
Branching to
maximal compact

subgroups

David Vogan

Introduction

Helgason’s thm
classically

Helgason’s thm
and alg geometry

Zuckerman’s thm

From K to G and
back again

Summary

Branching to maximal compact
subgroups

David Vogan

Department of Mathematics
Massachusetts Institute of Technology

Helgason Conference, 15 August 2007



Branching to
maximal compact

subgroups

David Vogan

Introduction

Helgason’s thm
classically

Helgason’s thm
and alg geometry

Zuckerman’s thm

From K to G and
back again

Summary

Outline

Introduction

Helgason’s theorem classically

Helgason’s theorem and algebraic geometry

Interpreting the branching law: Zuckerman’s theorem

Relating representations of K and G



Branching to
maximal compact

subgroups

David Vogan

Introduction

Helgason’s thm
classically

Helgason’s thm
and alg geometry

Zuckerman’s thm

From K to G and
back again

Summary

Why restrict to K ?

G cplx ⊃ G(R) real ⊃ K (R) maxl compact
Want to study representations (π,Hπ) of G(R), but
these are complicated and difficult.
Reps of K (R) are easy, so try two things:

understand π|K (R); and
use understanding to answer questions about π.

Sample question: how often does trivial
representation of K (R) appear in π|K (R)?
Answer: multiplicity zero unless π is (quotient of)
spherical principal series, then one.
Application: π can appear in functions on G(R)/K (R)
only if π spherical; then exactly once.
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Minimal parabolic subgroup

Write θ = Cartan involution of G(R) and G;

K (R) = G(R)θ (real groups),

K = Gθ (complex algebraic groups).

Iwasawa decomp G(R) = K (R)A(R)0N(R).
Here A = maxl cplx torus where θ acts by inverse.

L(R) = centralizer of A in G(R)

P(R) = L(R)N(R).

Group P(R) is minimal parabolic subgroup of G(R).
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Helgason’s theorem (classical picture)

Minimal parabolic is P(R) = M(R)A(R)0N(R).
Fin-diml of G(R)! highest wt = N(R)-invts.

highest weight = δ ⊗ ν, δ ∈ M̂(R), ν ∈ Â(R)0.

Theorem (Helgason)

1. Rep of hwt δ ⊗ ν has K (R)-fixed vec ⇐⇒ δ = triv.
2. triv⊗ ν is a highest wt ⇐⇒ ν is dom even int wt.

Says: K (R)-fixed vecs! M(R)N(R)-fixed vecs.
Reason: M(R)N(R) = deformation of K (R).
Conjugate K (R) by elts of A(R)0, limiting subgroup.
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Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.
Helgason’s theorem concerns compact K (R),
minimal parabolic P(R).
Theme says complexify, considering algebraic
groups K = Gθ and P = LN parabolic in G.
Continuous reps of K (R)! algebraic reps of K .
Theme says consider projective algebraic variety

P = subgps of G conjugate to P,

a partial flag variety.
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Helgason’s theorem (alg geometry picture)

Proposition
K · P is open in P: K/M ' K · P ⊂ P ' G/P. Here M =
cplx pts of M(R) = cent in K of A.

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of G = alg secs of equiv vector bdle on P.
2. Gives {irr alg reps of G} ↪→ {irr alg reps of L}.
3. L̂ = {(δ, ν) ∈ M̂ × Â | δ = ν on M ∩ A}.
4. {alg secs of δ ⊗ ν on P} ↪→ {alg secs of δ on K/M}.
5. {Alg rep of G}|K ↪→ IndK

M({highest wt}|M)

Picture: P = K/M
⋃
{divisors}.

Section on K/M  pole order on each divisor.
Section extends to P ⇐⇒ no pole on any divisor.



Branching to
maximal compact

subgroups

David Vogan

Introduction

Helgason’s thm
classically

Helgason’s thm
and alg geometry

Zuckerman’s thm

From K to G and
back again

Summary

Helgason’s theorem (alg geometry picture)

Proposition
K · P is open in P: K/M ' K · P ⊂ P ' G/P. Here M =
cplx pts of M(R) = cent in K of A.

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of G = alg secs of equiv vector bdle on P.
2. Gives {irr alg reps of G} ↪→ {irr alg reps of L}.
3. L̂ = {(δ, ν) ∈ M̂ × Â | δ = ν on M ∩ A}.
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Geometric branching law from G to K

Repn of G = alg secs of vector bdle on P
P = K/M

⋃
{divisors D1, . . . , Dr}

Divisors correspond to simple restricted roots of A.

Bdle on P  I0(δ) = IndK
M(δ) = secs on K/M.

Bdle on P  Ij(τj) = secs with pole along divisor Dj .
Bundle τj depends on δ and on character ν of A.

If ν large on simple root j , then Ij (τj ) is small.

Sections on P ≈ I0(δ)−
∑r

j=1 Ij(τj).
Branching law: describes restr to K of rep of G.
As ν tends to infinity, G representation grows toward I0(δ).
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Terms in the branching law

(fin diml rep of G)|K ≈ I0(δ)−
r∑

j=1

Ij(τj).

What do the terms on the right mean?
Classical picture:

I0(δ) = IndK (R)
M(R)(δ) =

(
IndG

P(R)(R)(δ ⊗ ν ⊗ 1
)
|K (R),

restr to K (R) of principal series rep of G(R).
I0 = inf-diml rep I0, containing F as a subrep.
Geometry: G(R)/P(R) = P(R) is nice real
subvariety of G/P = P.

I0 = analytic sections of bundle on P(R)

F = sections extending holomorphically to P.

Later Ij are G(R) reps! other pieces of I0.
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Setting for Zuckerman’s theorem

First replace P by B = Borel subgroups of G,
complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on B with finitely many orbits.
2. Unique open orbit! Borel subgp of Iwasawa P.
3. General orbit! pair (H,∆+) mod G(R) conjugation.

H(R) = Cartan in G(R), ∆+ = pos roots for H in G.
4. Std rep I(τ) restr to K ! τ = (Z , ξ)

Z = orbit of K on B, ξ K -eqvt line bdle on Z .

Bundle ξ! alg char of H ∩ K .
Bundle must be “positive” (as in Borel-Weil).
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Zuckerman’s theorem

F finite-diml irr rep of G line bdle λ on B.
K -orbit Z ⊂ B  parameter τ(Z , F ) = (Z , λ|Z ).
For each K -orbit Z , std rep restr to K I(τ(Z , F )).

Theorem (Zuckerman)
If F any fin-diml irr rep of G (cplx reductive), then

F |K =
∑
Z⊂B

(−1)codim(Z )I(τ(Z , F )).

Sum is over orbits of K (complexified max compact) on flag variety B.

1st term (codim 0) princ series ↔ M rep F N .
Next terms (codim 1) poles on divisors P − K/M.
Higher terms correct for double counting.
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Example: SL(2, C)

G(R) = SL(2, C), K (R) = SU(2).
G = SL(2, C)× SL(2, C), K = SL(2, C)∆.
Finite diml of G Fa,b = Ca ⊗Cb, (a and b pos ints).
Irr of K  τx = highest weight x (x ∈ N).
Std rep I(m) = sum of reps of K cont. wt m (m ∈ Z).
Zuckerman formula:

Fa,b|K = I(a− b)− I(a + b)

=
∑
τ∈bK

(mτ (a− b)−mτ (a + b))τ

= τ|a−b| + τ|a−b|+2 + · · ·+ τa+b−2

M representation on highest weight for G is a − b.

Helgason’s thm: triv of K appears ⇔ a = b.
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What next?

Helgason thm when fin diml restr to K is spherical
led us to Zuckerman thm descr of fin diml restr to K .
What’s the next step?
Zuckerman formula (fin diml) = (alt sum of std reps)
suggests (any irr rep) ?

= (integer comb of std reps).
Leads to Kazhdan-Lusztig theory, not dull.
But orig Helgason thm suggests instead looking for
formulas (irr of K ) ?

= (alt sum of std reps).
Application: invert the matrix above to get branching
laws (std rep for G(R)) = (sum of irrs of K ).
Won’t write theorem for general G (painful notation);
pass directly to examples. . .
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Won’t write theorem for general G (painful notation);
pass directly to examples. . .
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Example: SL(2, C)

G(R) = SL(2, C), K (R) = SU(2).
Irr of K  τx = rep of highest wt x (x ∈ N).
Std rep I(m) = sum of reps of K cont. wt m (m ∈ Z).
Write each irr of K = alt sum of std reps of G(R).
m + 1-diml irr of K is τm = I(m)− I(m + 2).
Invert:

I(m) =(I(m)−I(m+2))+(I(m+2)−I(m+4))+(I(m+4)−I(m+6))···

= τm + τm+2 + τm+4 · · · .
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Example: SL(2, R)

G(R) = SL(2, R), K (R) = SO(2).
Chars of K  τk (k ∈ Z).
Princ series Ips = sph princ series restr to K .
Hol disc series I+(m) (m ∈ N HC param).
Antihol disc series I−(m) (m ∈ −N HC param).
Write each irr of K = alt sum of std reps of G(R).
τ0 = Ips − I+(0)− I−(0)

τm = I+(m − 1)− I+(m + 1) (m > 0).
τm = I−(m + 1)− I−(m − 1) (m < 0).
Invert:

Ips =(Ips−I+(0)−I−(0))+(I+(0)−I+(2))+(I−(0)−I−(−2))+···

= τ0 + τ2 + τ−2 + · · · .

I+(m) =(I+(m)−I+(m+2))+(I+(m+2)−I+(m+4))+···

= τm+1 + τm+3 + · · · (m∈N)
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I Helgason’s theorem on spherical fin-diml reps
connects Borel-Weil picture of fin-diml reps. to
inf-diml reps.

I Zuckerman’s theorem extends this to description of
fin-diml rep as alt sum of “standard” inf-diml reps.

I Variation on this theme writes any fin-diml of K as alt
sum of standard inf-diml reps.

I Inverting these formulas writes standard inf-diml as
sum of irrs of K .
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