Xind is continuous (respectively measurable) if and only if
the corresponding element of Xcpt is continuous (respectively measurable). If
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the representation τ is smooth (respectively analytic), then the same is true
of smooth (respectively analytic) functions.

The classical setting for induction is unitary representations. In the setting
of (5.7), suppose Y is a Hilbert space, with Hilbert space norm ‖·‖Y preserved
by H . We will choose the space X in (5.7)(a) to consist of certain measurable
functions from G to Y . If f is such a function, then

(5.10)(a) g 7→ ‖f(g)‖Y

is a non-negative real-valued measurable function on G. Because of the trans-
formation law on f imposed in (5.7)(a), this function is actually right-invariant
under H :

(5.10)(b) ‖f(gh)‖Y = ‖f(g)‖Y (g ∈ G, h ∈ H)

We want to find a Hilbert space structure on some of these functions f . A
natural way to do that is to require ‖f(g)‖Y to be square-integrable in some
sense. Because of the H-invariance in (5.9)(b), what is natural is to integrate
over the homogeneous space G/H . That is, we define a Hilbert space norm
on these functions by

(5.10)(c) ‖f‖2X =

∫

G/H

‖f(g)‖2Y dg.

Here dg is some measure on G/H ; the integrand is actually a function on
G/H by (5.10)(b). The Hilbert space for the G representation is then

(5.10)(d) X = {f as in (5.7)(a) measurable, ‖f‖X <∞}.

The group G will preserve this Hilbert space structure (that is, the represen-
tation will be unitary) if dg is a G-invariant measure.

Let us see how to use this idea and our Hilbert space representation Y Hilb

of P to construct a Hilbert space representation of G. There are two difficul-
ties. First, the representation Y Hilb need not be unitary for P , so (5.10)(b)
need not hold: the function ‖f(g)‖Y Hilb need not descend to G/P . Second,
the homogeneous space G/P carries no nice G-invariant measure (unless P is
open in G); so we cannot hope to get a unitary representation of G even if
τHilb is unitary.

Mackey found a very general way to address the second problem, essentially
by tensoring the representation τ by a certain one-dimensional character of P
defining the bundle of “half-densities” on G/P . This is the source of a strange
exponential term (for example the “ρ” in section VII.1 of [Kna86]) in many
formulas for induced representations. There is a long-winded explanation in
Chapter 3 of [Vog87]. Because we will not be using parabolic induction to
construct unitary representations, we will ignore this problem (and omit the
“ρ” from the definition of parabolic induction). If the action of G changes the
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measure dg in a reasonable way, we can still hope that G will act by bounded
operators on the Hilbert space of (5.10)(d).

The first problem is more serious, since it seems to prevent us even from
writing down an integral defining a Hilbert space. The function we want to
integrate is defined on all of G, but it is dangerous to integrate over G: if
the representation of P were unitary, the function would be constant on the
cosets of P , so the integral (at least with respect to Haar measure on G) would
not converge. This suggests using instead of Haar measure some measure on
G that decays at infinity in some sense. (One might at first be tempted to
use the delta function, assigning the identity element of G the measure 1 and
every other element the measure zero. This certainly takes care of convergence
problems, but this measure behaves so badly under translation by G that G
fails to act continuously on the corresponding Hilbert space).

A reasonable resolution is hiding in Proposition 5.3(5).

Proposition 5.11. Suppose P is a parabolic subgroup of the real reductive
group G, and (τHilb , Y Hilb) is an admissible representation of P on a Hilbert
space. Define

XHilb
cpt = {f : K → Y Hilb measurable |

f(kl) = τ(l)−1f(k),

∫

K

‖f(k)‖2Y Hilbdk <∞}.

Here dk is the Haar measure on K of total mass 1; the norm on XHilb
cpt is the

square root of the integral in the definition. Define XHilb
ind to be the correspond-

ing space of functions on G, using the identification in (5.9). Then XHilb
ind is

preserved by left translation by G. The corresponding representation πHilb of
G is continuous and admissible; its restriction to K is unitary.

It may seem strange that we have obtained a unitary representation of
K even though we did not assume that τHilb was unitary on L ∩ K. This
is possible because we have integrated over K rather than over K/L ∩ K.
If we apply this proposition with P = G (so that τHilb is a representation
of G), then XHilb = Y Hilb as a topological vector space, but the Hilbert
space structures ‖ · ‖2Y Hilb and ‖ · ‖2XHilb are different: the latter is obtained
by averaging the former over K.

We now have a Hilbert space globalization of a Harish-Chandra module
for G, so the machinery of section 4 can be applied. To begin, it is helpful to
write down the Harish-Chandra module for G explicitly. This is

(5.12)(a) XK = {f : G→ Y Hilb | f(xp) = τ(p)−1f(x), and f left K-finite}.

In order to understand this as a vector space, it is most convenient to use the
“compact picture” of (5.9)(b):
(5.12)(b)

XK
cpt = {f : K → Y Hilb | f(kl) = τ(l)−1f(k), and f left K-finite}.
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Now a function f in XK
cpt can transform on the left according to a representa-

tion µ of K only if it transforms on the right according to representations of
L ∩K appearing in the restriction of the dual of µ. It follows that the func-
tions in XK

cpt must take values in Y L∩K . (This is not true of the corresponding
functions in the induced picture (5.12)(a).) Therefore
(5.12)(c)

XK
cpt = {f : K → Y L∩K | f(kl) = τ(l)−1f(k), and f left K-finite}.

As in (5.9), the drawback of this description of XK is that the action of the
Lie algebra g is not as clear as in (5.12)(a).

We turn next to the determination of X∞, the space of smooth vectors in
XHilb. Recall that “smooth” refers to the differentiability of the action of G,
not directly to smoothness as functions on G. What is more or less obvious
(from standard theorems saying that functions on compact manifolds with
lots of L2 derivatives are actually smooth) is this:

f ∈ XHilb
cpt is smooth for the representation of K if and only if(5.13)(a)

it is smooth as a function on K with values in Y Hilb.

Smoothness of a function on K may be tested by differentiating by Lie algebra
elements either on the left or on the right. Because of the transformation
property imposed under L ∩ K on the right, it therefore follows that the
K-smooth vectors in XHilb must take values in Y∞:
(5.13)(b)
XHilb,K-smooth = {f : K → Y∞ | f(kl) = τ(l)−1f(k), and f smooth on K}.

(Implicitly there is a Fréchet topology here, with seminorms like

sup
k∈K

ν(λ(u) · f);

here u ∈ U(k) is acting by differentiation on the left (this is λ), and ν is a
seminorm defining the topology of Y ∞.) We will show that XHilb,K-smooth is
precisely the set of smooth vectors of XHilb. In order to do that, we must show
that the left translation action of G on this space (as a subspace of XHilb) is
smooth. This means that we need to describe explicitly the action of the Lie
algebra g in the compact picture.

So suppose Z ∈ g. The action of Z is by differentiation on the left:

(5.14)(a) dπ(Z)f = λ(Z)f (f ∈ XHilb).

Now differentiation on the left by an element Z of the Lie algebra (which we
have written λ(Z)) is related to differentiation on the right (written ρ(Z)) by
the adjoint action:

(5.14)(b) [λ(Z)f ](g) = [ρ(−Ad(g−1)Z)f ](g).
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We are interested in the restriction of f to K. By Proposition 5.3(6), any Lie
algebra element W ∈ g has a unique decomposition

(5.14)(c) W = Wk +Wp, (Wk ∈ k,Wp ∈ l ∩ s + u ⊂ p.

We apply this decomposition to the element −Ad(k−1)Z in (5.14)(b), and
use the transformation property of f on the right under τ . The conclusion is

(5.14)(d) [dπ(Z)f ](k) = [ρ((−Ad(k−1)Z))kf ](k) + [dτ(Ad(k−1)Z))p(f(k))].

This is a kind of first order differential operator on functions on K with values
in Y : the first term is a first derivative, and the second (zeroth order) term is
just a linear operator on the values of f . We can if we like move the derivative
back to the left:
(5.14)(e)
[dπ(Z)f ](k) = [λ(Ad(k)(((−Ad(k−1)Z))k)f ](k) + [dτ(Ad(k−1)Z))p(f(k))].

The space of K-smooth vectors in XHilb was defined by seminorms in-
volving the left action of U(k), which is analogous to constant coefficient dif-
ferential operators. We have seen in (5.14)(e) that the action of g is given by
something like variable coefficient differential operators on K. Because the co-
efficient functions are smooth and bounded on K, this proves that the action
of G on the K-smooth vectors of XHilb is in fact differentiable. That is,

(5.15)(a) X∞ = {f : K → Y∞ | f(kl) = τ(l)−1f(k), f smooth on K}.

A parallel argument identifies the analytic vectors

(5.15)(b) Xω = {f : K → Y ω | f(kl) = τ(l)−1f(k), f analytic on K}.

Finally, there are the distribution and hyperfunction globalizations to con-
sider. Each of these requires a few more soft analysis remarks. For example,
if V is reflexive topological vector space with dual space V ∗, then the space
of “generalized functions” on a manifold M with values in V is by definition

C−∞(M,V ) = [C∞
c (M,V ∗ ⊗ (densities on M))]∗,

the topological dual of the space of compactly supported smooth “test densi-
ties” on M with values in V ∗. (Topologies on the dual space are discussed in
section 8; we will be interested most of all in the strong dual topology.) We
can then define
(5.15)(c)
X−∞ = {f : K → Y −∞ | f(kl) = τ(l)−1f(k), f generalized function on K}.

This is the Casselman-Wallach distribution globalization of X . Similarly, we
can make sense of
(5.15)(d)

X−ω = {f : K → Y −ω | f(kl) = τ(l)−1f(k), f hyperfunction on K},
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Schmid’s maximal globalization of X . We have in the end a concrete version
of (4.24):

(5.16)(a) XK ⊂ Xω ⊂ X∞ ⊂ XHilb ⊂ X−∞ ⊂ X−ω ⊂ X−K .

This time each space may be regarded as “functions” on K with values in
Y −L∩K , with weakening conditions on the functions: first K-finite, then ana-
lytic, then smooth, then L2, then distribution-valued, and so on. (Beginning
with X−∞, these are not literally “functions” on K.) It is natural and conve-
nient to write
(5.16)(b)

XK = (IndG
P )K(Y ), Xω = (IndG

P )ω(Y ), X∞ = (IndG
P )∞(Y ),

and so on.

6 Examples of complex homogeneous spaces

In this section we will begin to examine the complex homogeneous spaces
for reductive groups that we will use to construct representations. We are
going to make extensive use of the structure theory for complex reductive
Lie algebras, and for that purpose it is convenient to have at our disposal
a complex reductive group. (This means a complex Lie group that is also a
reductive group in the sense of Definition 4.6.)

Definition 6.1. A complexification of G is a complex reductive group GC,
endowed with a Lie group homomorphism

j : G→ GC,

subject to the following conditions.

(1) The map j has finite kernel.
(2) The corresponding Lie algebra map

dj : g0 → Lie(GC)

identifies g0 as a real form of Lie(GC). More explicitly, this means that

Lie(GC) = dj(g0)⊕ idj(g0),

with i the complex multiplication on the complex Lie algebra Lie(GC).
Using this, we identify Lie(GC) with the complexified Lie algebra g hence-
forth.

(3) The Cartan involutions of G and GC are compatible via the map j.



Unitary Representations and Complex Analysis 37

It is possible to construct a complexification that actually contains the
linear reductive group im(π) in Definition 4.6, so that j may be taken to be the
composition of an inclusion with the finite covering π. The complexification
of G is not unique, but the ambiguity will cause us no problems. If G is the
group of real points of a reductive algebraic group, we can of course take for
GC the group of complex points; this is perhaps the most important case.

We need notation for the maximal compact subgroup of GC. It is fairly
common to refer to this group as U (perhaps in honor of the case of U(n) ⊂
GL(n,C)). Since we will also be discussing parabolic subgroups and their
unipotent radicals, the letter U will not be convenient. So we will write

CG = maximal compact subgroup of GC.

Hypothesis (3) in Definition 6.1 guarantees that

K = CG ∩G.

The complex homogeneous spaces we want will be coverings of (certain)
open orbits of G on (certain) complex homogeneous spaces for GC. Here first
are the homogeneous spaces for GC that we want.

Definition 6.2. In the setting of (6.1), a partial flag variety for GC is a
homogeneous space

X = GC/QC,

with QC a parabolic subgroup of GC (Definition 5.1). (Recall that this means

q = Lie(QC) ⊂ Lie(GC) = g

is a parabolic subalgebra.) It will sometimes be helpful to write

Qmax
C = {g ∈ GC | Ad(g)q = q},

Qmin
C = connected subgroup with Lie algebra q

= identity component of Qmax
C .

It follows from standard structure theory for complex groups that

Qmax
C ∩ identity component of GC = Qmin

C .

Each element of the partial flag variety Xmin = GC/Q
max
C

may be identified
with a parabolic subalgebra of g, by

gQmax
C 7→ Ad(g)(q).

Each element of Xmax = GC/Q
min
C

may be identified with a pair consisting
of a parabolic subalgebra of g and a connected component of GC.

Write LC for the Levi factor of QC defined in Definition 5.1, and



38 David A. Vogan, Jr

CL = CG ∩QC.

Then Proposition 5.3(5) says that

X = CG/CL,

a compact homogeneous space for CG.

Theorem 6.3. (Wolf [Wol69]). Suppose GC is a complexification of the real
reductive group G, and

X = GC/QC = CG/CL

is a partial flag variety for GC (Definition 6.2). Then X is a compact complex
manifold. The group G acts on X with finitely many orbits; so the finitely
many open orbits of G on X are complex homogeneous spaces for G.

Up to covering, the spaces on which we wish to construct representations
of G are certain of these open orbits. It remains to say which ones. For that,
it is helpful to think about what an arbitrary G orbit on X can look like. We
may as well look only at the orbit of the base point eQC. This G-orbit is

(6.4)(a) G · (eQC) ' G/H, (H = G ∩QC).

Let us compute the Lie algebra of the isotropy group. Write bar for the com-
plex conjugation defining the real form g0 = Lie(G) of g:

(6.4)(b) A+ iB = A− iB (A,B ∈ g0).

Then bar is an involutive automorphism of g, with fixed points g0. It follows
that q is another parabolic subalgebra of g, and that the complexified Lie
algebra h of H is

(6.4)(c) h = q ∩ q.

So understanding h means understanding the intersection of the two parabolic
subalgebras q and q. The key to analyzing this in general is the fact that the
intersection of any two parabolic subalgebras must contain a Cartan subalge-
bra; this is essentially equivalent to the Bruhat decomposition. (In our case it
is even true that the intersection of q and q must contain the complexification
of a Cartan subalgebra of g0; but we will not use this.) Once one has chosen
a Cartan in both parabolics, the analysis of the intersection comes down to
combinatorics of sets of roots. There are many interesting possibilities, but we
will be looking only at two extreme cases. One extreme is q = q. In this case
H is a real parabolic subgroup of G. This is the case we looked at in section
5. The following definition describes the opposite extreme. (The terminology
“nice” is entirely artificial, and not to be taken seriously.)
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Definition 6.5. Suppose G is a real reductive group with complexified Lie
algebra g. A parabolic subalgebra q ⊂ g is called nice if q∩q is a Levi subalgebra
l of q. In this case the group

Lmax = {g ∈ G | Ad(g)q) = q} = j−1(Qmax
C )

is a real reductive subgroup of G. The G orbit

Xmin
0 = G · (eQC) ' G/Lmax ⊂ GC/Q

max
C = Xmin

is open, and therefore inherits a G-invariant complex structure.
Define

Lmin = identity component of Lmax.

A real Levi factor for q is by definition any subgroup L such that Lmin ⊂ L ⊂
Lmax. A measurable complex partial flag variety for G is by definition any
homogeneous space X = G/L, endowed with the complex structure pulled back
by the covering map

X0 = G/L→ G/Lmax = Xmin
0 ⊂ Xmin.

(An explanation of the term “measurable” may be found in [Wol69].)
We say that q is very nice if it is nice, and in addition q is preserved by

the complexified Cartan involution θ. In this case every real Levi factor L is
also preserved by θ, so that L ∩K is a maximal compact subgroup of L.

Obviously the condition of being “nice” is constant on Ad(G)-orbits of
parabolic subalgebras. It turns out that every nice parabolic subalgebra is
conjugate by Ad(G) to a very nice one; so we may confine our attention to
those.

If G is a compact group, then every parabolic subalgebra q of g is very
nice, and measurable complex partial flag varieties for G are exactly the same
thing as partial flag varieties for the (canonical) complexification of G. We
will begin to look at some noncompact examples in a moment.

Proposition 6.6. Suppose G is a real reductive group, and q is a very nice
parabolic subalgebra of g (Definition 6.5). Let L be a real Levi factor for q, so
that

X0 = G/L

is a measurable complex partial flag variety for G. Then L ∩K is a real Levi
factor for the (automatically nice) parabolic subalgebra q ∩ k of k, so

Z = K/L ∩K

is a (compact partial) flag variety for K and for KC. The inclusion

Z = K/L ∩K ↪→ G/L = X0

is holomorphic, and meets every connected component of X0 exactly once.
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We turn now to some examples for classical groups. Recall from section
2 that a classical complex group GC is a group of linear transformations of
Cn, perhaps preserving some standard symmetric or skew-symmetric bilinear
form. A real form G is the subgroup defined by some kind of reality condition
on the matrices. Just as we saw in section 2 for complete flag varieties, a
partial flag variety for GC will be a space of partial flags in Cn, subject to
some conditions involving the bilinear form defining the group. We need to
analyze the orbits of G on such flags, which is usually a matter of linear
algebra.

Here is an example. Suppose G = GL(n,R) and GC = GL(n,C). A partial
flag variety for GC is determined by a collection m of integers

(6.7)(a) 0 = m0 < m1 < · · · < mr = n.

The variety Xm is the collection of all possible partial flags

(6.7)(b) Xm = {F = (Fj) | 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = Cn, dimFj = mj}.

Here each Fj is a linear subspace of Cn. There is a standard flag F std, with

(6.7)(c) F std
j = Cmj ⊂ Cn,

embedded in the first mj coordinates. The group GC acts transitively on Xm;
the isotropy group at the base point F std consists of block upper triangular
matrices

(6.7)(d) P std
r

=







A1 ∗ ∗

0
. . . ∗

0 0 Ar


 | Aj ∈ GL((mj −mj−1),C)




.

So how does one understand the orbits of GL(n,R) on this space? If F is
a flag of type m, then so is F . (If W is a subspace of Cn, then W consists of
all the complex conjugates of vectors in W .) The collection of dimensions

(6.7)(e) dimC(Fj ∩ F k)

is obviously constant on GL(n,R) orbits in Xm; and it is not very hard to
show that these invariants specify theGL(n,R) orbits completely. It is also not
so difficult to describe exactly what sets of dimensions are possible. Roughly
speaking, the open orbits of GL(n,R) should be “generic,” and so should be
characterized by having all the dimensions in (6.7)(e) as small as possible. It
is an excellent exercise for the reader to work this out in detail for complete
flags; the conclusion in that case is that the GL(n,R) orbits correspond to
elements of order 2 in the symmetric group Sn. (For complete flags in general
split real groups G, there is a surjective map from G orbits to elements of
order 2 in the Weyl group, but the map can have non-trivial fibers.)

We will analyze instead the much simpler case



Unitary Representations and Complex Analysis 41

(6.8)(a) m = (0,m, n).

In this case

(6.8)(b) Xm = {F ⊂ Cn | dimF = m}

is the Grassmann variety of m-planes in Cn. The unique invariant of a
GL(n,R) orbit on Xm is the integer

(6.8)(c) r = dim(F ∩ F ) ≤ m.

The integer r is a measure of the “reality” of F : F is the complexification
of a real subspace if and only if r = m. The GL(n,R) orbit corresponding
to r = m is the real Grassmann variety of m-planes in Rn, and the isotropy
groups are examples of the real parabolic subgroups studied in section 5.

We are interested now in the opposite case, when r is as small as possible.
How small is that? The constraint comes from the fact that dim(F +F ) ≤ n.
The sum has dimension 2m − r, so we find 2m − r ≤ n, or equivalently
r ≥ 2m− n. The conclusion is that possible values of r are

(6.8)(d) min(0, 2m− n) ≤ r ≤ m.

The unique open orbit of GL(n,R) onXm corresponds to the smallest possible
value of r; it is

(6.8)(e) Xm,0 = {F ⊂ Cn | dimF = m, dim(F ∩ F ) = min(0, 2m− n)},

a complex homogeneous space for GL(n,R).
For definiteness, let us now concentrate on the case

(6.8)(f) 2m ≥ n.

In this case we are looking at subspaces F ⊂ Cn such that

(6.8)(g) 0 ⊂ F ∩ F︸ ︷︷ ︸
dimension 2m − n

⊂ F︸︷︷︸
dimension m

⊂ F + F = Cn.

Let us now look at the corresponding parabolic subalgebra q, the stabilizer of
F . We can choose a basis of Cn so that

F ∩ F = span of middle 2m− n basis vectors(6.8)(h)

F = span of first m basis vectors

F = span of last m basis vectors

In these coordinates, we compute

q =







∗ ∗ ∗
∗ ∗ ∗
0 0 ∗






 , q =







∗ 0 0
∗ ∗ ∗
∗ ∗ ∗






 .



42 David A. Vogan, Jr

Here the blocks correspond to the first n−m, middle 2m−n, and last n−m
coordinates. The intersection of these two parabolic subalgebras is

q ∩ q =







∗ 0 0
∗ ∗ ∗
0 0 ∗






 .

The nil radical of this Lie algebra is








0 0 0
∗ 0 ∗
0 0 0






 ,

which has dimension 2(n−m)(2m− n). It follows that q ∩ q is not reductive
when n/2 < m < n: in these cases, the complex homogeneous space Xm,0 is
not “measurable” in the sense of Definition 6.5. (The same conclusion applies
to the cases 0 < m < n/2.)

We now look more closely at the case n = 2m. Recall that a complex
structure on a real vector space V is a linear map J such that J2 = −I .

Proposition 6.9. Suppose n = 2m is a positive even integer. Define

X = Xm,0 = {F ⊂ C2m | dimF = m, F ∩ F = 0}.

Then X is a measurable complex partial flag variety for GL(2m,R). Its points
may be identified with complex structures on R2m; the identification sends a
complex structure J to the +i-eigenspace of J acting on (R2m)C = C2m.

The isotropy group at a subspace F corresponding to the complex structure
JF consists of all linear automorphisms of R2m commuting with the complex
structure JF ; that is, of complex-linear automorphisms of the corresponding
m-dimensional complex vector space. In particular, if we choose as a base
point of Xm,0 the standard complex structure, then the isotropy group is

L = GL(m,C) ⊂ GL(2m,R).

This base point is “very nice” in the sense of Definition 6.5. The corre-
sponding O(n) orbit is

Z = O(2m)/U(m)︸ ︷︷ ︸
dimC=(m2−m)/2

⊂ GL(2m,R)/GL(m,C) = X︸ ︷︷ ︸
dimC=m2

.

This compact subvariety consists of all orthogonal complex structures on R2m

(those for which multiplication by i preserves length).

We conclude this section with an easier example: the case of U(p, q). We
begin with non-negative integers p and q, and write n = p + q. There is a
standard Hermitian form
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(6.10)(a) 〈v, w〉p,q =

p∑

i=1

viwi −

q∑

j=1

vp+jwp+j

of signature (p, q) on Cn. The indefinite unitary group of signature (p, q) is
(6.10)(b)

U(p, q) = {g ∈ GL(n,C) | 〈g · v, g · w〉p,q = 〈v, w〉p,q (v, w ∈ Cn)}

Just as in the case of U(n), it is easy to check that every n×n complex matrix
Z can be written uniquely as Z = A + iB, with A and B in Lie(U(p, q)). It
follows that GL(n,C) is a complexification ofG. Let us fix a partial flag variety
Xm as in (6.7), and try to understand the orbits of U(p, q) on Xm. Consider
a flag F = (Fj) in Xm. The orthogonal complement F⊥

k (with respect to the
form 〈·.·〉p,q) is a subspace of dimension n − mk; we therefore get a partial
flag consisting of the subspaces Fj ∩ F

⊥
k inside Fj . The dimensions of these

subspaces are invariants of the U(p, q) orbit of F . We are interested in open
orbits, where the dimensions are as small as possible. The minimum possible
dimensions are

(6.10)(c) dimFj ∩ F
⊥
k =

{
mj −mk, k ≤ j

0, j ≤ k.

Looking in particular at the case k = j, we see that on an open orbit, Fj∩F
⊥
j =

0. This means that the restriction of 〈·.·〉p,q to Fj will be a non-degenerate
Hermitian form, which will therefore have some signature (p(Fj), q(Fj)) =
(pj , qj). These non-negative integers must satisfy the conditions
(6.10)(d)
pj+qj = mj , 0 = p0 ≤ p1 ≤ · · · ≤ pr = p, 0 = q0 ≤ q1 ≤ · · · ≤ qr = q.

These sequences (p,q) are invariants of the U(p, q) orbit of F . Conversely, if
F ′ is any other flag giving rise to the same sequence of signatures, then it is
easy to find an element of U(p, q) carrying F to F ′. The following proposition
summarizes this discussion, and some easy calculations.

Proposition 6.11. Suppose Xm is a partial flag variety for GL(n,C) as in
(6.7). The open orbits of U(p, q) on Xm are in one-to-one correspondence with
pairs of sequences (p,q) as in (6.10)(d). Write Xp,q for the corresponding
orbit. Each of these orbits is measurable (Definition 6.5). The corresponding
real Levi factor (Definition 6.5) is isomorphic to

r∏

j=1

U(pj − pj−1, qj − qj−1).

The orbit of K = U(p)× U(q) through a very nice point is isomorphic to

U(p)/

r∏

j=1

U(pj − pj−1)


×


U(q)/

r∏

j=1

U(qj − qj−1)


 ' Xp ×Xq.

This is a compact complex subvariety of Xp,q.
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7 Dolbeault cohomology and maximal globalizations

The central idea in these notes is this: we want to construct representations of
a real reductive group G by starting with a measurable complex flag variety
X = G/L (Definition 6.5) and using G-equivariant holomorphic vector bun-
dles on X . For G compact connected, the Borel-Weil theorem (Theorem 2.3)
says that all irreducible representations of G arise in this way, as spaces of
holomorphic sections of holomorphic line bundles. In order to get some feeling
for what to expect about noncompact groups, we look first at the example of
U(1, 1). In the language of Proposition 6.11, let us take r = 2 and consider
the complete flag variety for GL(2,C), corresponding to

(7.1)(a) m = (0, 1, 2).

Explicitly, Xm is just the projective space CP1 of lines in C2. We identify

(7.1)(b) (C ∪∞) ' Xm, z 7→ line through

(
1
z

)

We consider the open U(1, 1) orbit Xp,q with

p = (0, 1, 1), q = (0, 0, 1).

Explicitly, these are the lines in C2 on which the Hermitian form 〈·.·〉1,1 is
strictly positive. Because

〈

(
1
z

)
,

(
1
z

)
〉1,1 = 1− |z|2,

it follows that the identification of (7.1)(b) gives

(7.1)(c) Xp,q ' {z ∈ C | |z| < 1},

the unit disc. The action of U(1, 1) on the disc is by linear fractional trans-
formations as in (3.2); the reason is

(
α β

β α

) (
1
z

)
=

(
βz + α
αz + β

)
= c ·

(
1

(αz + β)/(βz + α)

)
.

The standard base point is the origin z = 0, where the isotropy group is
U(1)×U(1). It follows that equivariant holomorphic line bundles on Xp,q are
in one-to-one correspondence with characters

(7.1)(d) µ = (m1,m2) ∈ (U(1)× U(1))̂' Z2.

Write Lµ for the holomorphic line bundle corresponding to µ. Because µ
extends to a holomorphic character of the group of complex upper triangular
matrices, Lµ extends to a GL(2,C)-equivariant holomorphic line bundle on
the Riemann sphere Xm.
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The most straightforward analogy with the Borel-Weil theorem suggests
defining

(7.1)(e) Hµ = holomorphic sections of Lµ.

If we endow this space with the topology of uniform convergence on compact
sets, then it is a complete topological vector space, and the action πµ of
G = U(1, 1) by left translation is continuous.

Proposition 7.2. The representation πµ of U(1, 1) is always infinite-dimen-
sional. It is irreducible unless µ is antidominant; that is, unless m1 ≤ m2.
If µ is antidominant, there is exactly one proper closed G-invariant subspace:
the (m2−m1 + 1)-dimensional space of sections extending holomorphically to
the entire Riemann sphere Xm.

Here are some hints about proofs. Any holomorphic line bundle on the
disc is holomorphically (although not equivariantly!) trivial, so the space of
sections may be identified with holomorphic functions on the disc; this is
certainly infinite-dimensional. For µ anti-dominant, Theorem 2.3 provides a
finite-dimensional subspace of sections extending to the Riemann sphere. The
dimension calculation is a standard fact about U(2), and the invariance of
this subspace is clear.

For the remaining assertions, examining Taylor series expansions shows
that every U(1) × U(1) weight of Hµ is of the form (m1 + k,m2 − k), with
k a non-negative integer; and that each of these weights has multiplicity one.
Now one can apply facts about Verma modules for gl(2) to finish.

Proposition 7.2 is a bit discouraging with respect to the possibility of
extending Theorem 2.3 to noncompact groups. The case of U(2, 1) is even
worse. Let us look at

(7.3)(a) m = (0, 1, 2, 3), p = (0, 1, 1, 2), q = (0, 0, 1, 1).

Then Xp,q consists of complete flags F with the property that the Hermitian
form is positive on F1 and of signature (1, 1) on F2. The isotropy group at the
standard base point is U(1)3, and its characters are given by triples

(7.3)(b) µ = (m1,m2,m3) ∈ Z3

Write Lµ for the corresponding equivariant holomorphic line bundle on
Xp,q (which automatically extends to be GL(3,C)-equivariant on Xm) and
(πµ, Hµ) for the representation of U(2, 1) on its space of holomorphic sections.

Proposition 7.4. In the setting of (7.3), the representation πµ of U(2, 1) is
zero unless µ is antidominant; that is, unless m1 ≤ m2 ≤ m3. In that case
it is finite-dimensional, and all holomorphic sections extend to the full flag
variety Xm.
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Again one can use Taylor series to relate the Harish-Chandra module of
Hµ to a highest weight module. What one needs to know is that if V is an
irreducible highest weight module for gl(3), and the non-simple root gl(2)
subalgebra acts in a locally finite way, then V is finite-dimensional. Again we
omit the details.

The behavior in Proposition 7.4 is typical. Holomorphic sections of vector
bundles on measurable complex partial flag varieties rarely produce anything
except finite-dimensional representations of G. One way to understand this
is that the varieties fail to be Stein, so we should not expect to understand
them looking only at holomorphic sections: we must also consider “higher
cohomology.” We begin with a brief review of Dolbeault cohomology.

Suppose X is a complex manifold, with complexified tangent bundle TCX .
The complex structure on X provides a decomposition

(7.5)(a) TCX = T 1,0 ⊕ T 0,1

into holomorphic and antiholomorphic tangent vectors. These may be under-
stood as the +i and −i eigenspaces of the complex structure map J (defining
“multiplication by i” in the real tangent space.) The two subspaces are in-
terchanged by complex conjugation. The space T 0,1 consists of the tangent
vectors annihilating holomorphic functions: the Cauchy-Riemann equations
are in T 0,1.

There is a terminological dangerous bend here. One might think that a
smooth section of T 1,0 should be called a “holomorphic vector field,” but in
fact this terminology should be reserved only for holomorphic sections (once
those are defined). We will call a smooth section a vector field of type (1, 0).
On C, the vector field

x
∂

∂z
=
x

2

(
∂

∂x
− i

∂

∂y

)

is of type (1, 0), but is not holomorphic. If we replace the coefficient function
x by 1 (or by any holomorphic function), we get a holomorphic vector field.

Write

Am = complex-valued differential forms of degree m on X ,(7.5)(b)

=
∑

p+q=m

Ap,q .

Here Ap,q consists of differential forms that vanish on sets of p′ type (1, 0)
vector fields and q′ type (0, 1) vector fields unless p′ = p and q′ = q. The de
Rham differential

d : Am → Am+1

satisfies

(7.5)(c) d(Ap,q) ⊂ Ap+1,q ⊕Ap,q+1.
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This follows by inspection of the formula

dω(Y0, . . . , Ym) =

m∑

i=0

(−1)iYi · ω(Y0, . . . , Ŷi, . . . , Ym)

+
∑

i<j

(−1)i+jω([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Ym),

and the fact the Lie bracket of two type (1, 0) (respectively type (0, 1)) vector
fields is type (1, 0) (respectively type (0, 1)). Now the decomposition in (7.5)(c)
allows us to write d = ∂ + ∂, with

(7.5)(d) ∂ : Ap,q → Ap+1,q , ∂ : Ap,q → Ap,q+1

The fact that d2 = 0 implies that

(7.5)(e) ∂2 = ∂
2

= 0, ∂∂ + ∂∂ = 0.

If we try to write explicit formulas for ∂ and ∂, the only difficulty arises
from terms involving [Y, Z], with Y a vector field of type (1, 0) and Z of type
(0, 1). The bracket is again a vector field, so it decomposes as

[Y, Z] = [Y, Z]1,0 + [Y, Z]0,1.

The first summand will appear in a formula for ∂, and the second in a formula
for ∂. One way to avoid this unpleasantness is to notice that if Y is actually
a holomorphic vector field, then the first summand [Y, Z]1,0 is automatically
zero; one can take this as a definition of a holomorphic vector field on X . If
Z is antiholomorphic, then the second summand vanishes.

Here are the formulas that emerge.

Proposition 7.6. Suppose X is a complex manifold, ω ∈ Ap,q is a complex-
valued differential form of type (p, q) (cf. (7.5)), (Y0, . . . Yp) are holomorphic
vector fields, and (Z0, . . . , Zq) are antiholomorphic vector fields. Then

∂ω(Y0, . . . , Yp,Z) =

p∑

i=0

(−1)iYi · ω(Y0, . . . , Ŷi, . . . , Yp,Z)

+
∑

i<j

(−1)i+jω([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Yp,Z).

In this formula,
Z = Z1, . . . , Zq .

Similarly,

(−1)p∂ω(Y, Z1, . . . , Zq) =

q∑

i=0

(−1)iZi · ω(Y, Z1, . . . , Ẑi, . . . , Zq)

+
∑

i<j

(−1)i+jω(Y, [Zi, Zj ], Z0, . . . , Ẑi, . . . , Ẑj , . . . , Zq).
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Here
Y = Y1, . . . , Yp.

Definition 7.7. Suppose X is a complex manifold. The (p, q)-Dolbeault co-
homology of X is by definition

Hp,q(X) = (kernel of ∂ on Ap,q)/(image of ∂ from Ap,q−1).

This makes sense because of (7.5)(e). The space Ap,0 consists of smooth sec-
tions of the bundle Ωp of holomorphic p-forms on X; and it is easy to check
that

Hp,0 = kernel of ∂ on Ap,0

= holomorphic p-forms on X.

In particular,
H0,0 = holomorphic functions on X.

Suppose now that V is a holomorphic vector bundle on X . One cannot
apply the de Rham differential to forms with values in a bundle, because
there is no canonical way to differentiate sections of a bundle by a vector field.
However, we can apply type (0, 1) vector fields canonically to smooth sections
of a holomorphic vector bundle. Here is how this looks locally. Suppose Z is a
type (0, 1) vector field (near x ∈ X), and v is a smooth section of V (defined
near x). Choose a basis (v1, . . . , vd) of holomorphic sections of V (still near x)
and write

(7.8)(a) v =
∑

givi,

with gi smooth on X (near x). Finally, define

(7.8)(b) Z · v =
∑

(Z · gi)vi.

Why is this well-defined? If we choose a different basis (v′1, . . . , v
′
d), then it

differs from the first by an invertible matrix Bij of holomorphic functions on
X (near x):

vi =
∑

j

Bijv
′
j .

If we expand v in the new basis, the coefficient functions g′i are

g′j =
∑

i

giBij .

Applying the vector field Z and using the Leibnitz rule gives

Z · g′j =
∑

i

[(Z · gi)Bij + gi(Z · Bij)].
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The second terms all vanish, because Z is a type (0, 1) vector field and Bij

is a holomorphic function. What remains says (after multiplying by v′j and
summing over j) that

∑

j

(Z · g′j)v
′
j =

∑

i

(Z · gi)vi;

that is, that our definition of Z · v is well-defined.
What follows from (7.8) is that the Dolbeault ∂ operator can be defined

on (p, q) forms with values in a holomorphic vector bundle on X . Here is an
explicit account. Write

(7.9)(a) Ap,q(V) = smooth (p, q) forms on X with values in V .

An element of this space attaches to p type (1, 0) vector fields and q type
(0, 1) vector fields a smooth section of V . The Dolbeault operator

(7.9)(b) ∂ : Ap,q(V)→ Ap,q+1(V)

is defined by the formula in Proposition 7.6, with the terms of the form

(7.9)(c) Zi · (smooth section of V)

defined by (7.8). If we need to be more explicit, we may write this operator
as ∂

p,q
(V). Just as in (7.5)(e), we have

∂
2

= 0.

Definition 7.10. Suppose X is a complex manifold, and V is a holomorphic
vector bundle on X. The (p, q)-Dolbeault cohomology of X with coefficients
in V is by definition

Hp,q(X,V) = (kernel of ∂ on Ap,q(V))/(image of ∂ from Ap,q−1(V)).

This makes sense because of (7.5)(e). The space A0,0(V) consists of smooth
sections of V, and

H0,0(X,V) = kernel of ∂ on A0,0(V)

= holomorphic p-forms on X.

In particular,
H0,0 = holomorphic sections of V .

As a first application, we can understand the dependence of Dolbeault
cohomology on p. Recall that Ωp is the bundle of holomorphic p-forms on X .
It is easy to see that

Ap,q(V) ' A0,q(Ωp ⊗ V),

and that this isomorphism respects the ∂ operators (up to a factor of (−1)p).
It follows that

Hp,q(X,V) ' H0,q(X,Ωp ⊗ V).

Here is the central fact about Dolbeault cohomology.
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Theorem 7.11. (Dolbeault, Serre [Ser55]). Suppose V is a holomorphic vec-
tor bundle on a complex manifold X. Write OV for the sheaf of germs of
holomorphic sections of V. Then there is a canonical isomorphism

H0,q(X,V) ' Hq(X,OV).

On the right is the Čech cohomology of X with coefficients in the sheaf OV .

It may be helpful to see how Dolbeault cohomology looks on a homoge-
neous space. For this we can allow G to be any Lie group and L any closed
subgroup. Write

(7.12)(a) X = G/L, g = Lie(G)C ⊃ Lie(L)C = l.

A G-invariant complex structure on G/L corresponds to a complex Lie sub-
algebra q ⊂ g satisfying

(7.12)(b) Ad(L)q = q, q + q = g, q ∩ q = l.

In terms of the decomposition in (7.5)(a), q corresponds to the antiholomor-
phic tangent vectors:

(7.12)(c) T 0,1
eL (G/L) = q/l, T 1,0

eL (G/L) = q/l.

(All of this is described for example in [TW71] or in [Vog87], Proposition
1.19.) A complex-valued smooth vector field on G/L may be identified with a
smooth function

(7.12)(d) Y : G→ g/l, Y (gl) = Ad(l)−1Y (g) (l ∈ L, g ∈ G)

(cf. (5.7)(a)). In this identification, vector fields of type (0, 1) are those taking
values in q/l. Smooth functions on G/L correspond to smooth functions

f : G→ C, f(gl) = f(g).

The vector field Y acts on f by

(7.12)(e) (Y · f)(g) = [ρ(Y (g)) · f ](g).

That is, we differentiate f on the right by the Lie algebra element Y (g). (Of
course Y (g) is only a coset of l, but that is harmless since f is invariant on
the right by L. The condition on Y in (7.12)(d) forces the new function Y · f
also to be right invariant by L.)

From the identification in (7.12)(d), it is not hard to deduce an identifica-
tion of the smooth m-forms on G/L:

(7.13)(a) Am(G/L) ' HomL

(∧m
(g/l), C∞(G)

)
.
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Here L acts on the exterior algebra by Ad, and on the smooth functions by
right translation. The decomposition

g/l = q/l⊕ q/l

(which follows from (7.12)(b)) gives

∧m
(g/l) =

∑

p+q=m

∧p
(q/l)⊗

∧q
(q/l),

and a corresponding decomposition of the m-forms. The pieces are exactly
the (p, q) forms of (7.5)(b):

(7.13)(b) Ap,q(G/L) ' HomL

(∧p
(q/l)⊗

∧q
(q/l), C∞(G)

)
.

Writing formulas for the operators ∂ and ∂ in this setting is slightly unpleas-
ant, because the description of vector fields in (7.12)(d) does not obviously
hand us any holomorphic or antiholomorphic vector fields. We will sweep this
problem under the rug for the moment, by not writing formulas yet.

A smooth equivariant vector bundle V on G/L is the same thing as a
smooth representation (τ, V ) of L; the correspondence is

(7.13)(c) V 7→ (fiber of V at eL), V 7→ G×L V.

The space of smooth sections of V may be identified with smooth functions

(7.13)(d) f : G→ V, f(gl) = τ(l)−1f(g) (l ∈ L, g ∈ G).

This description makes sense for infinite-dimensional vector bundles. What
does it mean for V to be a holomorphic vector bundle? Certainly this ought
to amount to imposing some additional structure on the representation (τ, V )
of L. Here is the appropriate definition, taken from [TW71].

Definition 7.14. Suppose L is a Lie group with complexified Lie algebra l.
Assume that q is a complex Lie algebra containing l, and the adjoint action
of L extends to

Ad: L→ Aut(q),

with differential the Lie bracket of l on q. A (q, L)-representation is a complete
locally convex vector space V , endowed with a smooth representation τ of
L and a continuous Lie algebra action (written just with a dot). These are
required to satisfy

(1) The q action extends the differential of τ : if Y ∈ l and v ∈ V , then

dτ(Y )v = Y · v.

(2) For l ∈ L, Z ∈ q, and v ∈ V , we have

τ(l)(Z · v) = (Ad(l)Z) · (τ(l)v).
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For l ∈ L0, condition (2) is a consequence of condition (1).
Condition (2) can also be formulated as requiring that the action map

q× V → V, (Z, v)→ Z · v

is L-equivariant. This entire definition is formally very close to that of a
(g,K)-module in Definition 4.14, except that we have no finiteness assumption
on the L representation.

Proposition 7.15. Suppose G/L is a homogeneous space for Lie groups, and
that q defines an invariant complex structure (cf. (7.12)). Then passage to the
fiber at eL defines a bijective correspondence from G-equivariant holomorphic
vector bundles V on G/L, to (q, L)-representations (τ, V ) (Definition 7.14).
Suppose U is an open subset of G/L, and U its inverse image in G. Then
holomorphic sections of V on U correspond to smooth functions

f : U → V

satisfying the transformation law

f(gl) = τ(l)−1f(g) (l ∈ L, g ∈ U)

and the differential equations

(ρ(Z)f)(g) = Z · (f(g)) (Z ∈ q, g ∈ U).

Here ρ is the right regular representation of the Lie algebra on smooth func-
tions.

To be more honest and precise: this result is certainly true for finite-
dimensional bundles (where it is proved in [TW71]). I have not thought care-
fully about the appropriate abstract definition of infinite-dimensional holo-
morphic vector bundles; but that definition needs to be arranged so that
Proposition 7.15 is true.

The transformation law in Proposition 7.15 is just what describes a smooth
section of V (cf. (7.13)(d)). For Z ∈ l, the differential equation is a consequence
of the transformation law. The differential equations for other elements of q

are the Cauchy-Riemann equations.
Lie algebra cohomology was invented for the purpose of studying de Rham

cohomology of homogeneous spaces. It is therefore not entirely surprising that
Dolbeault cohomology (which we described in (7.5) as built from de Rham
cohomology)) is also related to Lie algebra cohomology. To state the result,
we need one more definition.

Definition 7.16. Suppose V is a (q, L)-representation (Definition 7.14).
The complex defining Lie algebra cohomology is

Cm(q;V ) = Hom
(∧m

q, V
)
.
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The differential is

dω(Z0, . . . , Zm) =

m∑

i=0

(−1)iZi · ω(Z0, . . . , Ẑi, . . . , Zm)

+
∑

i<j

(−1)i+jω(Z0, . . . , Ẑi, . . . , Ẑj , . . . , Zm)

The Lie algebra cohomology of q with coefficients in V is by definition

Hm(q;V ) = (kernel of d on Cm(q;V ))/(image of d from Cm−1(q;V )).

We now consider the subspace

Cm(q, L;V ) = HomL

(∧m
q/l, V

)
.

We are imposing two conditions: that ω vanish on the ideal generated by l in
the exterior algebra, and that the linear map ω respect the action of L (by
Ad on the domain and τ on the range). The differential d respects the second
condition; and in the presence of the second condition, it respects the first as
well. We can therefore define the relative Lie algebra cohomology of q with
coefficients in V as

Hm(q, L;V )=(kernel of d on Cm(q, L;V ))/(image of d from Cm−1(q, L;V)).

This cohomology is most often considered in the case when L is compact.
One reason is that when L is not compact, taking L invariants (as in HomL

in the definition of the relative complex) is not an exact functor, and should
really only be considered along with its derived functors. This difficulty will
come back to haunt us in section 9, but for now we ignore it.

Here now is Kostant’s description of Dolbeault cohomology for equivariant
bundles.

Proposition 7.17. (Kostant [Kos61], (6.3.5); see also [Won99], section 2).
Suppose G/L is a homogeneous space for Lie groups, and that q defines an in-
variant complex structure (cf.(7.12)). Suppose (τ, V ) is a (q, L)-representation
(Definition 7.14), and V the corresponding G-equivariant holomorphic vec-
tor bundle on G/L (Proposition 7.15). We regard C∞(G, V ) as a (q, L)-
representation by the “tensor product” of the right regular action on functions
with the action on V . Explicitly, the representation τr of L is

[τr(l)f ](g) = τ(l)f(gl−1).

The action of Z ∈ q is

[Z · f ](g) = [ρ(Z)f ](g) + Z · (f(g)).

The first term is the right regular action of g on functions, and the second is
the action of q on V .
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Then the space of smooth (0, q) forms on G/L with values in V is

A0,q(G/L,V) ' HomL

(∧q
(q/l), C∞(G, V )

)
= Cq(q, L;C∞(G, V )),

(Definition 7.16). This identifies the Dolbeault differential ∂ with the relative
Lie algebra cohomology differential d, and so

H0,q(G/L,V) ' Hq(q, L;C∞(G, V )).

To talk about (p, q) Dolbeault cohomology, we can use the fact mentioned
before Theorem 7.11. This involves the bundle Ωp of holomorphic p-forms
on X ; so we need to understand Ωp in the case of X = G/L. This is an
equivariant vector bundle, so it corresponds to a certain representation of L:
the pth exterior power of the holomorphic cotangent space (T 1,0

eL )∗. According
to (7.12)(c), this is ∧p

(q/l).

To specify the holomorphic structure, we need a representation of q on this
space, extending the adjoint action of l. This we can get from the natural
isomorphism

q/l ' g/q,

which is a consequence of (7.12)(b). That is, in the correspondence of Propo-
sition 7.15,

(7.18)(a) Ωp ↔
∧p

(g/q)∗,

with the obvious structure of (q, L)-representation on the right. A consequence
of this fact, Proposition 7.17, and the fact before Theorem 7.11 is

(7.18)(b) Hp,q(G/L,V) ' Hq(q, L;C∞(G,
∧p

(g/q)∗ ⊗ V )).

With Dolbeault cohomology in our tool box, we can now make the idea at
the beginning of this section a little more precise. Beginning with a measur-
able complex flag variety X = G/L and a G-equivariant holomorphic vector
bundle V over X , we want to consider representations of G on Dolbeault co-
homology spaces Hp,q(X,V). First of all, notice that G acts by translation on
the forms Ap,q(V) (cf. (7.9)), and that this action respects ∂. It follows that
we get a linear action of G on the Dolbeault cohomology. To have a repre-
sentation, of course we need a topological vector space structure. The space
of V-valued differential forms (for any smooth vector bundle on any smooth
manifold) naturally has such a structure; in our case, the forms are described
in Proposition 7.17 as a closed subspace of the (complete locally convex) space
C∞(G, V ) tensored with a finite-dimensional space. (This shows in particular
that if V is Fréchet, then so is Ap,q(V).) With respect to this topology, any
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differential operator is continuous; so in particular the ∂ operator is contin-
uous, and its kernel is a closed subspace of Ap,q(V). It is also clear that the
action of G on Ap,q(V) is continuous.

We can impose on Hp,q(X,V) the quotient topology coming from the ker-
nel of ∂: a subset of the cohomology is open (or closed) if and only if its
preimage in the kernel of ∂ is open (or closed). The action of G is clearly
continuous for this quotient topology. The difficulty is that the closure of the
point 0 in the quotient topology is equal to

(closure of the image of ∂)/(image of ∂).

In particular, the topology is Hausdorff only if the image of ∂ is closed. This
difficulty is essentially the only difficulty: if W is a complete locally convex
Hausdorff space and U is a closed subspace, then the quotient topology on
W/U is complete and locally convex Hausdorff. (In these notes “Hausdorff” is
part of the definition of “locally convex”; I have mentioned it explicitly here
only for emphasis.)

Here is a summary of this discussion.

Proposition 7.19. Suppose X = G/L is a measurable complex flag variety
for the real reductive group G (Definition 6.5), and that V is the holomor-
phic vector bundle on X attached to a (q, L)-representation (τ, V ). Endow
the Dolbeault cohomology Hp,q(X,V) with the quotient topology as above, and
define

Hp,q
top(X,V) = maximal Hausdorff quotient of Hp,q(X,V)

= kernel of ∂/closure of image of ∂.

Then Hp,q
top(X,V) carries a smooth representation of G (by translation of

forms).

Serious geometers find the notion of Hp,q
top in this result to be anathema.

Many of the long exact sequences (that make life worth living in sheaf theory)
are lost on this quotient. Nevertheless, representation theory seems to demand
this quotient. We will make use of it once more in section 8, to formulate
Serre’s duality theorem for Dolbeault cohomology.

In the end our examples will offer no conclusive evidence about the value
of the notion of Hp,q

top(X,V). We will recall next a theorem of Hon Wai Wong

which says that in all of the cases we will consider, the operator ∂ has closed
range.

The first definition is analogous to Definition 5.6.

Definition 7.20. Suppose G is a real reductive group, q is a very nice
parabolic subalgebra of the complexified Lie algebra g, and L is a Levi fac-
tor of for q (Definition 6.5). A (q, L) representation (τ, V ) (Definition 7.14)
is said to be admissible if the representation τ of L is admissible (Definition
4.12). In this case the Harish-Chandra module of V is the (q, L ∩K)-module
V L∩K of L ∩K-finite vectors in V .
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Because q = l⊕u, with u an L-stable ideal in q, every admissible represen-
tation (τ, V ) of L extends canonically to an admissible (q, L) representation,
by making u act by zero. If (τ, V ) is irreducible for L, then this is the only
possible extension. But if the representation of L is reducible, then other ex-
tensions exist, and even arise in practice.

Theorem 7.21. (Wong [Won99], Theorem 2.4). In the setting of Definition
7.20, assume that the admissible representation V is the maximal globaliza-
tion of the underlying (q, L ∩ K) module. Let V be the G-equivariant holo-
morphic vector bundle on X = G/L attached to V (Proposition 7.15). Then
the ∂ operator for Dolbeault cohomology has closed range, so that each of the
spaces Hp,q(X,V) carries a smooth representation of G. Each of these rep-
resentations is admissible, and is the maximal globalization of its underlying
Harish-Chandra module.

Wong goes on to explain how these Harish-Chandra modules are con-
structed from V L∩K , by a process called “cohomological parabolic induction.”
We will say only a little about this.

This theorem should be compared to Proposition 5.11, to which it bears
some formal resemblance. In detail it is unfortunately much weaker. With
real parabolic induction, using any globalization on L led to a globalization of
the same Harish-Chandra module on G. In the present setting that statement
may be true, but Wong’s methods seem not to prove it.

Another difference is that in section 5 we were able to get many different
globalizations just by varying the kinds of functions we used. The situation
here is quite different. It is perfectly possible to consider (for example) the
Dolbeault complex with generalized function coefficients instead of smooth
functions. But the resulting Dolbeault cohomology turns out to be exactly
the same. (This is certainly true if the vector bundle V is finite-dimensional,
and it should be possible to prove a version for infinite-dimensional bundles
as well.)

One goal of this section was to find a reasonable extension of the Borel-
Weil Theorem to noncompact reductive groups. Theorem 2.3 suggested that
one might look at bundles that are “antidominant” in some sense; but Propo-
sitions 7.2 and 7.4 suggested that antidominant is not such a good choice for
noncompact G. I will dispense with further illuminating examples, and instead
pass directly to the definition we want.

Suppose therefore that

(7.22)(a) q = l + u

is a very nice parabolic subalgebra (Definition 6.5), and L is a real Levi factor
for q. Write

(7.22)(b) X = G/L, dimC X = dimC(u) = n
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(7.22)(c) Z = K/L ∩K, dimC Z = dimC(u ∩ k) = s

Because of (7.18)(b), we are going to need

(7.22)(d) 2ρ(u) = representation of L on
∧n

(g/q)∗

This is a one-dimensional character of L, so its differential (which we also
write as 2ρ(u)) is a linear functional on the Lie algebra l:

(7.22)(e) 2ρ(u) : l→ C, 2ρ(u)(Y ) = trace of ad(Y ) on (g/q)∗

This linear functional is of course divisible by two, so we can define ρ(u) ∈
l∗, even though the group character 2ρ(u) may have no square root. Any
G-invariant symmetric nondegenerate bilinear form on g provides an L-
equivariant identification

(7.22)(f) (g/q)∗ ' u,

which allows for some simplifications in the formulas for 2ρ(u).
Let (τL∩K , V L∩K) be an irreducible Harish-Chandra module for L, and

(τω , V ω) its maximal globalization. Regard V ω as (q, L)-representation by
making u act by zero. Let

(7.22)(g) Vω = G×L V

be the associated holomorphic vector bundle on X (Proposition 7.15).
We want to write a condition on τ , more or less analogous to “antidomi-

nant” in Theorem 2.3, that will force Dolbeault cohomology with coefficients
in Vω to be well-behaved. For this purpose, a little bit of structure theory in
the enveloping algebra is needed. Put

(7.23)(a) Z(g) = center of U(g)

The group G acts by algebra automorphisms on Z(g); the G0 action is trivial,
so G/G0 is a finite group of automorphisms. We need the fixed point algebra

(7.23)(b) ZG(g) = {u ∈ U(g) | Ad(g)u = u, all g ∈ G} ⊂ Z(g).

(The first algebra appeared already in the definition of admissible representa-
tions in Definition 4.12.) These algebras are described by the Harish-Chandra
isomorphism. For that, fix a Cartan subalgebra

(7.23)(c) h ⊂ l

The Weyl group of h in g (generated by root reflections) is written

(7.23)(d) W = W (g, h).
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The Harish-Chandra isomorphism is

(7.23)(e) ξg : Z(g)
∼
→S(h)W (g,h).

The disconnectedness of G provides a slightly larger group

(7.23)(e) WG(g, h) ⊂ Aut(g),

still acting as automorphisms of the root system. (We omit the definition in
general. In the special case that every component of G has an element nor-
malizing h, then WG is generated by W (g, h) and the automorphisms coming
from Ad(G).) The group WG contains W (g, h) as a normal subgroup, and
there is a natural surjective homomorphism

(7.23)(f) G/G0 � WG(g, h)/W (g, h).

Now G/G0 acts on Z(g), and WG/W acts on S(h)W . These two actions are
compatible via the Harish-Chandra isomorphism of (7.23)(e) and (7.23)(f). In
particular, we get an isomorphism

(7.23)(g) ξG : ZG(g)
∼
→S(h)W G(g,h).

It follows from (7.23) that there is a bijection

(7.24)(a) (algebra homomorphisms ZG(g)→ C) ←→ h∗/WG(g, h).

The connection with representation theory is this. On any irreducible ad-
missible representation (π, U) of G, the algebra ZG(g) must act by scalars.
Consequently there is an element

(7.24)(b) λ = λ(π) ∈ h∗

(defined up to the action of WG) with the property that

(7.24)(c) π(z) = ξG(z)(λ) (z ∈ ZG(g).

We call λ(π) the infinitesimal character of π.
The notion of dominance that we need for the representation τ will be

defined in terms of the infinitesimal character of τ . To put the result in context,
here is a basic fact about how the Dolbeault cohomology construction of
Theorem 7.21 affects infinitesimal characters.

Proposition 7.25. In the setting of Theorem 7.21, assume that the (q, L)-
representation (τ, V ) has infinitesimal character λL(τ) ∈ h∗. Write n =
dimC X, and ρ(u) ∈ h∗ for the restriction of the linear functional in (7.22)(e).
Then each G-representation H0,q(X,V) has infinitesimal character λL−ρ(u),
and each G representation Hn,q(X,V) has infinitesimal character λL + ρ(u).
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The second assertion (about (n, q)-cohomology) is an immediate conse-
quence of the first and (7.18)(b): tensoring a representation of L with

∧n
(g/q)∗

adds 2ρ(u) to its infinitesimal character. The first assertion is a version of
the Casselman-Osborne theorem relating the action of ZG(g) to cohomology.
(One can use the description (7.18)(b) of Dolbeault cohomology. The action
of ZG(g) in that picture is by differentiation on the left on functions on G.
Because we are considering central elements, this is equal to differentiation
on the right, which is where the (q, L)-cohomology is computed. We omit the
elementary details.)

Of course the weight λL in Proposition 7.25 is defined only up to WL(l, h).

Definition 7.26. Suppose q = l + u is a Levi decomposition of a parabolic
subalgebra in the complex reductive Lie algebra g, and h ⊂ l is a Cartan
subalgebra. A weight λ ∈ h∗ is called weakly dominant with respect to u if
for every coroot α∨ corresponding to a root of h in u, 〈α∨, λ〉 is not a strictly
negative real number. That is,

〈α∨, λ〉 ≥ 0 or 〈α∨, λ〉 is not real.

We say that λ is strictly dominant if (still for every such coroot)

〈α∨, λ〉 > 0 or 〈α∨, λ〉 is not real.

The set of coroots α∨ for roots of h in u is permuted by WL(l, h), so these
condtions depend only on the WL(l, h)-orbit of λ.

The terminology here is far from standard. One common variant is to
require only that 〈α∨, λ〉 never be a negative integer. That kind of hypothesis
is not sufficient for the assertions about unitarity in Theorem 7.27.

Theorem 7.27. In the setting of Proposition 7.25, assume also that λL+ρ(u)
is weakly dominant for u (Definition 7.26). Recall that Z = K/L ∩K ⊂ X is
a compact complex subvariety, and set s = dimC(Z).

(1) Hn,q(X,V) = 0 unless q = s.
(2) If L = Lmax (Definition 6.5) and V is an irreducible representation of L,

then Hn,s(X,V) is irreducible or zero.
(3) If the Harish-Chandra module of V admits an invariant Hermitian form,

then the Harish-Chandra module of Hn,s(X,V) admits an invariant Her-
mitian form.

(4) If the Harish-Chandra module of V is unitary, then the Harish-Chandra
module of Hn,s(X,V) is unitary.

Suppose now that λL + ρ(u) is strictly dominant for u.

(5) If L = Lmax, then the representation V of L is irreducible if and only if
Hn,s(X,V) is irreducible or zero.

(6) The Harish-Chandra module of V admits an invariant Hermitian form if
and only if the Harish-Chandra module of Hn,s(X,V) admits an invariant
Hermitian form.



60 David A. Vogan, Jr

(7) The Harish-Chandra module of V is unitary if and only if the Harish-
Chandra module of Hn,s(X,V) is unitary.

This summarizes some of the main results of [Vog84], translated into the
language of Dolbeault cohomology using [Won99].

Theorem 7.27 is in many respects a valuable analogue of the Borel-Weil
theorem for noncompact groups. One annoying feature is that the statement
does not contain the Borel-Weil theorem as a special case. If G is compact,
then Theorem 7.27 concerns top degree cohomology and dominant V , whereas
Theorem 2.3 concerns degree zero cohomology and antidominant V . In order
to round out the motivation appropriately, here is an alternate version of
Theorem 2.3 addressing this incompatibility.

Theorem 7.28. (Borel-Weil, Harish-Chandra; see [HC56], [Ser59]). Suppose
K is a compact connected Lie group with maximal torus T ; use the notation
of (2.1) and (2.2) above, and put n = dimC(K/T ).

(1) The infinitesimal character of the representation (µ,Cµ) of T is given by
the differential of dµ ∈ t∗ of µ.

(2) The weight dµ+ ρ is strictly dominant (Definition 7.26) if and only if µ
is dominant in the sense of (2.2).

(3) The top degree Dolbeault cohomology Hn,n(K/T,Lµ) is non-zero if and
only if µ is dominant. In that case, the Dolbeault cohomology space is an
irreducible representation of K.

(4) This correspondence defines a bijection from dominant characters of T

onto K̂.

Here we say that µ is dominant if and only if the inverse character −µ is
antidominant (cf. (2.2)); that is, if and only if

〈µ, α∨〉 ≥ 0

for every simple root α of T in K.

8 Compact supports and minimal globalizations

Theorem 7.27 provides a large family of group representations with unitary
Harish-Chandra modules. It is entirely natural to look for something like a
pre-Hilbert space structure on these group representations, that might be com-
pleted to a unitary group representation. Theorem 7.21 guarantees that each
representation provided by Theorem 7.27 is the maximal globalization of its
Harish-Chandra module. As explained in the introduction, we will see in The-
orem 9.16 that maximal globalizations never admit G-invariant pre-Hilbert
space structures (unless they are finite-dimensional). We need something anal-
ogous to Theorem 7.21 that produces instead minimal globalizations. Because
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of Definition 4.23, this means that we need to identify the dual of the topo-
logical vector space Hp,q(X,V). Let us first examine this in the setting of
Definition 7.10, with V a holomorphic vector bundle on the complex manifold
X . The definition involves the topological vector spaces Ap,q(V) of smooth
(p, q)-forms on X with values in V (cf. (7.9)), and the Dolbeault operators

(8.1)(a) Ap,q−1(V)
∂
→ Ap,q(V)

∂
→ Ap,q+1(V).

The first point is to identify the topological duals of these three spaces. The
space C−∞

c (W) of compactly supported distribution sections of a vector bun-
dle W is by definition the topological dual of the space C∞(W ⊗D), with D
the bundle of densities on the manifold. Because our manifold X is complex,
it is orientable; so the bundle of densities is just the bundle of top degree
differential forms on X . Top degree forms are (n, n)-forms (cf. (7.5)(b)), and
it follows easily that

(8.1)(b) Ap,q(V)∗ ' A(n−p,n−q),−∞
c (V∗).

Any continuous linear map T : E → F between topological vector spaces
has a transpose tT : F ∗ → E∗. The Dolbeault operators in (8.1)(a) therefore
give rise to transposes
(8.1)(c)

A(n−p,n−q−1),−∞
c (V∗)

t∂
→ A(n−p,n−q),−∞

c (V∗)
t∂
→ A(n−p,n−q+1),−∞

c (V∗).

Calculating in coordinates shows that (up to a sign depending on p and q,
which according to [Ser55], page 19 is (−1)p+q+1) this transpose map “is”
just the ∂ operator for the Dolbeault complex for V∗, applied to compactly
supported distribution sections. (The way this calculation is done is to regard

compactly supported smooth forms A
(n−p,n−q+1),∞
c (V∗) as linear functionals

on Ap,q(V), by pairing the V and V∗ and integrating the resulting (compactly
supported smooth) (n, n)-form over X . Comparing the effects of ∂ and t∂ on

A
(n−p,n−q+1),∞
c (V∗) now amounts to integrating by parts.)

Using this new complex, we can formulate an analogue of Definition 7.10.

Definition 8.2. Suppose X is a complex manifold of complex dimension n,
and V is a holomorphic vector bundle on X. The compactly supported (p, q)-
Dolbeault cohomology of X with coefficients in V is by definition

Hp,q
c (X,V) =

(kernel of ∂ on A(p,q),−∞
c (V))/(image of ∂ from A(p,q−1),−∞

c (V)).

At least if V is finite-dimensional, this is the Čech cohomology with compact
supports of X with coefficients in the sheaf OΩp⊗V of holomorphic p-forms
with values in V. Just as in Proposition 7.19, there is a natural quotient
topology on this cohomology, and we can define
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Hp,q
c,top(X,V) = maximal Hausdorff quotient of Hp,q

c (X,V)

= kernel of ∂/closure of image of ∂.

In order to discuss transposes and duality, we need to recall a little about
topologies on the dual E∗ of a complete locally convex space E. Details may
be found for example in [Tre67], Chapter 19. For any subset B ⊂ E, and any
ε > 0, we can define

(8.3)(a) Wε(B) = {λ ∈ E∗ | sup
e∈B
|λ(e)| ≤ ε} ⊂ E∗.

This is a subset of E∗ containing 0. The topologies we want on E∗ are defined
by requiring certain of these subsets to be open. The weak topology on E∗ is
defined to have neighborhood basis at the origin consisting of the sets Wε(B)
with B ⊂ E finite. (Another way to say this is that the weak topology is
the coarsest one making all the evaluation maps λ 7→ λ(e) continuous.) We
write E∗

wk for E∗ endowed with the weak topology. (Treves writes E∗
σ , and

Bourbaki writes E∗
s ; more precisely, each uses a prime instead of a star for the

continuous dual.) The topology of compact convergence on E∗ is defined to have
neighborhood basis at the origin consisting of the sets Wε(B) with B ⊂ E
compact. We write E∗

cpt for this topological space; Treves writes E∗
c . The

strong topology is defined to have neighborhood basis at the origin consisting
of the sets Wε(B) with B ⊂ E bounded. (Recall that B is bounded if for every
neighborhood U of 0 in E, there is a scalar r ∈ R so that B ⊂ rU .) We write
E∗

str for this topological space; Treves and Bourbaki write E∗
b . Because a finite

set is automatically compact, and a compact set is automatically bounded, it
is clear that the topologies

(8.3)(b) weak, compact convergence, strong

are listed in increasing strength; that is, each has more open sets than the
preceding ones. For any of these three topologies on dual spaces, the transpose
of a continuous linear map is continuous ([Tre67], Corollary to Proposition
19.5). If E is a Banach space, then the usual Banach space structure on E∗

defines the strong topology.
For most of the questions we will consider, statements about the strong

topology on E∗ are the strongest and most interesting. Here is an example. We
can consider the double dual space (E∗)∗; what this is depends on the chosen
topology on E∗. Strengthening the topology on E∗ allows more continuous
linear functionals, so

(8.4)(a) (E∗
wk)∗ ⊂ (E∗

cpt)
∗ ⊂ (E∗

str)
∗.

Each of these spaces clearly includes E (the evaluation maps at an element of
E being continuous on E∗ in all of our topologies). In fact

(8.4)(b) (E∗
wk)∗ = E
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([Tre67], Proposition 35.1); this equality is a statement about sets, not topolo-
gies. Asking for similar statements for the other two topologies on E∗ asks for
more; the most that one can ask is

Definition 8.5 . (see [Tre67], Definition 36.2). The (complete locally convex)
topological vector space E is called reflexive if the natural inclusion

E ↪→ (E∗
str)

∗

is an isomorphism of topological vector spaces.

For us, reflexivity will arise in the following way.

Definition 8.6. (see [Tre67], Definition 34.2). The (complete locally convex)
topological vector space E is called a Montel space if every closed and bounded
subset B ⊂ E is compact.

Proposition 8.7. ([Tre67], Corollary to Proposition 36.9, and Corollary 3
to Proposition 50.2). A Montel space is reflexive. A complete nuclear space
is Montel. In particular, the analytic, smooth, distribution, and hyperfunction
globalizations of any finite-length Harish-Chandra module (cf. section 4) are
all reflexive.

Topological vector spaces that we define as dual spaces, like distribution
spaces and the maximal globalization, will usually be endowed with the strong
topology.

We are interested in the dual space of Dolbeault cohomology, which is a
quotient of subspaces of a simple space of forms. We therefore need to know
how to compute dual spaces of subspaces and quotients of topological vector
spaces.

Proposition 8.8. Suppose E is a complete locally convex topological vector
space, and M ⊂ E is a closed subspace. Endow M with the subspace topology,
and E/M with the quotient topology (whose open sets are the images of the
open sets in E.) Write i : M → E for the inclusion, q : E → E/M for the
quotient map, and M⊥ ⊂ E∗ for the subspace of linear functionals vanishing
on M .

(1) Every continuous linear functional λM on M (endowed with the subspace
topology) extends to a continuous linear functional λ on E. That is, the
transpose map

ti : E∗ →M∗

is surjective, with kernel equal to M⊥.
(2) Suppose that E is reflexive. Then the vector space isomorphism

ti : E∗/M⊥ ∼
→M∗

is a homeomorphism from the quotient of the strong topology on E∗ to the
strong topology on M∗.
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(3) If E/M is endowed with the quotient topology, then the continuous lin-
ear functionals are precisely those on E that vanish on M . That is, the
transpose map

tq : (E/M)∗ → E∗

is injective, with image equal to M⊥.
(4) Suppose that E and M⊥ are reflexive. Then the vector space isomorphism

tq : (E/M)∗
∼
→M⊥

is a homeomorphism from the strong topology on (E/M)∗ onto the sub-
space topology on M⊥ induced by the strong topology on E∗.

The first assertion is the Hahn-Banach Theorem (see for example [Tre67],
Chapter 18). The second may be found in [Bou87], Corollary to Theorem 1
in section IV.2.2. The third is more or less obvious. For the fourth, applying
the second assertion to M⊥ ⊂ E∗ gives a homeomorphism

(M⊥)∗str ' E/M.

Now take duals of both sides, and use the reflexivity of M⊥.
Finally, we need a few general remarks about transpose maps (to be applied

to ∂). So suppose that

(8.9)(a) T : E → F

is a continuous linear map of complete locally convex topological vector spaces,
and

(8.9)(b) tT : F ∗ → E∗

is its transpose. The kernel of T is a closed subspace of E, so the quotient
E/ kerT is a complete locally convex space in the quotient topology. The
image of T is a subspace of F , but not necessarily closed; its subspace topology
is locally convex, and the completion of imT may be identified with its closure
in F . We have a continuous bijection

(8.9)(c) E/ kerT → imT,

but this need not be a homeomorphism. We now have almost obvious identi-
fications

ker tT = linear functionals on F vanishing on imT(8.9)(d)

= (F/imT )∗ ⊂ F ∗

im tT = linear functionals on E vanishing on kerT ,(8.9)(e)

and extending continuously from imT to F

= (imT )∗ = (im T )∗ ⊂ E∗
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im tT = linear functionals on E vanishing on kerT(8.9)(f)

= (E/ kerT )∗ ⊂ E∗

The question of when these vector space isomorphisms respect topologies is
addressed by Proposition 8.8.

Lemma 8.10. In the setting of (8.9)(a), assume that the map (8.9)(c) is a
homeomorphism. Then tT has closed range.

This is immediate from the descriptions in (8.9)(e) and (8.9)(f), together
with the Hahn-Banach theorem. A famous theorem of Banach gives a sufficient
condition for (8.9)(c) to be a homeomorphism:

Theorem 8.11. ([Tre67], Theorem 17.1). In the setting of (8.9)(a), assume
that E and F are Fréchet spaces. Then (8.9)(c) is a homeomorphism if and
only if T has closed range.

We can now say something about duals of cohomology spaces.

Proposition 8.12. Suppose that

E
T
→ F

S
→ G

is a complex of continuous linear maps of complete locally convex topological
vector spaces, so that S ◦ T = 0. Define

H = kerS/ imT,

endowed with the quotient topology. This may be non-Hausdorff, and we define
the maximal Hausdorff quotient

Htop = kerS/imT ,

a complete locally convex topological vector space. Define the transpose complex

G∗
tS
→ F ∗

tT
→ E∗

with cohomology
tH = ker tT/ im tS

and maximal Hausdorff quotient

tHtop = ker tT/im tS.

(1) There is a continuous linear bijection

F ∗/im tS → (kerS)∗.

This is a homeomorphism if F is reflexive.
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(2) The map in (1) restricts to a continuous linear bijection

tHtop = ker tT/im tS → (imT )⊥ ⊂ (kerS)∗.

This is a homeomorphism if F is reflexive.
(3) There is a continuous linear bijection

H∗ = (Htop)
∗ → (im T )⊥ ⊂ (kerS)∗.

This is a homeomorphism if kerS and (imT )⊥ are both reflexive.
(4) There is a linear bijection

H∗ = (Htop)
∗ → tHtop.

This is a homeomorphism if F , its subspace kerS, and (imT )⊥ ⊂ (kerS)∗

are all reflexive.
(5) Assume that E, F , and G are nuclear Fréchet spaces, and that

H ' Htop,
tH ' tHtop

are Hausdorff. The linear isomorphism

H∗ = (Htop)
∗ ' tHtop

of (4) is a homeomorphism.
(6) Assume that E, F , and G are nuclear Fréchet spaces, and that T and S

have closed range. Then tT and tS also have closed range, so the coho-
mology spaces

H ' Htop,
tH ' tHtop

are Hausdorff. The linear isomorphism

H∗ ' tH

of (4) is a homeomorphism.

Proof. Parts (1)–(3) are more or less immediate from Proposition 8.8, in light
of (8.9). Part (4) simply combines (2) and (3). For (5), we need to know the
reflexivity of the three spaces mentioned in (4). A subspace of a nuclear space
is nuclear, and therefore reflexive (Proposition 8.7). This shows that F and
kerS are reflexive. The dual of a nuclear Fréchet space is nuclear ([Tre67],
Proposition 50.6), so (kerS)∗ is nuclear; so its closed subspace (imT )⊥ is nu-
clear, and therefore reflexive. For (6), the assertion about closed range follows
from Banach’s Theorem 8.11, and the fact that the cohomology is Hausdorff
follows at once.

From these generalities in hand, we get immediately a description of the
topological dual of Dolbeault cohomology.
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Theorem 8.13. (Serre [Ser55], Théorème 2). Suppose X is a complex man-
ifold of dimension n, and V is a smooth holomorphic nuclear Fréchet vector
bundle on X. Write V∗ for the topological dual bundle. Write Hp,q(X,V) for
the (p, q) Dolbeault cohomology of X with coefficients in V, endowed with
the (possibly non-Hausdorff) topological vector space structure defined be-
fore Proposition 7.19, and Hp,q

top(X,V) for its maximal Hausdorff quotient.
Similarly define Hp,q

c (X,V∗), the Dolbeault cohomology with compact support
(and generalized function coefficients), and its maximal Hausdorff quotient
Hp,q

c,top(X,V
∗) as in Definition 8.2. Then there is a natural topological isomor-

phism
Hp,q

top(X,V)∗ ' Hn−p,n−q
c,top (X,V∗).

If the Dolbeault cohomology operators for V have closed range, then the same
is true for the Dolbeault operators on compactly supported V∗-valued forms
with generalized function coefficients, and

Hp,q(X,V)∗ ' Hn−p,n−q
c (X,V∗).

The main point is that the space of smooth sections of a smooth nuclear
Fréchet bundle is a nuclear Fréchet space; it is easy to imitate [Ser55], section
8, to define a countable collection of seminorms giving the topology. With
this fact in hand, Theorem 8.13 is a special case of Proposition 8.12, (4)–(6)
(together with (8.1) and Definition 8.2).

Corollary 8.14. (cf. Bratten [Bra97], Theorem on page 285). In the setting
of Definition 7.20, suppose X is the complex manifold G/L, and assume that
the admissible representation V is the minimal globalization of the underly-
ing (q, L ∩ K)-module. Let Ap,q

c (X,V) be the Dolbeault complex for V with
generalized function coefficients of compact support (cf. (8.1)(c)). Then the
∂ operator has closed range, so that each of the corresponding coholomogy
spaces Hp,q

c (X,V) carries a smooth representation of G (on the dual of a nu-
clear Fréchet space). Each of these representations of G is admissible, and is
the minimal globalization of its underlying Harish-Chandra module.

This is immediate from Wong’s Theorem 7.21, Serre’s Theorem 8.13, and
the duality relationship between minimal and maximal globalizations (Defi-
nitions 4.21 and 4.23). The theorem proved by Bratten is slightly different:
he defines a “sheaf of germs of holomorphic sections” A(X,V), and proves
a parallel result for the sheaf cohomology with compact support on X with
coefficients in A(X,V). When V is finite-dimensional, the two results are ex-
actly the same, since it is easy to check that Dolbeault cohomology (with
compactly supported generalized function coefficients) computes sheaf coho-
mology in that case.

For infinite-dimensional V , comparing Corollary 8.14 with Bratten’s re-
sults in [Bra97] is more difficult. In these notes I have avoided many subtleties
by speaking only about the Dolbeault complex, and not about sheaf cohomol-
ogy. Part of the point of page 317 of Bratten’s paper is that I have in the
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past (for example in Conjecture 6.11 of [Vog87]) glossed over the difficulty of
connecting sheaf and Dolbeault cohomology for infinite-dimensional bundles.

In the same way, we can translate Theorem 7.27 into this setting. For con-
text, we should remark that Proposition 7.25 (computing infinitesimal char-
acters of Dolbeault cohomology representations) applies equally to Dolbeault
cohomology with compact support. The weight λL − ρ(u) appearing in the
next corollary is therefore the infinitesimal character of the representation
H0,r

c (X,V).

Corollary 8.15. In the setting of Definition 7.20, recall that Z = K/L ∩
K is an s-dimensional compact complex submanifold of the n-dimensional
complex manifold X = G/L. Write r = n − s for the codimension of Z in
X. Assume that V is an admissible (q, L)-module of infinitesimal character
λL ∈ h∗ (cf. (7.24)), and that V is the minimal globalization of the underlying
(q, L ∩K)-module. Assume that λL − ρ(u) is weakly antidominant for u; that
is, that −λL + ρ(u) is weakly dominant. Then

(1) H0,q
c (X,V) = 0 unless q = r.

(2) If L = Lmax (Definition 6.5) and V is an irreducible representation of L,
then H0,r

c (X,V) is irreducible or zero.
(3) If the Harish-Chandra module of V admits an invariant Hermitian form,

then the Harish-Chandra module of H0,r
c (X,V) admits an invariant Her-

mitian form.
(4) If the Harish-Chandra module of V is unitary, then the Harish-Chandra

module of H0,r
c (X,V) is unitary.

Suppose now that λL − ρ(u) is strictly antidominant for u.

(5) If L = Lmax, then the representation V of L is irreducible if and only if
H0,r

c (X,V) is irreducible or zero.
(6) The Harish-Chandra module of V admits an invariant Hermitian form if

and only if the Harish-Chandra module of H0,r
c (X,V) admits an invariant

Hermitian form.
(7) The Harish-Chandra module of V is unitary if and only if the Harish-

Chandra module of H0,r
c (X,V) is unitary.

These statements follow immediately from Theorem 7.27 and Theorem
8.13.

We will see in section 9 that the Hermitian forms of Corollary 8.15(6)
automatically extend continuously to H0,r

c (X,V).
To conclude this section, notice that in the setting of the Borel-Weil Theo-

rem (Theorem 2.3), we haveX = Z = K/T , so r = 0; Theorem 2.3 is therefore
“compatible” with Corollary 8.15.
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9 Invariant bilinear forms and maps between
representations

In Theorem 7.21 and Corollary 8.14, we have identified many representations
with spaces related to smooth functions and distributions on manifolds. In
this section, we will use these realizations to describe Hermitian forms on the
representations. This is a three-step process. First, we will see (in Definition
9.6) how to

(9.1)(a)
understand a Hermitian form on one representation as a special
kind of linear map between two representations.

Describing Hermitian forms therefore becomes a special case of describing
linear maps. For the representations we are considering, this amount to de-
scribing linear maps between function spaces. The second step (Theorem 9.8)
is to

(9.1)(b)
understand spaces of linear maps between function spaces as topo-
logical tensor products of function spaces.

The third step (which we will deal with more or less case by case) is to

(9.1)(c)
understand tensor products of function spaces as function spaces
on a product.

The second and third steps are closely connected to the Schwartz kernel
theorem for distributions, and rely on the theory of nuclear spaces that
Grothendieck developed to explain and generalize Schwartz’s theorem.

Before embarking on the technical details, we record the elementary ideas
that we will be trying to generalize. So suppose for a moment that A and B
are finite sets, say with n elements and m elements respectively. Define

(9.2)(a) VA = {complex-valued functions on A} ' Cn,

(9.2)(b) V ∗
A = {complex-valued measures on A} ' Cn,

and similarly for B. The space V ∗
A is naturally identified with the dual space

of VA (as the notation indicates), by

λ(f) =

∫

A

f dλ =
∑

a∈A

f(a)λ(a);

in the second formula, the measure λ has been identified with the linear combi-
nation of delta functions (unit masses at points of A)

∑
λ(a)δa. For motivating

the ideas above, we are meant to be thinking of VA as the space of smooth
functions on the manifold A, and of V ∗

A as distributions on A. In this setting,
a version of (9.1)(b) is
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(9.2)(c) HomC(V ∗
A , VB) ' VA ⊗ VB .

The natural map from right to left is

f ⊗ g → Tf⊗g, Tf⊗g(λ) = λ(f)g.

A version of (9.1)(c) is

(9.2)(d) VA ⊗ VB ' VA×B .

The composite map

(9.2)(e) VA×B
∼
→ HomC(V ∗

A , VB)

is

h→ Kh, [Kh(λ)](b) =

∫

A

h(x, b) dλ(x).

The operator Kh is a kernel operator, and (9.2)(e) is an example of the
Schwartz kernel theorem.

One lesson that can be extracted even from this very simple example is
that some of the easiest linear maps to understand are those going from spaces
of distributions to spaces of functions. By rearranging the example slightly,
we could also have found a nice description of the linear maps from a space
of functions to a space of distributions.

As a second kind of warming up, here are two versions of the Schwartz
kernel theorem that we will be imitating in the steps (9.1)(b) and (9.1)(c)
above. In order to state these theorems, we will follow Schwartz and write
D′(M) for the space of distributions on the smooth manifold M with arbitrary
support; that is, the continuous dual of C∞

c (M). (Elsewhere we have written
this as C−∞(M,D), with D the bundle of smooth densities on M .)

Theorem 9.3. (Schwartz kernel theorem; see [Tre67], Theorem 51.7). Sup-
pose X and Y are smooth manifolds. Then the space L(C∞

c (Y ),D′(X)) (of
continuous linear maps from compactly supported smooth functions on Y to
distributions on X) may be identified with D′(X×Y ). The identification sends
a distribution h on X × Y to the kernel operator

Kh : C∞
0 (Y )→ D′(X), [Kh(φ)](ψ) = h(ψ ⊗ φ).

Here on the left we are describing the distribution Kh(φ) by evaluating it on
a test function ψ ∈ C∞

c (X). On the right, we regard ψ ⊗ φ as a test function
on X × Y (to which the distribution h may be applied) by

(ψ ⊗ φ)(x, y) = ψ(x)φ(y).

Formally, the kernel operator in the theorem may be written

Kh(φ)(x) =

∫

Y

h(x, y)φ(y).
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This equation makes sense as written if h = H(x, y)dx dy, with dx and dy
smooth measures on X and Y , and H a continuous function on X × Y . In
this case

Kh(φ) = f(x) dx, f(x) =

∫

Y

H(x, y)φ(y) dy.

Again following Schwartz, write E ′(M) for the space of distributions with
compact support (what we have written elsewhere as C−∞

c (M,D).) For us a
useful variant of the kernel theorem will be

Theorem 9.4. ([Tre67], page 533). Suppose X and Y are smooth manifolds.
Then the space L(E ′(Y ), C∞

c (X)) (of continuous linear maps from compactly
supported distributions on Y to smooth functions on X) may be identified with
C∞(X × Y ). The identification sends h ∈ C∞(X × Y ) to the kernel operator

Kh : E ′(Y )→ C∞(X), [Kh(λ)](x) = λ(h(x, ·)).

We begin now with the machinery of linear maps and invariant Hermitian
forms.

Definition 9.5. Suppose E and F are complete locally convex topological
vector spaces. Write L(E,F ) for the vector space of continuous linear maps
from E to F . There are a number of important topologies on L(E,F ), but (by
virtue of omitting proofs) we will manage with only one: the strong topology
of uniform convergence on bounded subsets of E (cf. [Tre67], page 337). (The
definition is a straightforward generalization of the case F = C described in
(8.3) above.) Write Lstr(E,F ) for the topological vector space of linear maps
with this topology. This is a locally convex space, and it is complete if E is
bornological; this holds in particular if E is Fréchet or the dual of a nuclear
Fréchet space.

Definition 9.6. Suppose E is a complete locally convex topological vector
space. The Hermitian dual Eh of E consists of the continuous conjugate-linear
functionals on E:

Eh = {λ : E → C, λ(av + bw) = aλ(v) + bλ(w) (a, b ∈ C, v, w ∈ E)}.

These are the complex conjugates of the continuous linear functionals on E, so
there is a conjugate-linear identification E∗ ' Eh. We use this identification
to topologize Eh (cf. (8.3)); most often we will be interested in the strong
topology Eh

str. In particular, we use the strong topology to define the double
Hermitian dual, and find a natural continuous linear embedding

E ↪→ (Eh)h,

which is a topological isomorphism exactly when E is reflexive.
Any continuous linear map T : E → F has a Hermitian transpose

T h : F h → Eh, T h(λ)(e) = λ(Te).
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The map T → T h is conjugate-linear. In case S ∈ L(E,F h), we will also
write

Sh ∈ L(F,Eh)

for the restriction of the Hermitian transpose to F ⊂ (F h)h.
A Hermitian pairing between E and F is a separately continuous map

〈, 〉 : E × F → C

that is linear in the first variable and conjugate linear in the second. It is
immediate that such pairings are naturally in bijection with L(E,F h). The
correspondence is

〈, 〉T ↔ T : E → F h, T (e)(f) = 〈e, f〉T .

In case E = F , we say that the pairing is a Hermitian form on E if in
addition

〈e, f〉 = 〈f, e〉.

In terms of the corresponding linear map T ∈ L(E,Eh), the condition is
T = T h. (Here we restrict T h to E ⊂ (Eh)h.) The Hermitian form is said to
be positive definite if

〈e, e〉 > 0, all non-zero e ∈ E.

Of course one can speak about bilinear pairings between E and F , which
correspond to L(E,F ∗).

For tensor products we will make only a few general remarks, referring for
details to [Tre67].

Definition 9.7. Suppose E and F are complete locally convex topological
vector spaces. A “topological tensor product” of E and F is defined by imposing
on the algebraic tensor product E⊗F a locally convex topology, and completing
with respect to that topology. We will be concerned only with the projective
tensor product. If p is a seminorm on E and q a seminorm on F , then we
can define a seminorm p⊗ q on E ⊗ F by

p⊗ q(x) = inf
x=

P
ei⊗fi

∑

i

p(ei)q(fi) (x ∈ E ⊗ F ).

The projective topology on E ⊗F is that defined by the family of seminorms
p⊗ q, where p and q vary over seminorms defining the topologies of E and F .
The projective tensor product of E and F is the completion in this topology;
it is written

E⊗̂πF.

A characteristic property of this topology is that for any complete locally convex
topological vector space G, L(E⊗̂πF,G) may be identified with G-valued jointly
continuous bilinear forms on E × F .
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Here is Grothendieck’s general solution to the problem posed as (9.1)(b)
above.

Theorem 9.8. ([Tre67], Proposition 50.5). Suppose E and F are complete
locally convex topological vector spaces. Assume that

(1) E is barreled ([Tre67], page 346).
(2) E∗ is nuclear and complete.

(Both of these conditions are automatic if E is nuclear Fréchet or the dual of
a nuclear Fréchet space.) Then the natural isomorphism

E∗ ⊗ F ' finite rank continuous linear maps from E to F

extends to a topological isomorphism

E∗ ⊗π F ' Lstr(E,F ).

To translate this into representation-theoretic language, we need a lemma.

Lemma 9.9. Suppose X1 and X2 are Harish-Chandra modules of finite
length for reductive groups G1 and G2.

(1) X1 ⊗X2 is a Harish-Chandra module of finite length for G1 ×G2.
(2) The minimal globalization of X1 ⊗X2 is the projective tensor product of

the minimal globalizations of X1 and X2:

Xω
1 ⊗π X

ω
2 ' (X1 ⊗X2)

ω.

(3) The smooth globalization of X1 ⊗ X2 is the projective tensor product of
the smooth globalizations of X1 and X2:

X∞
1 ⊗π X

∞
2 ' (X1 ⊗X2)

∞.

(4) The distribution globalization of X1 ⊗X2 is the projective tensor product
of the distribution globalizations of X1 and X2:

X−∞
1 ⊗π X

−∞
2 ' (X1 ⊗X2)

−∞.

(5) The maximal globalization of X1 ⊗X2 is the projective tensor product of
the maximal globalizations of X1 and X2:

X−ω
1 ⊗π X

−ω
2 ' (X1 ⊗X2)

−ω .

Proof. The assertion in (1) is elementary. For the rest, fix Hilbert space glob-
alizations XHilb

i , with orthonormal bases {em
i } of Ki-finite vectors. Then

XHilb
1 ⊗π X

Hilb
2 is a Hilbert space globalization of X1 ⊗ X2, with orthonor-

mal basis {em
1 ⊗ e

n
2}. (The projective tensor product of two Hilbert spaces is

topologically the same as the Hilbert space tensor product.) Now all of the
canonical globalizations in sight are sequence spaces. For example,
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X∞
1 =

{∑
ame

m
1 | am ∈ C, |am ·m

k| ≤ Ck, all k ≥ 0
}

(cf. Theorem 4.18). The assertion in (3) amounts to the statement that the
projective tensor product of the space of rapidly decreasing sequences on N

with itself is the space of rapidly decreasing sequences on N×N. This is an easy
exercise (using the seminorms implicit in the definition of rapidly decreasing;
compare [Tre67], Theorem 51.5). The remaining cases can be treated in exactly
the same way.

Here is an abstract representation-theoretic version of the Schwartz kernel
theorem.

Corollary 9.10. Suppose X1 and X2 are Harish-Chandra modules of finite
length for G. Write Xdual

1 for the K-finite dual Harish-Chandra module, X∞
1

for its smooth globalization, and so on as in section 4.

(1) There is a natural identification

HomK × K-finite(X1, X2) ' X
dual
1 ⊗X2.

This is a Harish-Chandra module of finite length for G×G.
(2) There is a natural identification (as representations of G×G)

Lstr(X
ω
1 , X

−ω
2 ) ' (Xdual

1 )−ω ⊗π X
−ω
2 ' (Xdual

1 ⊗X2)
−ω.

That is, the space of continuous linear maps from the minimal globaliza-
tion of X1 to the maximal globalization of X2 may be identified with the
maximal globalization of a Harish-Chandra module for G×G.

(3) There is a natural identification (as representations of G×G)

Lstr(X
∞
1 , X−∞

2 ) ' (Xdual
1 )−∞ ⊗π X

−∞
2 ' (Xdual

1 ⊗X2)
−∞.

That is, the space of continuous linear maps from the smooth globalization
of X1 to the distribution globalization of X2 may be identified with the
distribution globalization of a Harish-Chandra module for G×G.

Proof. The assertions in (1) are elementary. The first isomorphism in (2) is
Theorem 9.8 (bearing in mind the fact from Definition 4.23 that (Xω)∗ =
(Xdual)−ω). The second is Lemma 9.9(2). Part (3) is identical.

We want to express this corollary more geometrically in the presence of
geometric realizations of the representations Xi. As a warmup, we consider
the situation of Proposition 5.11.

Corollary 9.11. Suppose P1 and P2 are parabolic subgroups of the reductive
groups G1 and G2 (Definition 5.1), and that Ei is an admissible Harish-
Chandra module for Pi (Definition 5.6). Write

Xi = (IndGi

Pi
)Ki(Ei)

for the induced Harish-Chandra module for Gi as in (5.12), and describe their
various canonical globalizations as in (5.15).
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(1) The space Lstr(X
ω
1 , X

−ω
2 ) of maps from the minimal globalization to the

maximal one may be identified with

(IndG1×G2

P1×P2
)−ω(Lstr(E

ω
1 , E

−ω
2 )),

the space of hyperfunction sections of the bundle on (G1 ×G2)/(P1 × P2)
induced by the corresponding space of linear maps between representations
of Pi.

(2) The space Lstr(X
∞
1 , X−∞

2 ) of maps from the smooth globalization to the
distribution one may be identified with

(IndG1×G2

P1×P2
)−∞(Lstr(E

∞
1 , E−∞

2 )),

the space of distribution sections of the bundle on (G1 × G2)/(P1 × P2)
induced by the corresponding space of linear maps between representations
of Pi.

The second observation was first made by Bruhat, who used it to begin
the analysis of reducibility of induced representations. Here is the idea.

Corollary 9.12. (Bruhat [Bru56], Théorème 6;1). In the setting of Corol-
lary 9.11, assume that G1 = G2 = G. The the space of G-intertwining op-
erators from X∞

1 to X−∞
2 may be identified with the space of G∆-invariant

generalized function sections of the bundle on (G ×G)/(P1 × P2) induced by
Lstr(E

∞
1 , E−∞

2 ). This space can in turn be identified with the space of contin-
uous linear maps

HomP1
(E∞

1 , X−∞
2 ),

or with
HomP2

(X∞
1 , E−∞

2 ).

The first displayed formula (which is a version of Frobenius reciprocity)
identifies intertwining operators with distributions on G/P2 having a certain
transformation property under P1 on acting on the left. Bruhat proceeds to
analyze such distributions using the (finite) decomposition of G/P1 into P2

orbits; equivalently, using the (finite) decomposition of (G×G)/(P1×P2) into
G∆ orbits.

Here is the corresponding result for Dolbeault cohomology.

Corollary 9.13. Suppose q1 and q2 are very nice parabolic subalgebras for
the reductive groups G1 and G2, with Levi factors L1 and L2 (Definition 6.5),
and that Ei is an admissible (qi, Li ∩Ki)-module (Definition 7.20). Set

ni = dimC Yi = Gi/Li.

Write Eω
1 for the minimal globalization of E1, and E−ω

2 for the maximal
globalization of E2. These define holomorphic vector bundles

Eω
1 → Y1 = G1/L1, E−ω

2 → Y2 = G2/L2.
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Define
Xp,ω

1 = H0,n1−p
c (Y1, E

ω
1 )

(Definition 8.2), the compactly supported Dolbeault cohomology of Y1 with co-
efficients in Eω

1 . This is an admissible representation of G1, the minimal glob-

alization of the underlying Harish-Chandra module Xp,K1

1 (Corollary 8.14).
Similarly, define

Xq,−ω
2 = Hn2,q(Y2, E

−ω
2 )

(Definition 8.2), the Dolbeault cohomology of Y2 with coefficients in E−ω
2 . This

is an admissible representation of G2, the maximal globalization of the under-
lying Harish-Chandra module Xq,K2

2 (Theorem 7.21).

(1) The space of continuous linear maps

E−ω
12 = Lstr(E

ω
1 , E

−ω
2 )

is an admissible (q1×q2, L1×L2)-representation (Definition 7.20), and is
the maximal globalization of its underlying Harish-Chandra module. Write

E−ω
12 → Y1 × Y2

for the corresponding holomorphic bundle.
(2) There is a natural identification

Lstr(X
·,ω
1 , X ·,−ω

2 ) ' Hn1+n2,·(Y1 × Y2, E
−ω
12 ).

Here in each case the dot · indicates that one should sum over the possible
indices in question. More precisely,

∑

p+q=m

Lstr(X
p,ω
1 , Xq,−ω

2 ) ' Hn1+n2,m(Y1 × Y2, E
−ω
12 ).

Proof. The cohomology on Y1 × Y2 is computed using a complex of forms

An1+n2,m(Y1 × Y2, E
−ω
12 ).

The fibers of E−ω
12 are tensor products

(Edual
1 )−ω ⊗E−ω

2

(Corollary 9.10(2)). Using this fact, the group-equivariant description of forms
in Proposition 7.17, and standard ideas about tensor products of function
spaces (cf. [Tre67], Theorem 51.6), one can prove that

An1+n2,m(Y1 × Y2, E
−ω
12 ) '

∑

p+q=m

An1,p(Y1, E
dual,−ω
1 )⊗π A

n2,q(Y2, E
−ω
2 )

That is, the complex for Dolbeault cohomology on Y1 × Y2 is the projective
tensor product of the complexes for Y1 and Y2. Now one needs a Künneth
formula for tensor products of nice complexes. (Recall that we know from
Wong’s Theorem 7.21 that the ∂ operators are topological homomorphisms,
and all the spaces here are nuclear Fréchet.) We leave this step as an exercise
for the reader.
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Corollary 9.14. In the setting of Corollary 9.13, assume that G1 = G2 = G.
Then the space of G-intertwining operators

∑

p+q=m

HomG(Xp,ω
1 , Xq,−ω

2 )

may be identified with the space of G∆-invariant Dolbeault cohomology classes
in Hn1+n2,m(Y1 × Y2, E

−ω
12 ).

Because the coefficient bundle E−ω
12 is a tensor product, the Dolbealt co-

homology on Y1 × Y2 has a natural quadruple grading; that is, each term of
the bidegree has a bidegree, reflecting the degrees on Y1 and Y2. We could
therefore write

(9.15) HomG(Xp,ω
1 , Xq,−ω

2 ) ' H(n1,n2),(p,q)(Y1 × Y2, E
−ω
12 ).

Just as in the setting of Corollary 9.12, the group G∆ acts on Y1×Y2 with
finitely many orbits. Everything about the analysis of this setting is slightly
more complicated than in Corollary 9.12; even the Frobenius reciprocity iso-
morphisms described there are replaced by spectral sequences. Nevertheless
one should be able to find some reasonable and interesting statements. We
leave this task to the reader (with some suggestions in section 10).

It is now a simple matter to apply this result to the description of invariant
Hermitian forms on Dolbeault cohomology representations. We begin with
some general facts about Hermitian forms on representations.

Theorem 9.16. Suppose XK is a Harish-Chandra module of finite length for
G. Write Xdual,K for the K-finite dual Harish-Chandra module, and Xherm,K

for the K-finite Hermitian dual; this is the same real vector space as Xdual,K,
with the conjugate complex structure. Write Xω and (Xherm)ω for the minimal
globalizations, and so on as in section 4.

(1) The algebraic Hermitian dual of X is isomorphic to (Xherm)−K . Accord-
ingly there is a natural identification

Hom(X, (Xherm)−K) ' (Hermitian pairings on X).

The conjugate linear automorphism of order two given by Hermitian trans-
pose corresponds to interchanging variables and taking complex conjugate
on Hermitian pairings. Hermitian forms on X correspond to the fixed
points of this automorphism. We have

Homg,K(X, (Xherm)−K) ' (invariant Hermitian pairings on X).

Any linear map on the left must take values in (Xherm)K .
(2) There is a natural identification of the continuous Hermitian dual

(Xω)h = (Xherm)−ω .
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Accordingly there is a natural identification

Lstr(X
ω, (Xherm)−ω) ' (continuous Hermitian pairings on Xω.)

This restricts to

HomG,cont(X
ω, (Xherm)−ω) ' (invariant Hermitian pairings on Xω).

Any linear map on the left must take values in (Xherm)ω.
(3) There is a natural identification of the continuous Hermitian dual

(X∞)h = (Xherm)−∞.

Accordingly there is a natural identification

Lstr(X
∞, (Xherm)−∞) ' (continuous Hermitian pairings on X∞).

This restricts to

HomG,cont(X
∞, (Xherm)−∞) ' (invariant Hermitian pairings on X∞).

Any linear map on the left must take values in (Xherm)∞.
(4) Restriction of linear transformations defines isomorphisms of the (finite-

dimensional) spaces

HomG,cont(X
∞, (Xherm)−∞) ' HomG,cont(X

ω, (Xherm)−ω)

' Homg,K(X, (Xherm)−K).

(5) Any (g,K)-invariant Hermitian form on the admissible Harish-Chandra
module XK extends continuously to the minimal and smooth globalizations
Xω and X∞.

(6) Assume that XK is irreducible. Then XK admits a non-zero invariant
Hermitian form if and only if XK is equivalent to the (irreducible) Harish-
Chandra module (Xherm)K . Such a form has a unique continuous exten-
sion to Xω and to X∞; it has no continous extension to X−∞ or to X−ω

unless XK is finite-dimensional.

In all cases “continuous” Hermitian pairing means “separately continu-
ous.” It turns out that the separately continuous forms here are automatically
continuous; see for example [Tre67], Theorem 41.1.)

Proof. All the assertions in (1) are easy. The first assertion in (2) is essen-
tially Definition 4.23 (with some complex conjugations inserted). The second
then follows from the remarks in Definition 9.7. The third isomorphism is an
obvious consequence. The final assertion in (2) is a special case of the “func-
toriality of minimal globalization” established in [Sch85]. Part (3) is proved
in exactly the same way, using the Casselman-Wallach results. For part (4),
we can change −∞ to ∞, −ω to ω, and −K to K by parts (1), (2), and (3).
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Then these isomorphisms are again “functoriality of globalization.” Part (5)
restates (4) using the facts in (2) and (3). For part (6), the irreducibility of
(Xherm)K is elementary, so the assertion about forms on XK amounts to (1)
and Schur’s lemma. The existence of extensions to Xω and to X∞ is (5).

For the non-existence of extensions to (say) X−∞, one can prove exactly
as in (3) that invariant Hermitian pairings on X−∞ correspond to continuous
G-equivariant linear maps

HomG,cont(X
−∞, (Xherm)∞).

A G-map of admissible group representations must restrict to a (g,K)-map
of the underlying Harish-Chandra modules; and in our setting that map (if
it is non-zero) has to be an isomorphism. From section 4, it follows that a
non-zero map T must restrict to an isomorphism

T∞ : X∞ → (Xherm)∞.

The sequence space descriptions of the globalizations in section 4 show that
such an isomorphism cannot extend continuously to X−∞: a sequence (xµ)
would necessarily (by continuity) map to the sequence (T∞(xµ)). This se-
quence is rapidly decreasing if and only if (xµ) is rapidly decreasing (by the
Casselman-Wallach uniqueness theorem for smooth globalization). If XK is
infinite-dimensional, then X−∞ must include slowly increasing sequences (xµ)
that are not rapidly decreasing, so T (xµ) cannot be defined. The argument
for X−ω is identical.

We turn finally to Hermitian forms on Dolbeault cohomology representa-
tions. So suppose q = l+u is a very nice parabolic subalgebra for the reductive
group G, with Levi factor L. Put

(9.17)(a) Y = G/L, n = dimC Y.

Suppose E is an admissible (q, L∩K)-module (Definition 7.20), with minimal
globalization Eω. Define

(9.17)(b) Eherm = L ∩K-finite Hermitian dual of E,

(cf. Definition 9.6); this is naturally an admissible (q, L∩K)-module. By The-
orem 9.16(2), the maximal globalization of Eherm is precisely the (continuous)
Hermitian dual of Eω:

(9.17)(c) (Eherm)−ω ' (Eω)h.

Define

(9.17)(d) F = HomL ∩ K × L ∩ K-finite(E,E
herm) ' Edual ⊗Eh,

a space of Hermitian forms on E (cf. Definition 9.6 and Corollary 9.10(1)).
This is an admissible (q×q, L∩K×L∩K)-module. Its maximal globalization
is
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(9.17)(e) F−ω = Lstr(E
ω, (Eω)h) ' (Edual)−ω ⊗π (Eh)−ω,

the space of (separately continuous) Hermitian pairings on the minimal glob-
alization Eω (cf. Theorem 9.16(2) and Corollary 9.10(2)). The space F−ω

carries a conjugate-linear involution that we will write as bar. On Hermitian
pairings τ , it is defined by

(9.17)(f) τ (e, f) = τ(f, e).

On linear maps, it is Hermitian transpose (Definition 9.6). In the tensor prod-
uct (the last isomorphism of (9.17)(e)) it simply interchanges the factors.
(This makes sense because Eh is the same real vector space as Edual, with
the opposite complex structure. With respect to the q× q action, we have

(9.17)(g) (X,Y ) · τ = (Y ,X) · τ (X ∈ q, Y ∈ q).

There is a similar formula for the L× L representation.

Corollary 9.18. In the setting of (9.17), define G representations

Xp,ω = H0,n−p
c (Y, Eω),

which are minimal globalizations of the underlying Harish-Chandra modules
Xp. Write Y op for G/L with the opposite complex structure (defined by q

instead of q).

(1) The Hermitian dual of Xp,ω is

(Xp,h)−ω ' Hn,p(Y op, (Eh)−ω).

(2) The space of separately continuous Hermitian pairings on Xp,ω is

H(n,n),(p,p)(Y × Y op,F−ω);

here the coefficient bundle is induced by the representation F−ωof (9.17)(e).
(3) The space of G-invariant Hermitian forms on Xp,ω may be identified with

the space of G∆-invariant real Dolbeault cohomology classes in

H(n,n),(p,p)(Y × Y op,F−ω).

Almost all of this is a formal consequence of Corollary 9.14, Theorem 9.16,
and the definitions. One point that requires comment is the reference to “real”
cohomology classes in (3). Suppose X is any complex manifold, and Xop the
opposite complex manifold: this is the same as X as a smooth manifold, and
the holomorphic vector fields on one are the antiholomorphic vector fields on
the other. Complex conjugation carries (p, q)-forms on X to (p, q) forms on
Xop, and respects ∂. Therefore complex conjugation defines a conjugate-linear
isomorphism of order two
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Hp,q(X) ' Hp,q(Xop).

Beginning with this idea, and the automorphism bar of F−ω, one finds a
conjugate linear isomorphism of order two

H(a,b),(c,d)(Y × Y op,F−ω)→ H(b,a),(d,c)(Y × Y op,F−ω).

(The terms like (a, b) in the bidegree are transposed when we use the isomor-
phism

(Y × Y op)op ' Y × Y op,

which interchanges the factors.) A “real” cohomology class is one fixed by this
isomorphism.

What do the identifications of Hermitian pairings in Corollary 9.18 look
like? An element

(9.19)(a) v ∈ Xp,ω = H0,n−p
c (Y, Eω)

is represented by a compactly supported (0, n−p)-form ṽ on Y , with values in
the bundle Eω. (I will write ṽ as if it were a smooth function, even though it
actually has generalized function coefficients.) We can identify ṽ as a function

(9.19)(b) G→ Hom
(∧n−p

u, Eω
)
,

satisfying a transformation law on the right under L (cf. Proposition 7.17). If
w̃ is another such representative, then ṽ ⊗ w̃ is a function

(9.19)(c) G×G→ Hom
(∧n−p

u ⊗
∧n−p

u, Eω ⊗Eω
)
.

Suppose now that τ is a cohomology class as in Corollary 9.18(2). A repre-
sentative τ̃ may be identified with a smooth map

(9.19)(d) G×G→ Hom
(∧p

u ⊗
∧p

u, F−ω
)
,

with F−ω the space of continuous Hermitian pairings on Eω. Consequently
the formal product τ̃ ∧ (ṽ⊗ w̃) is a (2n, 2n) form on Y ×Y op taking values in

(9.19)(e) F−ω ⊗Eω ⊗Eω

At each point of G, we can apply the form value to the two vector values:

(9.19)(f) F−ω ⊗Eω ⊗Eω → C, φ⊗ e⊗ f 7→ φ(e, f).

This defines a complex-valued (2n, 2n)-form that we might sensibly denote
τ̃ (ṽ, w̃). This form is compactly supported because v and w are. It has gen-
eralized function coefficients, meaning that it is defined as an element of the
dual space of smooth functions on Y × Y op. We may therefore integrate it
(that is, pair it with the function 1) and define
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(9.19)(g) 〈v, w〉τ =

∫

Y ×Y op

τ̃ (ṽ, w̃)

This is the identification in Corollary 9.18(2).
Here is a construction of unitary representations.

Corollary 9.20. In the setting of Definition 7.20, recall that Z = K/L ∩
K is an s-dimensional compact complex submanifold of the n-dimensional
complex manifold X = G/L. Write r = n− s for the codimension of Z in X.
Assume that V (2) is an irreducible unitary representation of L of infinitesimal
character λL ∈ h∗ (cf. (7.24)). Write V ω for the subspace of analytic vectors
in V (2). Regard V ω as a (q, L)-module by making u act by zero, and let Vω be
the corresponding holomorphic bundle on X. Assume that λL− ρ(u) is weakly
antidominant for u; that is, that −λL + ρ(u) is weakly dominant. Then

(1) H0,q
c (X,Vω) = 0 unless q = r.

(2) If L = Lmax (Definition 6.5), then H0,r
c (X,V) is irreducible or zero.

(3) The representation H0,r
c (X,Vω) admits a natural continuous positive def-

inite invariant Hermitian form. Completing H0,r
c (X,Vω) with respect to

this form defines a unitary representation of G.

Suppose in addition that λL − ρ(u) is strictly antidominant for u. Then
H0,r

c (X,Vω) is not zero.

This result is immediate from Corollary 9.18 and Corollary 8.15.

10 Open questions

My original goal in these notes was to write down (explicitly and geomet-
rically) the pre-unitary structures provided by Corollary 9.20. According to
Corollary 9.18, this amounts to

Question 10.1. In the setting of Corollary 9.20, write F ω for the space of
continuous Hermitian pairings on the analytic vectors V ω for the unitary
representation V (2) of L. Regard Fω as a smooth L × L representation, and
write Fω for the corresponding holomorphic bundle on Y × Y op. Corollaries
9.18 and 9.20 provide a distinguished G∆-invariant Dolbeault cohomology
class in

H(n,n),(s,s)(Y × Y op,Fω),

with s the complex dimension of K/L∩K. This class is non-zero if λL− ρ(u)
is strictly anti-dominant for u. The problem is to give a simple geometric
description of this class; perhaps to write down a representative (2n, 2s) form.
The space of forms F ω contains a distinguished line corresponding to the
invariant form on V ω. The difficulty is that this form is only L∆-invariant, so
the line does not define a one-dimensional subbundle of Fω (except along the
diagonal in Y × Y op).
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In the case of Verma modules, construction of the Shapovalov form de-
pends entirely on understanding the universal mapping property of Verma
modules. In our setting, Question 10.1 should be related to questions of Frobe-
nius reciprocity for Dolbeault cohomology representations, and these are in
any case of interest in their own right.

Question 10.2. Suppose E is an admissible Harish-Chandra module for L,
with maximal globalization E−ω and minimal globalization Eω . Regard these
representations of L as (q, L)-modules, by making u act by zero. If X is any
smooth admissible representation of G, we would like to calculate

HomG(X,Hn,p(Y, Eω)).

This should be related to (in fact equal to if L is compact)

HomL(Hn−p(u, X), E−ω).

We will offer a more precise statement in Conjecture 10.3. What appears in
the second formula is the cohomology of the Lie algebra u with coefficients in
X . This is at least formally a representation of L; it is not clear how to define
a nice topology.

Similarly, we would like to calculate

HomG(H0,q
c (Y, Eω), X).

This should be related to (equal to if L is compact)

HomL(Eω, Hq(u, X)).

Conjecture 10.3. (cf. [KV95], Theorem 5.120). Suppose XK is an admissible
Harish-Chandra module for G, with canonical globalizations Xg (for g = ω,
g = ∞, and so on). Suppose q = l + u is a very nice parabolic subalgebra
of g with Levi factor L (Definition 6.5). It is known that the Lie algebra
cohomology Hp(u, XK) is an admissible Harish-Chandra module for L. Here
are the conjectures.

(1) The u-cohomology complexes

Hom
(∧p

u, Xg
)

have the closed range property, so that the cohomology spaces inherit nice
locally convex topologies. That L acts continuously on these cohomology
spaces is easy.

(2) The representations of L on these cohomology spaces are canonical glob-
alizations:

Hp(u, Xg) ' [Hp(u, XK)]g

for g = ω, g =∞, and so on.



84 David A. Vogan, Jr

(3) In the setting of Question 10.2, there are two first quadrant spectral se-
quences with E2 terms

Extr
L(Hn−t(u, Xω), E−ω)

and
Exta

G(Xω, Hn,b(Y, E−ω))

with a common abutment.
(4) There are two first quadrant spectral sequences with E2 terms

Extr
L(Eω , Ht(u, X−ω))

and
Exta

G(H0,b
c (Y, Eω), X−ω).

Statement (1) makes sense with Xg replaced by any smooth globalization
ofXK ; one should ask only that the cohomology be some smooth globalization
of the right Harish-Chandra module. I have not thought carefully about this,
but I know no reason for it to fail. The specific version in (1) here ought to
be fairly easy to prove, however.

Similarly, statements (3) and (4) should probably be true with Xω and
X−ω replaced by any smooth globalization of XK . The specific versions here
are those most closely related to the construction of forms in Corollary 9.20.

In the case of the minimal globalization (the case g = ∞), generaliza-
tions of statements (1) and (2) of these conjectures have been established by
Tim Bratten in [Bra98]; he considers arbitrary parabolic subalgebras endowed
with real θ-stable Levi subalgebras. The generalization of (1) for the maximal
globalization follows easily by a duality argument.

Bratten has pointed out that the generalization of (2) cannot extend to
the case of real parabolic subalgebras and distribution or maximal globaliza-
tions. Here is one reason. Suppose that P = LU is a real parabolic subgroup
of G, and that XK is an irreducible Harish-Chandra module with maximal
globalization X−ω. Harish-Chandra’s subquotient theorem guarantees that
H0(u, X−ω) 6= 0. (Simply embed the dual representation, which is a minimal
globalization, in a space of analytic sections of a bundle on G/P . Then evalua-
tion of sections at the identity coset eP defines a U -invariant continuous linear
functional on the dual representation; that it, a U -invariant vector in X−ω.
The same argument applies to the distribution globalization.) But H0(u, XK)
is equal to zero in almost all cases, contradicting the analogue of (2).

The spaces ExtL and ExtG are in the category of continuous represen-
tations of G. In order to interpret Conjecture 10.3, it would be helpful to
have

Conjecture 10.4. Suppose XK and Y K are admissible Harish-Chandra mod-
ules for G, with canonical globalizations Xg and Y g , for g = ω, g = ∞, and
so on. Then the standard complex
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HomK

(∧p
(g/k, L(Xω, Y −ω)

)

has the closed range property. Its cohomology is isomorphic to Extg,K(XK ,Y K).
The same result holds with ω replaced by ∞.

Results at least very close to this may be found in [BW80], Chapter 9; I
have not checked whether this statement follows from their results.
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