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Making repn theory algebraic

G conn reductive alg gp def over R
Natural problem: Describe irr repns (π,Hπ) of G(R).
Function-analytic: Hπ is Hilbert space.
To do algebra: fix K (R) ⊂ G(R) max compact.
Analytic reps of K (R) = algebraic reps of K (Weyl’s
unitarian trick)
HK
π = K (R)-finite vecs in Hπ HC module of π

Harish-Chandra: HK
π is (g,K )-module (alg rep of

g = Lie(G) with compatible alg rep of K ).
HC: analytic G(R) reps = algebraic (g,K )-mods.
Π(G(R)) = Π(g,K ) = equiv classes of irr mods.
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From (g, K )-mods to constructible sheaves
X = flag var of G, d = dim X = #(pos roots)

= variety of Borel subalgebras of g = Lie(G)

X is “universal boundary” for G-homog spaces.

First made precise by Helgason conj
(Kashiwara-Kowata-Minemura-Okamoto-Oshima-Tanaka).

Beilinson-Bernstein loc thm: any rep (more or less)
appears in secs of (more or less) eqvt line bundle on X .

Which bundle! infl char = action of cent of U(g).

Example: F fin diml irr rep of G line bdle LF → X ; fiber
at b = h + n is lowest wt space

LF ,b = F/nF = H0(n,F ); F = alg secs of LF

V fin length (g,K )-mod HF (V ) ∈ K -eqvt derived
category of constructible sheaves on X .

Cohom Hi
F (V ) is K -eqvt constr sheaf on X ; fiber is

Hi
F (V )b = Homh(F/nF ,Hi+d (n,V )).
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Irreducible modules and perverse sheaves
Given irr fin-diml rep F of G, have a functor HF from finite
length (g,K )-mods to K -eqvt derived category of constr
sheaves on flag var X .

1970s: for V irr, HF (V ) 6= 0 if (Harish-Chandra,
Langlands, Schmid) and only if (Casselman-Osborne) V
has same infl char as F .

Theorem (Beilinson-Bernstein, Kashiwara/Mebkhout,. . . )
Map V → HF (V ) is bijection from irr (g,K )-mods, infl char of F
to irr K -eqvt perverse sheaves on X.

irr K -eqvt perverse sheaves on X

↔ pairs (O,S) (K -orbit on X , irr eqvt local system)

↔
n

(B, σ) | B ⊂ G Borel, σ ∈ (B ∩ K )/(B ∩ K )0b o
/K

↔
n

(H,∆+, σ) | H θ-stable CSG, σ ∈ (H ∩ K )/(H ∩ K )0b o
/K

↔
n

(H(R),∆+, σ) | H(R) real CSG, σ ∈ H(R)/H(R)0b o
/G(R).
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What KL polys tell you

ΠF (G(R)) = params for irr reps, infl char of F
=
{

(H(R),∆+, σ)
}
/G(R).

x ∈ ΠF (G(R)) I(x) standard rep (like Verma
module), J(x) irr quotient.
Recall d = dim X ; put dx = dim(K -orbit for x).

HF (I(x)) = loc sys S(x)[dx ] on one K -orbit
HF (J(x)) = perverse extension P(x)

Coeff of t i in KL poly Py ,x is
mult of loc sys S(y) in cohom P−dx +2i(x).

= mult of σy in Homhy (F/nyF ,H(d−dx )+2i(ny , J(x))).

J(x) =
∑
y≤x

Py ,x (1)(−1)dy−dx I(y).
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The Hecke algebra

Interested in categoryM(X ,K ) of K -eqvt perverse
sheaves on X .
Analogue over finite field Fq: vector space

M(X ,K )q = {K (Fq)-invt functions on X (Fq)}.

This vec space is module for Hecke algebra at q
Hq = {G(Fq)-invt functions on X (Fq)}.

M(X ,K ) ind of field; irrs are ratl /Fq.
Frobenius F is alg aut of G, K , X . . . Fixed pts =
Fq-ratl points.
Alt sum of traces of F on fibers of cohomology
sheaves at rational points maps (ratl) objects of
M(X ,K ) to M(X ,K )q.
Lusztig: relate Hq action to geometry of perverse
sheaves compute Py ,x .
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Disconnected groups
Want to consider G′ ⊃ G, G′/G finite.

Rep theory for finite groups harder than for Lie groups,
because Lie algebra linearizes problems.

So “arbitrary” disconnected reductive G′ ⊃ G too hard.

Easy/useful special case: G′/G finite cyclic.

Action of G′ on G candidates corr to

1→ Int(G)→ Aut(G)→ Out(G)→ 1

Fix G ⊃ Bp ⊃ Hp  Πp simple roots, root datum

(X ∗(Hp),Πp,X∗(Hp),Π∨p ).

Pinning p is Bp ⊃ Hp plus choice of maps

φp(α) : SL(2)→ G, α ∈ Πp.

Now automorphism group sequence split by

Autp(G) =def auts permuting {φp}
' root datum automorphisms ' Out(G).
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Pinned disconnected groups

Cplx conn reductive G, pinning p, Cartan inv θ preserves
Hp ⊂ Bp (fundamental), almost permutes {φp}.

Fix order two root datum aut δ  δp ∈ Autp(G0).

Order two not critical, but easier and covers current applications.

G∆ =def G o {1, δp} our model disconn reductive group.

δpθ = θδp, so δp normalizes K ; K ∆ =def K o {1, δp}.

Ex: δ induced by θ, so θ = Ad(t)δp (t ∈ Hp ∩ K ).

Ex: G = SO(2n,C), Hp = SO(2,C)n,

θ = Ad(diag(1, . . . ,1,−1, . . . ,−1,1,−1))

(2p + 1 1s, 2q + 1 −1s); means
G(R) ' SO(2p + 1,2q + 1). Have

δp = Ad(diag(1, . . . ,1,−1));

so G∆ ' O(2n,C).
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Reps of pinned disconnected groups
G∆ =def G o {1, δp}, K ∆ =def K o {1, δp}.
V any (g,K )-module V δp same vector space; actions of
g, K twisted by δp. Gives action of ∆ on Π(g,K ).

First way to make irr (g,K ∆)-module: start with V 6' V δp

irr, V ∆ = V ⊕ V δp . Gives bijection

V ∆ ∈ Π(g,K ∆) reducible on (g,K )

↔ two-elt orbits {V ,V δp} of ∆ on Π(g,K ).

Second way to make irr (g,K ∆)-module: start with
V ' V δp irr; choose intertwining op

Dp : V → V δp , D2
p = Id

(two choices diff by sgn). Extend V to V ∆, making δp act
by Dp. Gives 2-to-1 map

elts V ∆ of Π(g,K ∆) irr on (g,K )

↔ fixed pts V of ∆ on Π(g,K ).
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Application of disconnected groups

δ root datum aut induced by Cartan inv θ.
δ is trivial iff rk G = rk K .

Theorem (consquence of Knapp-Zuckerman)
V irr (g,K )-mod of real infl char. Then V admits invt
Hermitian form iff V ' V δ.

Corollary (Adams-van Leeuwen-Trapa-V-Yee)
Every irr (g,K ∆)-mod V ∆ of real infl char admits
preferred invt Hermitian form.

Case V ∆ = V ⊕ V δp : form “hyperbolic,” V isotropic.
Case V ∆  V irr: V admits invt Herm form. Two
exts V ∆ to (g,K ∆)-mod! two invt forms on V .
Relate invt forms on irrs to invt forms on std modules
! compute char formulas for (g,K ∆)-mods.
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Classifying irr mods for pinned disconn gps

F fin-diml irr of G, lowest weight λp ∈ X ∗(Hp).

Twist F δp = irr of lowest weight δλp; isom to F iff λp is
fixed by root datum aut δ.

Case F 6' F δp : no irr of infl char F has invt Herm form; irr
(g,K ∆)-mods all induced from irr (g,K )-mods.

Case F ' F δp : fix canonical extension F ∆ of F to G∆ rep,
δp acts triv on Bp-lowest wt space.

Get G∆-eqvt alg line bdle LF ∆ on X .

Localization + Riemann-Hilbert gives functor HF ∆ from fin
length (g,K ∆)-mod to K ∆-eqvt derived category of constr
sheaves on X .

Theorem (Beilinson-Bernstein, Kashiwara/Mebkhout,. . . )
Map V ∆ → HF ∆ (V ∆) is bijection from irr (g,K ∆)-mods, infl
char of F ∆ to irr K ∆-eqvt perverse sheaves on X.
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K ∆-eqvt irr perverse sheaves
B ⊂ G Borel B∆ = NG∆ (B).

K ∆ preserves K · b⇔ B ∩ K index two in B∆ ∩ K ∆

⇔ B∆ \ B meets K ∆ \ K in elt d
K -eqvt loc sys Sσ extends to K ∆-eqvt

⇔ automorphism d fixes char σ of (B ∩ K )/(B ∩ K )0.
First way to make irr K ∆-eqvt perverse sheaf: start with
P 6' Pδp irr, P∆ = P⊕ Pδp .

Built from local systems on orbits via classical KL polys.

Second way to make irr K ∆-eqvt perverse sheaf: start
with P ' Pδp irr; choose isom

Dp : P→ Pδp , D2
p = Id

(two choices diff by sgn). Make δp act by Dp; P K ∆-eqvt.

“First way” local systems in P! classical KL polys.

New KL polys Pδ
y,x : x , y K ∆-eqvt loc systems irr for K .

Coeff of t i in Pδ
y,x is

mult[local sys S(y)] − mult[local sys S(−y)] in P−dx +2i (x).
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The twisted Hecke algebra
M(X ,K ∆) = K ∆-eqvt perverse sheaves on X .

Over Fq : use Frobenius map F twisted by δp to get
quasisplit form G(Fq) ⊃ K (Fq)

Easy Fq-analogue of perverse sheaves is

M(X ,K ∆)q = {K (Fq)-invt functions on X (Fq)}.
This vec space is module for Lusztig’s quasisplit Hecke
algebra at q

Hδq = {G(Fq)-invt functions on X (Fq)}.

Basis indexed by W δ = fixed subgp of root datum aut on
W ; gens indexed by Πp/∆, aut orbits of simple roots.

Relations involve dimensions of “restricted root” subgps:
(very particular) unequal parameter Hecke algebra.

Alt sum of traces of F on fibers of cohom sheaves at ratl
pts maps (ratl) objects ofM(X ,K ) to M(X ,K )q .

Lusztig: relate Hδq action to geom compute Pδ
y,x .
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