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The Atlas members;
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Thestory In code:

fAt 9 a.m. on 8 Jan 2007, a computer finished writing sixty T
gigabytes of files: Kazhdan-Lusztig polynomials for the split
real group G(R) of type Eg. Their values at 1 are

coefficients in irreducible characters of G(R). The biggest
coefficient was 11,808,808, in

152¢%2 + 3472¢* + 38791¢*° + 2930214
+ 1370892¢"® + 4067059¢" " + 7964012¢'° + 11159003¢"°
+ 11808808¢'* + 9859915¢" + 6778956¢% + 39643694
+ 2015441 + 906567¢" + 363611¢° + 129820¢"
+41239¢% + 11426¢° + 2677¢* + 492¢° + 61¢° + 3¢

ths value at 1 is 60,779,787. J

The character table for F)o — . 5/~



Questions you might want to ask:
B o



Questions you might want to ask:

f # Mathematicians don’t look at single examples (in T
public). Why Eg?
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f # Mathematicians don’t look at single examples (in T
public). Why Eg?

# Whatis Eg anyway?
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B

f # Mathematicians don’t look at single examples (in
public). Why Eg?

# What is Eg anyway?
® \What's a character table?
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Questions you might want to ask:

f # Mathematicians don’t look at single examples (in T
public). Why Eg?

# Whatis Eg anyway?
# What's a character table?
# Sixty gigabytes? Which byte do | care about?
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Questions you might want to ask:

f # Mathematicians don’t look at single examples (in T
public). Why Eg?

# Whatis Eg anyway?

# What's a character table?

# Sixty gigabytes? Which byte do | care about?
# Kazhdan and who?
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Questions you might want to ask:

.

Mathematicians don’t look at single examples (in T
public). Why Eg?

What is Eg anyway?
What's a character table?
Sixty gigabytes? Which byte do | care about?

© o @

® Kazhdan and who?

Excellent questions. Since it's my talk, | get to rephrase
them a little.

o -
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Questions | want you to ask:
f.. What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
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Questions | want you to ask:
f.. What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
s One for every regular polyhedron.

o -
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Questions | want you to ask:
f.. What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
s One for every regular polyhedron.

® Which oneis £g?

o -
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Questions | want you to ask:
f.. What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
s One for every regular polyhedron.

® Which oneis £g?
o The one for the icosahedron.

o -
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Questions | want you to ask:
f’ What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
s One for every regular polyhedron.

® Which oneis £g?
o The one for the icosahedron.

® What's a group representation?

o -
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Questions | want you to ask:
f’ What's a Lie group? T

s A continuous family of symmetries.

® How many Lie groups are there?
s One for every regular polyhedron.

® Which oneis £g?
o The one for the icosahedron.

® What's a group representation?
» A way to change under symmetry.

o -
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Questions | want you to ask:

What's a Lie group? T
s A continuous family of symmetries.

How many Lie groups are there?
s One for every regular polyhedron.

Which oneis Eg?
o The one for the icosahedron.

What’s a group representation?
» A way to change under symmetry.

What's a character table?

-
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Questions | want you to ask:

What's a Lie group? T
s A continuous family of symmetries.

How many Lie groups are there?
s One for every regular polyhedron.

Which oneis Eg?
o The one for the icosahedron.

What’s a group representation?
» A way to change under symmetry.

What's a character table?
» A description of all the representations.
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Questions | want you to ask:

What's a Lie group? T
s A continuous family of symmetries.

How many Lie groups are there?
s One for every regular polyhedron.

Which oneis Eg?
o The one for the icosahedron.

What’s a group representation?
» A way to change under symmetry.

What's a character table?
» A description of all the representations.

How do you write a character table?

-
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o

Questions | want you to ask:

What's a Lie group?
s A continuous family of symmetries.

How many Lie groups are there?
s One for every regular polyhedron.

Which oneis Eg?
o The one for the icosahedron.

What’s a group representation?
» A way to change under symmetry.

What's a character table?
» A description of all the representations.

How do you write a character table?

s Read Weyl, Harish-Chandra, Kazhdan/Lusztig. ..

-
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Our Contribution

- .

® So what did you guys do exactly?
s We read Weyl, Harish-Chandra, Kazhdan/Lusztig. . .
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Our Contribution

- .

® So what did you guys do exactly?
s We read Weyl, Harish-Chandra, Kazhdan/Lusztig. . .

Here are longer versions of those answers.

o -
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A continuous family of symmetries.
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What'saLiegroup?
-

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

-
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What'saLiegroup?
-

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

s axis of rotation
(2-diml choice: point on sphere)

-
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What'saLiegroup?
-

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

s axis of rotation
(2-diml choice: point on sphere)

s angle of rotation
(1-diml choice: 0°=360°)

-
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What’sa Llegroup?
- o

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

s axis of rotation
(2-diml choice: point on sphere)

s angle of rotation
(1-diml choice: 0°=360°)

Altogether that’s three dimensions of choices. Rotations
of the sphere make a three-dimensional Lie group.

o -
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What’sa Llegroup?
- o

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

s axis of rotation
(2-diml choice: point on sphere)

s angle of rotation
(1-diml choice: 0°=360°)

Altogether that’s three dimensions of choices. Rotations
of the sphere make a three-dimensional Lie group.

Representations of this group «~~ periodic table.

o -
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What’sa Llegroup?
-

A continuous family of symmetries.

Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

s axis of rotation
(2-diml choice: point on sphere)

s angle of rotation
(1-diml choice: 0°=360°)

Altogether that’s three dimensions of choices. Rotations
of the sphere make a three-dimensional Lie group.

Representations of this group «~~ periodic table.
Other groups «~ other geometries, other physics... J
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f Special relativity concerns a different geometry. . . T



ThelLorentz group

ﬁ Special relativity concerns a different geometry. .. T




ThelLorentz group

f Special relativity concerns a different geometry. .. T

Two essentially
different kinds of
symmetry:

space

o -
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ThelLorentz group

f Special relativity concerns a different geometry. .. T

Two essentially
different kinds of
symmetry:

rotation around
time-like vector

space

o -
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ThelLorentz group

f Special relativity concerns a different geometry. .. T

Two essentially
different kinds of
symmetry:

rotation around
time-like vector

space

Lorentz boost around
space-like vector

o -
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ThelLorentz group

f Special relativity concerns a different geometry. .. T

Two essentially
different kinds of
symmetry:

rotation around
time-like vector

space

Lorentz boost around
space-like vector

The Lorentz group is another three-dimensional group:
a nhoncompact form of the rotation group.

o -
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ThelLorentz group

f Special relativity concerns a different geometry. .. T

Two essentially
different kinds of
symmetry:

rotation around
time-like vector

space

Lorentz boost around
space-like vector

The Lorentz group is another three-dimensional group:
a nhoncompact form of the rotation group.

L Representations «~ relativistic physics. J

The character table for Fl o — n. 10/~
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How many Liegroupsarethere?
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One for every regular polyhedron.

#® 2D polygons: classical groups.
y | . Tetrahedron: Eg, dimension 78.

#® Octahedron: E-, dimension 133.
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How many Liegroupsarethere?

- .

One for every regular polyhedron.

#® 2D polygons: classical groups.
® Tetrahedron: Eg, dimension 78.
#® Octahedron: E-, dimension 133.

® |cosahedron: Eg, dimension 248.
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How many Liegroupsarethere?

- .

One for every regular polyhedron.

2D polygons: classical groups.
Tetrahedron: Eg, dimension 78.
Octahedron: E~-, dimension 133.

lcosahedron: Eg, dimension 248.

Actually it’s quite a bit more complicated.
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One for every regular polyhedron.

2D polygons: classical groups.
Tetrahedron: Eg, dimension 78.
Octahedron: E~-, dimension 133.

lcosahedron: Eg, dimension 248.

Actually it's quite a bit more complicated.
» Several Lie groups for each regular polyhedron.
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How many Liegroupsarethere?

- .

One for every regular polyhedron.

2D polygons: classical groups.
Tetrahedron: Eg, dimension 78.
Octahedron: E~-, dimension 133.

lcosahedron: Eg, dimension 248.

Actually it's quite a bit more complicated.
» Several Lie groups for each regular polyhedron.
Rotation group and Lorentz group both correspond to 1-gon.
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How many Liegroupsarethere?

- .

One for every regular polyhedron.

2D polygons: classical groups.
Tetrahedron: Eg, dimension 78.
Octahedron: E~-, dimension 133.

lcosahedron: Eg, dimension 248.

Actually it's quite a bit more complicated.

» Several Lie groups for each regular polyhedron.
Rotation group and Lorentz group both correspond to 1-gon.

s Get only simple Lie groups in this way.

o -
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How many Liegroupsarethere?

- .

One for every regular polyhedron.

Actually it's quite a bit more complicated.

» Several Lie groups for each regular polyhedron.
Rotation group and Lorentz group both correspond to 1-gon.

s Get only simple Lie groups in this way.

s Building general Lie groups from simple is hard.

o -

The character table for F)o —p. 11/~

2D polygons: classical groups.

Tetrahedron: Eg, dimension 78.

e o o

Octahedron: E~-, dimension 133.

® |cosahedron: Eg, dimension 248.
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Which onelis Eg?
- The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.
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Which onelis Eg?
- The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.
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Which onelis Eg?

The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.

In atlas shorthand, character table is (1)
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Which onelis Eg?

The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.
In atlas shorthand, character table is (1)

(Which hides deep and beautiful work by Weyl.)
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Which onelis Eg?

The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.
In atlas shorthand, character table is (1)

(Which hides deep and beautiful work by Weyl.)
o Quaternionic Eg. Characters computed in 2005.
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Which onelis Eg?

The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.
In atlas shorthand, character table is (1)

(Which hides deep and beautiful work by Weyl.)
o Quaternionic Eg. Characters computed in 2005.

In atlas shorthand, a 73410 x 73410 matrix. One entry:
3¢ +30¢'? + 190¢*t + 682¢'° + 1547¢° + 23644° + 2545¢"
+2031¢% + 1237¢° + 585¢* + 216¢° + 60¢° + 11¢ + 1

-
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Which onelis Eg?
- The one for the icosahedron. .

There are three different groups called Eg, each one
248-dimensional and wonderfully complicated.

s Compact Eg. Characters computed by Weyl in 1925.
In atlas shorthand, character table is (1)

(Which hides deep and beautiful work by Weyl.)
o Quaternionic Eg. Characters computed in 2005.

In atlas shorthand, a 73410 x 73410 matrix. One entry:
3¢ +30¢'? + 190¢*t + 682¢'° + 1547¢° + 23644° + 2545¢"
+2031¢° + 1237¢° + 585¢* + 216¢> + 60¢* + 11¢g + 1
s Split Eg. This is the tough one.

o -
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What’s a group representation?
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A way to change under symmetry.
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This time what we do Is actually less complicated.



What’s a group representation?
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A way to change under symmetry.

This time what we do Is actually less complicated.

We look for irreducible representations: simplest
possible ways to change under symmetry.
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What’s a group representation?

=

A way to change under symmetry.

This time what we do Is actually less complicated.

We look for irreducible representations: simplest
possible ways to change under symmetry.

Irreducible representations are like atoms in chemistry.
Knowing the atoms doesn’t tell you all the molecules
you can build from those atoms.
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What’s a group representation?

=

A way to change under symmetry.

This time what we do Is actually less complicated.

We look for irreducible representations: simplest
possible ways to change under symmetry.

Irreducible representations are like atoms in chemistry.
Knowing the atoms doesn’t tell you all the molecules
you can build from those atoms.

But knowing the atoms Is a good place to start.
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What’s a group representation?
-

A way to change under symmetry.

This time what we do Is actually less complicated.

We look for irreducible representations: simplest
possible ways to change under symmetry.

Irreducible representations are like atoms in chemistry.
Knowing the atoms doesn’t tell you all the molecules
you can build from those atoms.

But knowing the atoms Is a good place to start.

First Lie group is 1-dimensional: symmetry in time.

The character table for F) o —p. 13/~
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Representations of time symmetry

f Means all possible ways to change in time: hard. T



Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change. ..
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change. ..

» No change: trivial representation.
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change. ..

» No change: trivial representation.
s Exponential growth or

/
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change. ..

» No change: trivial representation.

s Exponential growth or

» Oscillation.

AWA
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change...

» No change: trivial representation.
s Exponential growth or

L

X

Exponentially growing or decaying oscillation.

\/\
NI -
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change...

» No change: trivial representation.

s Exponential growth or

L

s Exponentially growing or decaying oscillation.

That's all the irreducible
representations for time
symmetry. Given by
two real numbers: growth
rate, frequency.

\/\
NI -
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Representations of time symmetry

f Means all possible ways to change in time: hard. T

Irreducible representations are simplest ways to
change. ..

» No change: trivial representation.
s Exponential growth or
»

s Exponentially growing or decaying oscillation.

That’s all the irreducible
representations for time
symmetry. Given by
\ \ two real numbers: growth
/ \ rate, frequency.
<A \ if
| T_.p

dt
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

o -
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

» No change: trivial representation.

o -
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

» No change: trivial representation.
s Oscillation with frequency F' = 1

AN
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

» No change: trivial representation.
s Osclillation with frequency £ = 1 or

o -
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

» No change: trivial representation.
s Osclillation with frequency £ = 1 or 2 or 3...
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Repns of compact time symmetry

f Time symmetry is not the easiest Lie group. Simplest isT
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

» No change: trivial representation.
s Osclillation with frequency £ = 1 or 2 or 3...

That's all the irreducible
\ \ / repns for compact time
M symmetry. Given by one

iInteger: frequency.

o -
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T



Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

o -
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.

| -
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.

# Osclillation with freq F' = 1.
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.

# Osclillation with freq F' = 1.

Different from compact time
symmetry: need also direction to

oscillate (up/down, left/right, in/out).

o -
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.
# Osclillation with freq F' = 1.

Different from compact time
symmetry: need also direction to

oscillate (up/down, left/right, in/out).

This repn has dimension 3.

o -
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.
# Osclillation with freq F' = 1.

Different from compact time
symmetry: need also direction to

oscillate (up/down, left/right, in/out).

This repn has dimension 3.

» Oscillation freq F' =2 or 3...
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.
# Osclillation with freq F' = 1.

Different from compact time
symmetry: need also direction to

oscillate (up/down, left/right, in/out).

This repn has dimension 3.

» Oscillation freq F' =2 or 3...

This repn has dimension 2F" + 1.
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Representations of rotation group

f Next simplest Lie group is rotations of the sphere. T

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

# No change: trivial repn.

# Osclillation with freq F' = 1.

Different from compact time
symmetry: need also direction to

oscillate (up/down, left/right, in/out).

This repn has dimension 3.
» Oscillation freq F' =2 or 3...

This repn has dimension 2F" + 1.

That’s all irreducible representations for the rotation group.
L Given by one integer F': frequency. J
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..

® Discrete series with frequency F' = £1 or £2 or....

o -
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..

® Discrete series with frequency F' = £1 or £2 or....

«~~ holomorphic functions on hyperboloid of two sheets.

-
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..

® Discrete series with frequency F' = £1 or £2 or....
«~~ holomorphic functions on hyperboloid of two sheets.

® Principal series with growth rate z = complex number.
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..

® Discrete series with frequency F' = £1 or £2 or....
«~~ holomorphic functions on hyperboloid of two sheets.
® Principal series with growth rate z = complex number.

«~~ functions of homogeneity degree z on hyperboloid of one sheet.
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Representations of Lorentz group

f Representations of Lorentz group are ways to change under T
relativistic symmetry. Two families. ..

® Discrete series with frequency F' = £1 or £2 or....
«~~ holomorphic functions on hyperboloid of two sheets.
® Principal series with growth rate z = complex number.

«~~ functions of homogeneity degree z on hyperboloid of one sheet.

That's all irreducible representations for
the Lorentz group: two families, indexed
by integer F' or complex number z.
Representations are infinite-dimensional,
except principal series z = +£1, £2, .. .. J
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f ® Each representation identified by a few magic numbers, like. .. T



Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

o rate of growth
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers
time symmetry prime rate .0825 (growth), 0.0 (frequency)
time symmetry middle A 0.0 (growth), 440.0 (frequency)

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

magic humbers

group representation
time symmetry prime rate
time symmetry middle A

compact time symm. third harmonic

.0825 (growth), 0.0 (frequency)
0.0 (growth), 440.0 (frequency)

3 (frequency)

-
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)
time symmetry middle A 0.0 (growth), 440.0 (frequency)
compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)
time symmetry middle A 0.0 (growth), 440.0 (frequency)
compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

® Magic numbers completely characterize the representation.

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)
time symmetry middle A 0.0 (growth), 440.0 (frequency)
compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

® Magic numbers completely characterize the representation.

® Group (partly) compact ~~ (some) magic numbers integers

o -
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Moralsof our story so far

f ® Each representation identified by a few magic numbers, like. .. T

» rate of growth
o frequency of oscillation

group representation magic humbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)
time symmetry middle A 0.0 (growth), 440.0 (frequency)
compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

® Magic numbers completely characterize the representation.
® Group (partly) compact ~~ (some) magic numbers integers

L ~» mathematical basis of integers in quantum physics. J

The character table for F) o —p. 18/~
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What’s a character table?

A description of all the representations.

One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol 7" refers to moving
forward 7" units of time.
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What’s a character table?

A description of all the representations.

One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol 7" refers to moving
forward 7" units of time.

exp decay  exp growth oscillation oscillatory
trivial half-life H  doubling time D  frequency F growth
T 1 2—T/H 2T/D 627r7jTF 2T/D€27r7jTF
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What’s a character table?

A description of all the representations.

One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol 7" refers to moving
forward 7" units of time.

exp decay  exp growth oscillation oscillatory
trivial half-life H  doubling time D  frequency F growth
T 1 2—T/H 2T/D 627r7jTF 2T/D€27r7jTF
Consolidate. ..
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What’s a character table?

A description of all the representations.

One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol 7" refers to moving
forward 7" units of time.

exp decay  exp growth oscillation oscillatory
trivial half-life H  doubling time D  frequency F growth
T 1 2—T/H 2T/D 627r7jTF 2T/D€27r7jTF
Consolidate. ..
oz
T ‘ 1-e?l

The character table for F) o —p. 19/~



What’s a character table?

A description of all the representations.

One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol 7" refers to moving
forward 7" units of time.

exp decay  exp growth oscillation oscillatory
trivial half-life H  doubling time D  frequency F growth
T 1 2—T/H 2T/D 627r7jTF 2T/D€27r7jTF
Consolidate. ..
oz
T ‘ 1-e?l

Atlas shorthand: (1) J
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Character tablefor Lorentz rotations

f Write 0 for rotation, s for Lorentz boost. T



Character tablefor Lorentz rotations

f Write 0 for rotation, s for Lorentz boost. T

positive discrete
series repn # f

negative discrete
series repn #— f

finite-dimensional #F°

s> 0

1.e(2f+1)i6/2

~ 2isin(0/2)

o—(2f+1)s/2
2sinh(s/2)

o—(2f+1)i0/2
2isin(0/2)

o—(2f+1)s/2
2sinh(s/2)

1.e(2F+1)i0/2_ 1. ,—(2F+1)i0/2

2isin(6/2)
o(2F+1)s/2_ —(2F+1)s/2
2sinh(s/2)

-
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Character tablefor Lorentz rotations

-

f Write 0 for rotation, s for Lorentz boost.

positive discrete  negative discrete o _ _
. : finite-dimensional #F
series repn #f series repn #— f
9  1Le(2f+1)in/2 e—(2f+1)i6/2 1.e(2F+1)i0/2_ 1. ,—(2F+1)i6/2
2isin(6/2) 2isin(6/2) 2isin(6/2)
0 e—(2f+1)s/2 e—(2f+1)s/2 e(2F+1)s/2_ ,—(2F+1)s/2
§ > 2sinh(s/2) 2sinh(s/2) 2sinh(s/2)
0 1
Atlas shorthand: | 0 1
0 O

o -
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Character tablefor Lorentz rotations

f Write 0 for rotation, s for Lorentz boost. T

positive discrete  negative discrete o _ _
finite-dimensional #F

series repn # f series repn #— f
9 | e(2fH1)i8/2 e—(2F+1)i0/2 | (2F+1)i0/2_{ ,—(2F+1)i0/2
2isin(6/2) 2isin(6/2) 2isin(6/2)
o—(2f+1)s/2 o—(2f+1)s/2 o(2F+1)s/2_ ,—(2F+1)s/2
s>0 2 sinh(s/2) 2 sinh(s/2) 2 sinh(s/2)
0 1

Atlas shorthand: | 0 1

0 0

This is how a character table looks, even for a big group: entries are
combinations of combinations of trigonometric and exponential

functions.

-
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Character tablefor Lorentz rotations

Write 6 for rotation, s for Lorentz boost.
positive discrete  negative discrete o _ _
. : finite-dimensional #F
series repn #f series repn #— f
p  1.e(2f+1)if/2 o= (2f+1)i6/2 1.0(2F+1)i0/2_ 1. ,—(2F+1)i0/2
2isin(6/2) 2isin(6/2) 2isin(6/2)
o—(2f+1)s/2 o—(2f+1)s/2 e(2F+1)s/2_ ,—(2F+1)s/2
s >0 . . :
2 sinh(s/2) 2 sinh(s/2) 2sinh(s/2)
0 1
Atlas shorthand: | 0 1
0 O

This is how a character table looks, even for a big group: entries are

combinations of combinations of trigonometric and exponential
functions.

Hard part: finding like colored numbers 1 in this table.

o -
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B Read Weyl and Harish-Chandra. .



How do you write a character table?

Read Weyl and Harish-Chandra.

# Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like j—fz = z - f (constant coefficient
eigenvalue equations.) So solutions are combinations of
functions like e,
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How do you write a character table?

B Read Weyl and Harish-Chandra. .

# Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like j—fz = z - f (constant coefficient
eigenvalue equations.) So solutions are combinations of

functions like e?t.

# Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations fi, fo,... fn.
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How do you write a character table?

B Read Weyl and Harish-Chandra. .

# Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like j—fz = z - f (constant coefficient
eigenvalue equations.) So solutions are combinations of

functions like e?t.

# Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations fi, fo,... fn.

Any solution of differential equations (like a character) must be
combination of basic solutions. Character matrix says which
combinations are characters.

o -
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How do you write a character table?

B Read Weyl and Harish-Chandra. .

# Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like j—fz = z - f (constant coefficient
eigenvalue equations.) So solutions are combinations of

functions like e?t.

# Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations fi, fo,... fn.

Any solution of differential equations (like a character) must be
combination of basic solutions. Character matrix says which
combinations are characters.

# Langlands (1970): Character matrix is upper triangular
matrix of integers, ones on diagonal.

o -
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .



How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.



How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties «~ projective Euclidean
geometry of lines, planes...

o -
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties «~ projective Euclidean
geometry of lines, planes...

Exceptional groups: flag varieties are more mysterious.

o -
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties «~ projective Euclidean
geometry of lines, planes...

Exceptional groups: flag varieties are more mysterious.
# Kazhdan/Lusztig (1979): how to compute char matrix.

o -
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties «~ projective Euclidean
geometry of lines, planes...

Exceptional groups: flag varieties are more mysterious.
# Kazhdan/Lusztig (1979): how to compute char matrix.

Coxeter: simple Lie group ~+ regular polyhedron ~- finite math.

o -
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How do you write a character matrix?

~ Read Kazhdan and Lusztig. .

# Belilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

ldea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties «~ projective Euclidean
geometry of lines, planes...

Exceptional groups: flag varieties are more mysterious.
# Kazhdan/Lusztig (1979): how to compute char matrix.
Coxeter: simple Lie group ~+ regular polyhedron ~- finite math.

Kazhdan/Lusztig: finite math ~~ geometry of flag variety.

o -
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Example: Lorentz group

ﬁ #® Flag variety Is sphere.




Example: Lorentz group

ﬁ #® Flag variety Is sphere. T

#® Sphere divided in 3 parts: north pole, south pole, rest.
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Example: Lorentz group
f #® Flag variety is sphere. T

NP SP rest
NP | 1 0 1
SP | O 1 1
rest| O 0 1

#® Sphere divided in 3 parts: north pole, south pole, rest.
Matrix «~~ geometry of sphere «~ character table.

The character table for Fl o — n. 23/~



Example: Lorentz group
f #® Flag variety is sphere. T

NP SP rest
NP | 1 0 1
SP | O 1 1
rest| O 0 1

#® Sphere divided in 3 parts: north pole, south pole, rest.
Matrix «~~ geometry of sphere «~ character table.
Entry (¢, j) says how big piece j looks near little piece ;.

o -
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Example: Lorentz group

f #® Flag variety Is sphere. T

NP SP rest @

NP | 1 O 1
SP | O 1 1

restOOl

#® Sphere divided in 3 parts: north pole, south pole, rest.
Matrix «~~ geometry of sphere «~ character table.

Entry (i, 7) says how big piece j looks neatr little piece ;.
#® Graph records order of assembling pieces.

o -
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Example: Lorentz group

f #® Flag variety Is sphere. T

NP SP rest @

NP | 1 O 1
SP | O 1 1

restOOl

#® Sphere divided in 3 parts: north pole, south pole, rest.
Matrix «~~ geometry of sphere «~ character table.
Entry (i, 7) says how big piece j looks neatr little piece ;.
#® Graph records order of assembling pieces.
L For big groups: graph directs computation of matrix. J

The character table for Fl o — n. 23/~
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So what did you guys do exactly?

B Read Weyl and Harish-Chandra and. .. .

Graph for group SO(5,5) (corresponding to equilateral A).

o -
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So what did you guys do exactly?

closeup view

Graph for group SO(5,5) (corresponding to equilateral A).

251 vertices ~ 251 pieces of 40-dimensional flag variety.

o -
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So what did you guys do exactly?

Read Weyl and Harish-Chandra and. ..
OIOIOIIOICIOIOIOIOIOIONOIO]C

closeup view

Graph for group SO(5,5) (corresponding to equilateral A).
251 vertices ~ 251 pieces of 40-dimensional flag variety.

L FEs: 453,060 vertices ~~ pieces of 240-dimensional flag variety. J

The character table for F) o — n. 24/~
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How the computation wor ks

f ® graph vertex y «~ irreducible character T



How the computation wor ks

f # graph vertex y « irreducible character T
® lower vertices z «~ terms in character formula
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How the computation wor ks

f # graph vertex y « irreducible character T
# |ower vertices x «~~ terms in character formula
# For each pair (z,y), compute KL polynomial P, .
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How the computation wor ks

f # graph vertex y « irreducible character T
® lower vertices z «~ terms in character formula

# For each pair (z,y), compute KL polynomial P, .

P, ,(1) is coefficient of term x in irreducible character y.

o -
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How the computation wor ks

graph vertex y « irreducible character T
lower vertices = «~ terms in character formula

For each pair (x,y), compute KL polynomial 7, ,,.

P, ,(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.
For each y, start with =z = y, work down.

-
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How the computation wor ks

graph vertex y « irreducible character T
lower vertices = «~ terms in character formula

For each pair (x,y), compute KL polynomial 7, ,,.

P, ,(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.

For each y, start with =z = y, work down.
Y

Seek line up 2’ from z color of a line down 3’ from .

X

-
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How the computation wor ks

graph vertex y « irreducible character T
lower vertices = «~ terms in character formula

For each pair (x,y), compute KL polynomial 7, ,,.

P, ,(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.

For each y, start with =z = y, work down.
Y

Seek line up 2’ from z color of a line down 3’ from .

X

If it's there, then P, , = P,/ , (known by induction).
If not, (x,y) is primitive: no color down from y goes up from z.

-
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How the computation wor ks

graph vertex y « irreducible character T
lower vertices = «~ terms in character formula

For each pair (x,y), compute KL polynomial 7, ,,.

P, ,(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.

For each y, start with =z = y, work down.
Y

Seek line up 2’ from z color of a line down 3’ from .

X

If it's there, then P, , = P,/ , (known by induction).
If not, (x,y) is primitive: no color down from y goes up from z.

One hard calculation for each primitive pair (x,y). J
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What to do for primitive pair (z, y)
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What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T



What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T
® |ower vertex x « little piece F, of flag variety.
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What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T
® |ower vertex x « little piece F, of flag variety.

Want to know how singular F}, is near F.
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What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T
® |ower vertex x « little piece F, of flag variety.

Want to know how singular F}, is near F.

® Pick line down y; means F, ~ F,, x 2-diml sphere.

/

Y

o -
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What to do for primitive pair (z, y)

 m

o

graph vertex y «~ big piece F, of flag variety.
lower vertex x «~ little piece F,, of flag variety.

Want to know how singular F}, is near F.

Pick line down y; means F, =~ F;, x 2-diml sphere.

/

Yy
Primitive means red line z Is also down from z.

ZC/

=

-
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What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T
® |ower vertex x « little piece F, of flag variety.

Want to know how singular F}, is near F.

® Pick line down y; means F, ~ F,, x 2-diml sphere.

/

Yy
® Primitive means red line z Is also down from z.

ZC/

#® Geometry translates to algebra P, , ~ P,/ ,» + qP, /. Precisely:

o -
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What to do for primitive pair (z, y)

f ® graph vertex y «~ big piece F;, of flag variety. T
® |ower vertex x « little piece F, of flag variety.

Want to know how singular F}, is near F.

® Pick line down y; means F, ~ F,, x 2-diml sphere.

/

Yy
® Primitive means red line z Is also down from z.

ZC/

#® Geometry translates to algebra P, , ~ P,/ ,» + qP, /. Precisely:

Pay=Poy+aPoy — S wley)g @ D2p,
' <z<y'

o -

The character table for F) o —p. 26/-



What to do for primitive pair (z, y)

 m

o

graph vertex y «~ big piece F, of flag variety. T
lower vertex x «~ little piece F,, of flag variety.

Want to know how singular F}, is near F.

Pick line down y; means F, =~ F;, x 2-diml sphere.

/

Yy
Primitive means red line z Is also down from z.

ZC/

Geometry translates to algebra P, , ~ P,/ ,» + qFP, . Precisely:

Pay=Poy+aPoy — S wley)g @ D2p,
' <z<y'

For Ex, the big sum averages about 150 nonzero terms. J
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How do you make a computer do that?
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How do you make a computer do that?
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® Jun 2002: Jeff Adams asked Fokko du Cloux.
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How do you make a computer do that?

N ey

>

#® Jun 2002: Jeff Adams asked Fokko du Cloux.
#® Nov 2005: Fokko finished the program.
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How do you make a computer do that?

n ocisrsum

>

#® Jun 2002: Jeff Adams asked Fokko du Cloux.
#® Nov 2005: Fokko finished the program.

L Wasn't that easy? J
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What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 .
drap - 10 minutes
edges from each




What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 :

Jrap , 10 minutes
edges from each
List primitive pairs of vertices:
6,083,626,944

. few seconds
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What'sthe computer haveto do?

TASK

=

Make graph: 453,060 nodes, 8
edges from each

. 10 minutes

List primitive pairs of vertices:
6,083,626,944

. few seconds

Calculate the polynomial for
each primitive pair

Fetch few kB from memory, T
¥ % 6 billion

few thousand integer ops

-
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What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 :

Jrap , 10 minutes
edges from each
List primitive pairs of vertices:
6,083,626,944

Calculate the polynomial for | Fetch few kB from memory, -
-~ . . x 6 billion
each primitive pair few thousand integer ops

. few seconds

Look for polynomial in store, add
If it's a new one

o -
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What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 :

Jrap , 10 minutes
edges from each
List primitive pairs of vertices:
6,083,626,944

Calculate the polynomial for | Fetch few kB from memory, -
-~ . . x 6 billion
each primitive pair few thousand integer ops

. few seconds

Look for polynomial in store, add
If it's a new one

Record polynomial number

o -
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What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 :

Jrap , 10 minutes
edges from each
List primitive pairs of vertices:
6,083,626,944

Calculate the polynomial for | Fetch few kB from memory, -
-~ . . x 6 billion
each primitive pair few thousand integer ops

. few seconds

Look for polynomial in store, add
If it's a new one

Record polynomial number

Big unknown: number of distinct polynomials.

o -
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What'sthe computer haveto do?
o TASK -

Make graph: 453,060 nodes, 8 :

Jrap , 10 minutes
edges from each
List primitive pairs of vertices:
6,083,626,944

Calculate the polynomial for | Fetch few kB from memory, -
-~ . . x 6 billion
each primitive pair few thousand integer ops

. few seconds

Look for polynomial in store, add
If it's a new one

Record polynomial number

Big unknown: number of distinct polynomials.
Hoped 400 million polynomials ~
Feared 1 billion polynomials ~
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28 Nov 2006 Asked about pure math uses for 256G computer.
30 Nov 2006 Noam Elkies told us we didn’t need one...

(arithmetic)

one 150G computation » four 50G computations

03 Dec 2006 Marc van Leeuwen made Fokko’s code modular.

19 Dec 2006 MOd 251 computation on . Took 17 hours:

Total elapsed tine = 62575s. Finished at | = 64, y = 453059
dstore.size() = 1181642979, primsize = 3393819659
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Rov 2006 EXperiments by Birne Binegar on William Stein’s
computer showed we needed 150G.

28 Nov 2006 Asked about pure math uses for 256G computer.
30 Nov 2006 Noam Elkies told us we didn’t need one...

( modular )

arithmetic) four 50G computations

one 150G computation

03 Dec 2006 Marc van Leeuwen made Fokko’s code modular.

19 Dec 2006 MOd 251 computation on . Took 17 hours:

Total elapsed tine = 62575s. Finished at | = 64, y = 453059
dstore.size() = 1181642979, primsize = 3393819659

VmDat a: 64435824 kB

Writing to disk took two days. Investigating why ~~
L output bug, so mod 251 character table no good. J
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table in 14 hours, then crashed.

22 Dec 2006 EVENING Restarted mod 256. Finished in just 11 hours

( hip, hip, HURRAH!

hip. hi, HURRAH!  PtNreadjoin(cheer [K], NULL); ):

The character table for F) o —p. 30/-



Middle of the End of the Story

Bec 2006 9 PM. Started mod 256 computation on T
Computed 452,174 out of 453,060 rows of character
table in 14 hours, then crashed.

22 Dec 2006 EVENING Restarted mod 256. Finished in just 11 hours

hip, hip, HURRAH! o _
(hip’ hip. HURRAH!  Pthreadjoin(cheer[k], NULL); ):

Total elapsed tinme = 40229s. Finished at | = 64, y = 453059
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Decided not to abuse further for one year.

3Jan 2007 Atlas members one year older ~» twenty years wiser
as team ~- safe to go back to work.

Wrote character table mod 253 (12 hrs).

Now we had answers mod 253, 255, 256.
Chinese Remainder Theorem (CRT)
gives answer mod 253-255-256 = 16,515,840.
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So we've got mod 256. ..

mec 2006 rebooted. Wrote character table mod 255. T
27 Dec 2006 Started computation mod 253. Halfway through,
crashed.
consult experts ~ probably not Sasquatch.
Did | mention IS In Seattle?
Decided not to abuse further for one year.

3Jan 2007 Atlas members one year older ~» twenty years wiser
as team ~- safe to go back to work.

Wrote character table mod 253 (12 hrs).

Now we had answers mod 253, 255, 256.
Chinese Remainder Theorem (CRT)
gives answer mod 253-255-256 = 16,515,840.

One little computation for each of 13 billion coefficients.
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E]an 2007 Marc van Leeuwen started his CRT software. T
On-screen counter displayed polynomial number:
0,1,2,3,...,1181642978. Turns out that's a bad idea.
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one with backups (100G) of files mod 253, 255, 256.
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Eaan 2007 Marc van Leeuwen started his CRT software. T
On-screen counter displayed polynomial number:
0,1,2,3,...,1181642978. Turns out that's a bad idea.

5 Jan 2007 MORNING Restarted CRT computation, with counter
0,4096, 8192, 12288, 16536, . ..,1181642752, 1181642978.
Worked fine until crashed.

William Stein (our hero!) replaced hard drive with
one with backups (100G) of files mod 253, 255, 256.

5 Jan 2007 AFTERNOON Re-restarted CRT computation.
6 Jan 2007 7 AM. Output file 7G too big: BUG In output routine.

7Jan 2007 2 AM. Marc found output bug. Occurred only after
polynomial 858,993,459; had tested to 100 million.
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Eaan 2007 Marc van Leeuwen started his CRT software. T
On-screen counter displayed polynomial number:
0,1,2,3,...,1181642978. Turns out that's a bad idea.

5 Jan 2007 MORNING Restarted CRT computation, with counter
0,4096, 8192, 12288, 16536, . ..,1181642752, 1181642978.
Worked fine until crashed.

William Stein (our hero!) replaced hard drive with
one with backups (100G) of files mod 253, 255, 256.

5 Jan 2007 AFTERNOON Re-restarted CRT computation.
6 Jan 2007 7 AM. Output file 7G too big: BUG In output routine.

7Jan 2007 2 AM. Marc found output bug. Occurred only after
polynomial 858,993,459; had tested to 100 million.

7Jan 2007 6 AM. Re-re-restarted CRT computation.
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man 2007 9 AM. Wrote to disk the character table of Ex. T

So what was the point?

In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow
atlas member Dan Ciubotaru. Fokko was halfway through writing
the software I've talked about: the point at which neither the end of

the tunnel nor the beginning is visible any longer.
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In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow
atlas member Dan Ciubotaru. Fokko was halfway through writing
the software I've talked about: the point at which neither the end of

the tunnel nor the beginning is visible any longer.

Walking home after a weekend in the math department, Dan said,
“Fokko, look at us. We're spending Sunday alone at work.”
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Happily Ever After...

man 2007 9 AM. Wrote to disk the character table of Ex. T

So what was the point?

In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow
atlas member Dan Ciubotaru. Fokko was halfway through writing
the software I've talked about: the point at which neither the end of
the tunnel nor the beginning is visible any longer.

Walking home after a weekend in the math department, Dan said,
“Fokko, look at us. We're spending Sunday alone at work.”

Fokko was startled by this remark, but not at a loss for words.
“I don’t know about you, but I’'m having the time of my life!”
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Happily Ever After...

han 2007 9 AM. Wrote to dISk the character table of Eg T

# o .ﬂ:_ﬁ-:"

l _

///,f 2 h '
Fokko du Cloux

20 December 1954—-10 November 2006
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