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Old reasons for listening to Langlands e
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Introduction

GL,, everybody’s favorite reductive group/local F.

Want to understand GL,(F) = set of irr repns (hard).
Classical approach (Harish-Chandra et alia 1950s):
1. find big compact subgp K c GL,(F);

2. understand K (supposed to be easy?)
3. understand reps of GL,(F) in terms of restriction to K.

Langlands (1960s) studies anTF) (global reasons).
Global suggests: GL,(F) « n-diml reps of Gal(F/F).

Better: GL/,,(\F) «» n-diml reps of Weil group of F.

Harris/Taylor: Gf,,TF). & n-diml of Weil-Deligne(F).

Meanwhile (Howe et alia 1970s. ..) continue GL(F)lx.
One difficulty (of many): K not so easy after all.

First question: what’'s Langlands tell us about K?
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Introduction
This is introduction number two.
Suppose K is a compact Lie group.
Famous false fact: we understand K.
Proof we don’t: O(n) = maximal compact in GL,(R).
Fix irreducible 7 € O/(\n)
How do you write down 77 (“Highest weight??”)
How do you calculate mult of 7 in principal series?
Second question is branching O(n)|o1)n.
Today: O/(\n) «» temp irr of GL,(R)/unram twist
«w» certain Langlands parameters. ..

Second question: what’s Langlands tell us about K?
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This is introduction number three.

Suppose G is a reductive group defined over F,.

Deligne-Lusztig and Lusztig described irr reps of G(Fg).

Can their results be formulated in spirit of Langlands?

Deligne-Lusztig start with ratl max torus T c G, char

6: T(Fq) - C~.

Lusztig: (T, 6) ~ semisimple conj class x € Y G(Fy).

This is a step in the right direction, but not quite a
Langlands classification.

—

Third question: what’s Langlands tell us about G(Fq)?
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K compact connected Lie > T maximal torus.

X*(T) =qet lattice of chars A: T — S' c C* Compact Lie
X.(T) =qet lattice of cochars &: S' — T.

Adjoint rep of T on cplx Lie algebra decomposes

fc=tcod Z foa;
aeX*(T)\{0}
defines finite set R = R(K, T) of roots of T in K.
Each root « gives rise to root TDS
$o: SU(2) » K, imdg, ct+tco +tc-a

defined up to conjugation by T.

Galdiagonal ~ @ : 81 — K coroot for a. Get
RY = RY(K,T) c X.(T),

(finite set in bijection with R) coroots of T in K.
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Saw: cpt conn Lie K > T max torus ~» (X*, R, X,, RY):
dual lattices (X*, X.), finite subsets (R, R") in bijection.  CompactLie
Pair (e, @") ~»
Se: X' = X*, 8,(1) =A-(, @), S ='su: X = X..
PROPERTIES: for all « € R

1. RD1: (a,a@") =2 (sos?=1d)

2. RD2:s,R =R, syR"=R", (suB)" =sav(B")

3. RDreduced: 2a ¢ R, 2a" ¢ RY.
Axioms < root datum; W = (s, | @ € R) = Weyl group.
Root datum is based if we fix (R*, RV"") (pos roots).
Axioms symm in X*, X.: (X,, R¥, X*, R) = dual root datum.
Theorem (Grothendieck)

1. Each root datum «v unique cpt conn Lie grp.
2. k = k: root datum «v unique conn reductive alg grp /K.
3. k # k: red alg grp /k ~ Gal(k/k) ~ based root datum.



Representations of compact conn Lie grps

Recall cpt conn Lie K > T max torus ~» (X*, R, X,, R").

(X*,R,X.,R") ~» Kc complex conn reductive alg
= Spec(K-finite functions on K)
K = max compact subgp of Kc.
irr reps of K = irr alg reps of Kc = X*/W.
VK =qef cplx alg group «~ (X., RY, X*, R) cplx dual gp.
Theorem (Cartan-Weyl)
1. Ko (homs ¢e: ST — VK)/(VK-conj), E(¢c) « ¢e.
2. Each side is X*/W.
Theorem (Zhelobenko) Write RE = cont irr reps of K¢
1. Kz © (homs ¢: C* — VK) / (YK-conj), X(¢) < ¢.
2. X(¢)lk ~ Ind¥(Cy, ).
3. E(¢ls1) = lowest K-type of X(¢).

L-groups and K

David Vogan

Compact Lie
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G complex reductive alg group, I' = Gal(C/R). Fix
Compact Lie

inner class of real forms o = action I' ~ (based root datum).
Definition Cartan involution for o is inv alg aut 6 of G such
that 00 = 6o is compact real form of G.

inner class of real forms o = inner class of alg invs 6.

Definition L-group for (G, {o}) is LG =get VG = T.
Definition Weil grp We = (C%,),1 5 C* = W - T — 1.
Definition Langlands param = ( ¢ We - LG )/ conj by VG.
N’
ss image, respect [
Theorem (Langlands, Knapp-Zuckerman)

1. Param ¢ ~> L-packet (¢) of reps 7 € G(R, 07).
2. L-packets disjoint; cover all reps of all real forms.
3. N(¢) indexed by (YG*/¥Gy)~

4. (3)is (correctably) false. See Adams-Barbasch-Vogan.
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Compact Lie

G cplx reductive endowed with inner class of real forms o «v»

inner class of alg invs 6; -G = L-group.

K = G = cplxified max cpt of G(R, o).

Defn Compact Weil grp Wz = (S™,j),1 = S' - W —» T — 1.

Defn Compact param = (qbc: Wee — e )/ conj by VG.
———

Theorem. rospect I

Param ¢, ~» Lc-pkt Me(¢c) of irr reps y; of Kj = Gf.

L.-packets disjoint; cover all reps of all K = GY.

Mo(gc) indexed by (VG /Y Gy° )~

{lowest K-types of all 7 € M(¢)} = MNc(dlw,)-

(8) is (correctably) false. ..

A A
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G = GLon(R), G = GLon(C) xT.
Cartan involution is g = 'g~!, K = O5,(C).
Recall W = (S, )y, jej ' =e ™ j2=-1¢€S".
Theorem says Oy, <~ 2n-diml reps of Wr .
Irr reps of Wr ¢ are

1. 1-diml trivial rep 64 (e) =1, 6.(j) = 1.

2. 1-dimlsignrep 6_(e?) =1, 6_(j) = -1.

3. For m > 0 integer, 2-dimensional representation

o (€™ 0 ~ [0 1
(@) =% o) = o)
n-dimensional rep «v» pos ints my > --- > m, > 0, non-neg
ints (a1,...,ar,p,q)so2n=2a;+---+2a,+p+q.
Repis aitm, + -+ atm, + pé+qo-.
Highest weight for O,,, rep is

Compact Lie

(m1 +1,...,m1 +1,.--,mr+17---amr+1517---a1109---,0)'
-
ay times ar times min(p,q)  Ig-pl/2
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k = Fq finite field; I = Gal(k/k) = Il(FmZ/mZ.
Generator is arithmetic Frobenius F* = gth power map.

Finite Chevalley
k-ratl form of conn reductive alg G = action of [ on

based root datum = fin order aut.

Definition L-group for G/k is "G =gt VG > T.

Here ¥ G taken over C, or Q,, or. .. : field for repns.

X .

g Wy — T trivial.

Definition Weil grp Wy = limF
—

m
Definition Langlands param = (p: Wi —» VG )/ conj by VG.
————
respect '
o(Wy) € VG (not L G) since Wy — 1 €T.

Respect ' = exists f € ' G mapping to F*, Ad(f)¢(y) = p(F*y).
keep coset f'G;° as part of p.

Deligne-Langlands param ¢ = ((p¢, Ny) (N e Vgrs, Ad(f)N = qN)).
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G > B> Tconnredalg /Fq, F: G — G Frobenius.
Get I action on W permuting gens ~» "W = W =T i vl
w = wF (another) Frobenius morphism T — T.

Deligne-Lusztig built chars of G(Fq) from virt chars R/ :
T’ ratl maxl torus, 6’ char of T"(Fg).

Proposition. For any rational = F-stable max torus
T’ c G, 3! W-conjclass of wso (T',F) = (T, w).
Prop (Macdonald) T# = {p: Wi — VT | wF*¢(y) = ¢(F*y)).
Conclusion: L-params p’ for G = DL-pairs (T7,¢’).

R} and R} overlap < p’, p” ¥ G-conjugate.

—

G(Fq) partitioned by Langlands parameters.
So far this is Deligne-Lusztig 1976: (relatively) easy.

Using Deligne-Langlands params to shrink L-pkts harder. ..



Lusztig’s big orange book (s
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Finite Chevalley

G > B> T conn red alg /Fq, - G L-group.
Def ¢ = (o, N) special if N € Vg is special nilp.
Recall that ¢ remembers coset ¥ Gg N,

Theorem (Lusztig). Irreducible reps of G(F,) are
partitioned into packets IM(¢) by special DL parameters
¢. The packet N(¢) is indexed by irr chars of Lusztig
quotient of ¥ G¢/V GY.

Missing params (non-special N, comp rep not factoring)
~» reps of smaller reductive groups.
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G > B> Tconnredalg /k = Fq.
Fixp-adic FODOD> P, O/P ~k.
F=GalF/F; 15 lp>Tp-oTk—1. Gompactprade
Weil group of F is preimage of Z = (F*), so
1> IlFr—> WE—> (F) > 1.
Set Pr = wild ramif grp C Ir; then Ig/Pr =~ W.
Fix p-adic G «» based root datum of G/k, ' acts via k.
G/k and G/F have same L-group - G.
Prop L-params for G/k = (tamely ramif params for G/F)|..
Def cpt Weil grp We . = inertia subgroup Ir.
Def cpt param is pg: I — -G s.t. 3 extn to L-param.

Extension to cpt Deligne-Langlands params ¢, = (o., N) easy.



Wild conjectures Lgroups and K
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G/F conn reduc alg, inner class of F-forms o
{Kj(c)} maxl cpt subgps of G(F, o).
LG = VG > rF L-group for (G, {O'}) Compact p-adic

Conjecture
1. Cpt DL param ¢ ~> Lc-pkt of irr reps p;(o) of Kj(o).
2. L. packets are disjoint.
3. ¢ any ext of ¢ ~> MNg(de) = {LKTs of all & € M(¢)}.
4. N¢(¢c) indexed by (VG¢°/VG§;°)’T
5. UMN¢(¢c) = all irrs > Bushnell-Kutzko type.

NOTE: some K; -» Gj(F,), G; smaller than G.

Corr reps should correspond to non-special N, etc.

Chance that this is formulated properly is near zero.
| know this because I'm teaching Bayesian inference this semester.

Hope that it's wrong in interesting ways.
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