Langlands parameters and finite-dimensional representations

David Vogan

Department of Mathematics Massachusetts Institute of Technology

March 21, 2016

L-groups and \widehat{K} David Vogan

IIIIOddctioii

compact Lie

riffile Grievalley

Compact p-au

Outline

L-groups and \widehat{K} David Vogan

Compact Lie

nite Chevalley

What Langlands can do for you

Representations of compact Lie groups

Representations of finite Chevalley groups

Representations of *p*-adic maximal compacts

 GL_n everybody's favorite reductive group/local F.

Want to understand $\widehat{GL_n(F)}$ = set of irr repns (hard).

Classical approach (Harish-Chandra et alia 1950s):

- 1. find big compact subgp $K \subset GL_n(F)$;
- 2. understand \widehat{K} (supposed to be easy?)
- 3. understand reps of $GL_n(F)$ in terms of restriction to K.

Langlands (1960s) studies $\widehat{GL_n(F)}$ (global reasons).

Global suggests: $\widehat{GL_n(F)} \overset{\tilde{\sim}}{\longleftrightarrow} n$ -diml reps of $Gal(\overline{F}/F)$.

Better: $\widehat{GL_n(F)} \overset{\sim}{\longleftrightarrow} n$ -diml reps of Weil group of F.

Harris/Taylor: $\widehat{GL_n(F)}$. $\stackrel{\text{bij}}{\longleftrightarrow}$ n-diml of Weil-Deligne(F).

Meanwhile (Howe *et alia* 1970s...) continue $GL_n(F)|_K$.

One difficulty (of many): \widehat{K} not so easy after all.

First question: what's Langlands tell us about \widehat{K} ?

Representations of compact Lie groups

L-groups and \widehat{K} David Vogan

Introduction

Compact Lie

O-----

Compact p-adic

This is introduction number two.

Suppose K is a compact Lie group.

Famous false fact: we understand \widehat{K} .

Proof we don't: O(n) = maximal compact in $GL_n(\mathbb{R})$.

Fix irreducible $\tau \in O(n)$.

How do you write down τ ? ("Highest weight??")

How do you calculate mult of τ in principal series?

Second question is branching $O(n)|_{O(1)^n}$.

Today: $\widehat{O(n)} \longleftrightarrow \text{temp irr of } GL_n(\mathbb{R})/\text{unram twist}$

certain Langlands parameters...

Second question: what's Langlands tell us about \widehat{K} ?

Representations of finite Chevalley groups

L-groups and \widehat{K} David Vogan

Introduction

Compact Lie

Finite Chevalley

This is introduction number three.

Suppose G is a reductive group defined over \mathbb{F}_q .

Deligne-Lusztig and Lusztig described irr reps of $G(\mathbb{F}_q)$.

Can their results be formulated in spirit of Langlands?

Deligne-Lusztig start with ratl max torus $T \subset G$, char

$$\theta\colon T(\mathbb{F}_q)\to\mathbb{C}^{\times}.$$

Lusztig: $(T, \theta) \rightsquigarrow$ semisimple conj class $x \in {}^{\vee}G(\mathbb{F}_q)$.

This is a step in the right direction, but not quite a Langlands classification.

Third question: what's Langlands tell us about $\widehat{G(\mathbb{F}_q)}$?

Structure of compact conn Lie grps

K compact connected Lie $\supset T$ maximal torus.

$$X^*(T) =_{\mathsf{def}} \mathsf{lattice} \ \mathsf{of} \ \mathsf{chars} \ \lambda \colon T \to S^1 \subset \mathbb{C}^{\times} \ X_*(T) =_{\mathsf{def}} \mathsf{lattice} \ \mathsf{of} \ \mathsf{cochars} \ \xi \colon S^1 \to T.$$

Adjoint rep of T on cplx Lie algebra decomposes

$$\mathfrak{k}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus \sum_{\alpha \in X^*(\mathcal{T}) \setminus \{0\}} \mathfrak{k}_{\mathbb{C},\alpha};$$

defines finite set R = R(K, T) of roots of T in K. Each root α gives rise to root TDS

$$\phi_{\alpha} \colon SU(2) \to K$$
, im $d\phi_{\alpha} \subset \mathfrak{t} + \mathfrak{t}_{\mathbb{C},\alpha} + \mathfrak{t}_{\mathbb{C},-\alpha}$ defined up to conjugation by T .

$$\phi_{\alpha}|_{\text{diagonal}} \rightsquigarrow \alpha^{\vee} \colon S^{1} \to K \text{ coroot for } \alpha. \text{ Get}$$

$$R^{\vee} = R^{\vee}(K, T) \subset X_{*}(T),$$

(finite set in bijection with R) coroots of T in K.

L-groups and \widehat{K} David Vogan

Introduction

Compact Lie

Finite Chevalley

Saw: cpt conn Lie $K \supset T$ max torus (X^*, R, X_*, R^{\vee}) : dual lattices (X^*, X_*) , finite subsets (R, R^{\vee}) in bijection. Pair (α, α^{\vee})

$$s_{\alpha} \colon X^* \to X^*, \quad s_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha, \quad s_{\alpha^{\vee}} = {}^t s_{\alpha} \colon X_* \to X_*.$$

PROPERTIES: for all $\alpha \in R$

- 1. RD1: $\langle \alpha, \alpha^{\vee} \rangle = 2$ (so $s_{\alpha}^2 = \text{Id}$)
- 2. RD2: $s_{\alpha}R = R$, $s_{\alpha}^{\vee}R^{\vee} = R^{\vee}$, $(s_{\alpha}\beta)^{\vee} = s_{\alpha^{\vee}}(\beta^{\vee})$
- 3. RDreduced: $2\alpha \notin R$, $2\alpha^{\vee} \notin R^{\vee}$.

Axioms \iff root datum; $W = \langle s_{\alpha} \mid \alpha \in R \rangle =$ Weyl group.

Root datum is based if we fix $(R^+, R^{\vee,+})$ (pos roots).

Axioms symm in X^* , X_* : $(X_*, R^{\vee}, X^*, R) = \text{dual root datum}$.

Theorem (Grothendieck)

- 2. $k = \underline{k}$: root datum \longleftrightarrow unique conn reductive alg grp /k.
- 3. $k \neq \overline{k}$: red alg grp $/k \rightsquigarrow \operatorname{Gal}(\overline{k}/k) \curvearrowright \operatorname{based}$ root datum.

L-groups and \widehat{K} David Vogan

Introduction

Compact Lie

Finite Chevalley

Recall cpt conn Lie $K \supset T$ max torus $\rightsquigarrow (X^*, R, X_*, R^{\vee})$.

 $(X^*, R, X_*, R^{\vee}) \rightsquigarrow K_{\mathbb{C}}$ complex conn reductive alg = Spec(K-finite functions on K)

 $K = \max \text{ compact subgp of } K_{\mathbb{C}}.$

irr reps of $K = \text{irr alg reps of } K_{\mathbb{C}} = X^*/W$.

 ${}^{\vee}K =_{\mathsf{def}} \mathsf{cplx} \mathsf{alg} \mathsf{group} \longleftrightarrow (X_*, R^{\vee}, X^*, R) \mathsf{cplx} \mathsf{dual} \mathsf{gp}.$

Theorem (Cartan-Weyl)

- 1. $\widehat{K} \leftrightarrow (\text{homs } \phi_c \colon S^1 \to {}^{\vee}K) / ({}^{\vee}K \text{-conj}), \quad E(\phi_c) \leftrightarrow \phi_c.$
- 2. Each side is X^*/W .

Theorem (Zhelobenko) Write $\widehat{\mathcal{K}_{\mathbb{C}}} = \mathsf{cont}$ irr reps of $\mathcal{K}_{\mathbb{C}}$

- 1. $\widehat{K_{\mathbb{C}}} \leftrightarrow (\text{homs } \phi \colon \mathbb{C}^{\times} \to {}^{\vee}K) / ({}^{\vee}K\text{-conj}), \quad X(\phi) \leftrightarrow \phi.$
- 2. $X(\phi)|_{K} \approx \operatorname{Ind}_{T}^{K}(\mathbb{C}_{\phi|_{S^{1}}}).$
- 3. $E(\phi|_{S^1}) = \text{lowest } K\text{-type of } X(\phi).$

G complex reductive alg group, $\Gamma = \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Fix inner class of real forms $\sigma = \operatorname{action} \Gamma \curvearrowright (\operatorname{based root datum})$.

Definition Cartan involution for σ is inv alg aut θ of G such that $\sigma\theta = \theta\sigma$ is compact real form of G.

inner class of real forms $\sigma = \text{inner class}$ of alg invs θ .

Definition *L*-group for $(G, \{\sigma\})$ is ${}^LG =_{\mathsf{def}} {}^{\vee}G \rtimes \Gamma$.

Definition Weil grp $W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle$, $1 \to \mathbb{C}^{\times} \to W_{\mathbb{R}} \to \Gamma \to 1$.

Definition Langlands param = $(\underbrace{\phi \colon W_{\mathbb{R}} \to {}^{L}G})$ / conj by ${}^{\vee}G$.

Theorem (Langlands, Knapp-Zuckerman)

- 1. Param $\phi \rightsquigarrow L$ -packet $\Pi(\phi)$ of reps $\pi_j \in \widehat{G(\mathbb{R}, \sigma_j)}$.
- 2. L-packets disjoint; cover all reps of all real forms.
- 3. $\Pi(\phi)$ indexed by $({}^{\vee}G^{\phi}/{}^{\vee}G_0^{\phi})\widehat{.}$
- 4. (3) is (correctably) false. See Adams-Barbasch-Vogan.

G cplx reductive endowed with inner class of real forms $\sigma \leftrightarrow$ inner class of alg invs θ ; $^{L}G = L$ -group.

$$K = G^{\theta} = \text{cplxified max cpt of } G(\mathbb{R}, \sigma).$$

Defin Compact Weil grp
$$W_{\mathbb{R},c} = \langle S^1, j \rangle, 1 \to S^1 \to W_{\mathbb{R},c} \to \Gamma \to 1.$$

Defin Compact param =
$$(\underline{\phi_c} : W_{\mathbb{R},c} \to {}^L G)$$
 / conj by ${}^{\vee}G$.

Theorem.

- 1. Param $\phi_c \rightsquigarrow L_c$ -pkt $\Pi_c(\phi_c)$ of irr reps μ_j of $K_j = G_j^{\theta}$.
- 2. L_c -packets disjoint; cover all reps of all $K = G^{\theta}$.
- 3. $\Pi_c(\phi_c)$ indexed by $({}^{\vee}G^{\phi_c}/{}^{\vee}G^{\phi_c}_0)$.
- 4. {lowest *K*-types of all $\pi \in \Pi(\phi)$ } = $\Pi_c(\phi|_{W_{\mathbb{R}^c}})$.
- 5. (3) is (correctably) false...

 $G = GL_{2n}(\mathbb{R}), {}^{L}G = GL_{2n}(\mathbb{C}) \times \Gamma.$

Cartan involution is $\theta g = {}^t g^{-1}$, $K = O_{2n}(\mathbb{C})$.

Recall $W_{\mathbb{R},c}=\langle \underline{S}^1,j\rangle, je^{i\theta}j^{-1}=e^{-i\theta}, j^2=-1\in S^1.$

Theorem says $\widehat{O_{2n}} \leftrightarrow 2n$ -diml reps of $W_{\mathbb{R},c}$.

Irr reps of $W_{\mathbb{R},c}$ are

- 1. 1-diml trivial rep $\delta_+(e^{i\theta}) = 1$, $\delta_+(j) = 1$.
- 2. 1-diml sign rep $\delta_{-}(e^{i\theta}) = 1$, $\delta_{-}(j) = -1$.
- 3. For m > 0 integer, 2-dimensional representation

$$\tau_m(e^{i\theta}) = \begin{pmatrix} e^{im\theta} & 0 \\ 0 & e^{-im\theta} \end{pmatrix}, \quad \tau_m(j) = \begin{pmatrix} 0 & 1 \\ (-1)^m & 0 \end{pmatrix}.$$

n-dimensional rep \iff pos ints $m_1 > \cdots > m_r > 0$, non-neg ints (a_1, \ldots, a_r, p, q) so $2n = 2a_1 + \cdots + 2a_r + p + q$.

Rep is $a_1\tau_{m_1} + \cdots + a_r\tau_{m_r} + p\delta_+ q\delta_-$. Highest weight for O_{2n} rep is

$$(\underbrace{m_1+1,\ldots,m_1+1}_{a_1 \text{ times}},\ldots,\underbrace{m_r+1,\ldots,m_r+1}_{a_r \text{ times}},\underbrace{1,\ldots,1}_{\min(\rho,q)},\underbrace{0,\ldots,0}_{|q-p|/2}).$$

 $k = \mathbb{F}_q$ finite field; $\Gamma = \operatorname{Gal}(\overline{k}/k) = \varprojlim_m \mathbb{Z}/m\mathbb{Z}$.

Generator is arithmetic Frobenius $F^* = q$ th power map.

k-ratl form of conn reductive alg G = action of Γ on based root datum = fin order aut.

Definition *L*-group for G/k is ${}^LG =_{def} {}^{\vee}G \rtimes \Gamma$.

Here ${}^{\vee}G$ taken over \mathbb{C} , or $\overline{\mathbb{Q}}_{\ell}$, or. . . : field for repns.

Definition Weil grp $W_k = \lim_{\stackrel{\longleftarrow}{m}} \mathbb{F}_{q^m}^{\times}; W_k \to \Gamma$ trivial.

Definition Langlands param = $\left(\underbrace{\rho \colon W_k \to {}^{\vee}G}\right)$ / conj by ${}^{\vee}G$.

 $\rho(W_k) \subset {}^{\vee}G \text{ (not }{}^{L}G) \text{ since } W_k \to 1 \in \Gamma.$

Respect Γ = exists $f \in {}^L G$ mapping to F^* , $Ad(f)\phi(\gamma) = \rho(F^*\gamma)$.

keep coset $f^{\vee}G_0^{\rho_c}$ as part of ρ_c .

Deligne-Langlands param $\phi = ((\rho_{\phi}, N_{\phi}) \ (N \in {}^{\vee} g^{\rho_{\phi}}, \operatorname{Ad}(f)N = qN)).$

 $G \supset B \supset T$ conn red alg $/\mathbb{F}_q$, $F \colon G \to G$ Frobenius. Get Γ action on W permuting gens $\leadsto^{\Gamma} W = W \rtimes \Gamma$

 $\tilde{w} = wF$ (another) Frobenius morphism $T \to T$.

Deligne-Lusztig built chars of $G(\mathbb{F}_q)$ from virt chars $R_{\theta'}^{\mathcal{T}'}$: T' ratl maxl torus, θ' char of $T'(\mathbb{F}_q)$.

Proposition. For any rational = F-stable max torus $T' \subset G$, $\exists ! W$ -conj class of \tilde{w} so $(T', F) \simeq (T, \tilde{w})$.

Prop (Macdonald) $\widehat{T^w} \simeq \{ \rho \colon W_k \to {}^{\vee}T \mid wF^*\phi(\gamma) = \phi(F^*\gamma) \}.$

Conclusion: L-params ρ' for G = DL-pairs (T', θ') .

 $R_{\theta'}^{T'}$ and $R_{\theta''}^{T''}$ overlap $\iff \rho', \rho'' \ ^{\vee}G$ -conjugate.

 $\widehat{G}(\mathbb{F}_q)$ partitioned by Langlands parameters.

So far this is Deligne-Lusztig 1976: (relatively) easy.

Using Deligne-Langlands params to shrink *L*-pkts harder...

Lusztig's big orange book

L-groups and \widehat{K} David Vogan

Compact Lie

Finite Chevalley
Compact p-adic

 $G \supset B \supset T$ conn red alg $/\mathbb{F}_q$, LG L-group.

Def $\phi = (\rho, N)$ special if $N \in {}^{\vee}g^{\rho}$ is special nilp.

Recall that ϕ remembers coset $f^{\vee}G_0^{\rho,N}$.

Theorem (Lusztig). Irreducible reps of $G(\mathbb{F}_q)$ are partitioned into packets $\Pi(\phi)$ by special DL parameters ϕ . The packet $\Pi(\phi)$ is indexed by irr chars of Lusztig quotient of ${}^\vee G^\phi/{}^\vee G^\phi_0$.

Compact p-adic

 $G \supset B \supset T$ conn red alg $/k = \mathbb{F}_q$.

Fix p-adic $F \supset O \supset \mathcal{P}$, $O/\mathcal{P} \simeq k$.

 $\Gamma_F = \operatorname{Gal} \overline{F}/F; \quad 1 \to I_F \to \Gamma_F \to \Gamma_k \to 1.$

Weil group of F is preimage of $\mathbb{Z} = \langle F^* \rangle$, so

$$1 \to I_F \to W_F \to \langle F^* \rangle \to 1.$$

Set P_F = wild ramif grp $\subset I_F$; then $I_F/P_F \simeq W_k$.

Fix p-adic $\mathbb{G} \longleftrightarrow$ based root datum of G/k, Γ_F acts via Γ_k .

G/k and G/F have same L-group LG .

Prop L-params for $G/k = (\text{tamely ramif params for } \mathbb{G}/F)|_{I_F}$.

Def cpt Weil grp $W_{F,c}$ = inertia subgroup I_F .

Def cpt param is $\rho_c: I_F \to {}^L G$ s.t. \exists extn to L-param.

Extension to cpt Deligne-Langlands params $\phi_c = (\rho_c, N)$ easy.

 G/\overline{F} conn reduc alg, inner class of F-forms σ .

 $\{K_j(\sigma)\}\$ maxl cpt subgps of $G(F,\sigma)$.

 $^{L}G = {}^{\vee}G \rtimes \Gamma_{F}$ L-group for $(G, \{\sigma\})$.

Conjecture

- 1. Cpt DL param $\phi_c \rightsquigarrow L_c$ -pkt of irr reps $\mu_j(\sigma)$ of $K_j(\sigma)$.
- 2. L_c packets are disjoint.
- 3. ϕ any ext of $\phi_c \rightsquigarrow \Pi_c(\phi_c) = \{LKTs \text{ of all } \pi \in \Pi(\phi)\}.$
- 4. $\Pi_c(\phi_c)$ indexed by $({}^{\vee}G^{\phi_c}/{}^{\vee}G^{\phi_c}_0)$.
- 5. $\bigcup \Pi_c(\phi_c)$ = all irrs \supset Bushnell-Kutzko type.

NOTE: some $K_j \rightarrow G_j(\mathbb{F}_q)$, G_j smaller than G.

Corr reps should correspond to non-special *N*, etc.

Chance that this is formulated properly is near zero.

I know this because I'm teaching Bayesian inference this semester.

Hope that it's wrong in interesting ways.