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The story in code:

At 9 a.m. on 8 Jan 2007, a computer finished writing sixty
gigabytes of files: Kazhdan-Lusztig polynomials for the split
real group G(R) of type E8. Their values at 1 are
coefficients in irreducible characters of G(R). The biggest
coefficient was 11,808,808, in

152q22 + 3472q21 + 38791q20 + 293021q19

+ 1370892q18 + 4067059q17 + 7964012q16 + 11159003q15

+ 11808808q14 + 9859915q13 + 6778956q12 + 3964369q11

+ 2015441q10 + 906567q9 + 363611q8 + 129820q7

+ 41239q6 + 11426q5 + 2677q4 + 492q3 + 61q2 + 3q

Its value at 1 is 60,779,787.
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Questions you might want to ask:
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Questions you might want to ask:

Mathematicians don’t look at single examples (in
public). Why E8?

What is E8 anyway?

What’s a character table?

Sixty gigabytes? Which byte do I care about?

Kazhdan and who?

Excellent questions. Since it’s my talk, I get to rephrase
them a little.
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Questions I want you to ask:

What’s a Lie group?

A continuous family of symmetries.

How many Lie groups are there?

One for every regular polyhedron.

Which one is E8?

The one for the icosahedron.

What’s a group representation?

A way to change under symmetry.

What’s a character table?

A description of all the representations.

How do you write a character table?

Read Weyl, Harish-Chandra, Kazhdan/Lusztig. . .
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Our Contribution

So what did you guys do exactly?

We read Weyl, Harish-Chandra, Kazhdan/Lusztig. . .

Here are longer versions of those answers.
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What’s a Lie group?

A continuous family of symmetries.
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What’s a Lie group?

A continuous family of symmetries.
Example. Rotations of the sphere
To make a rotation of a two-dimensional sphere, pick

axis of rotation
(2-diml choice: point on sphere)

angle of rotation
(1-diml choice: 0◦–360◦)

Altogether that’s three dimensions of choices. Rotations
of the sphere make a three-dimensional Lie group.

Representations of this group! periodic table.

Other groups! other geometries, other physics. . .
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The Lorentz group

Special relativity concerns a different geometry. . .

space space

time

Two essentially
different kinds of
symmetry:

rotation around
time-like vector

Lorentz boost around
space-like vector

The Lorentz group is another three-dimensional group:
a noncompact form of the rotation group.

Representations! relativistic physics.
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How many Lie groups are there?

One for every regular polyhedron.
2D polygons: classical groups.

Tetrahedron: E6, dimension 78.

Octahedron: E7, dimension 133.

Icosahedron: E8, dimension 248.

Actually it’s quite a bit more complicated.
Several Lie groups for each regular polyhedron.
Rotation group and Lorentz group both correspond to 1-gon.

Get only simple Lie groups in this way.
Building general Lie groups from simple is hard.
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Which one is E8?

The one for the icosahedron.

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

In atlas shorthand, character table is
(

1
)

.

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

In atlas shorthand, character table is
(

1
)

.

(Which hides deep and beautiful work by Weyl.)

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

In atlas shorthand, character table is
(

1
)

.

(Which hides deep and beautiful work by Weyl.)

Quaternionic E8. Characters computed in 2005.

The character table for E8 – p. 12/33



Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

In atlas shorthand, character table is
(

1
)

.

(Which hides deep and beautiful work by Weyl.)

Quaternionic E8. Characters computed in 2005.

In atlas shorthand, a 73410 × 73410 matrix. One entry:

3q13+30q12 + 190q11 + 682q10 + 1547q9 + 2364q8 + 2545q7

+2031q6 + 1237q5 + 585q4 + 216q3 + 60q2 + 11q + 1
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Which one is E8?

The one for the icosahedron.
There are three different groups called E8, each one
248-dimensional and wonderfully complicated.

Compact E8. Characters computed by Weyl in 1925.

In atlas shorthand, character table is
(

1
)

.

(Which hides deep and beautiful work by Weyl.)

Quaternionic E8. Characters computed in 2005.

In atlas shorthand, a 73410 × 73410 matrix. One entry:

3q13+30q12 + 190q11 + 682q10 + 1547q9 + 2364q8 + 2545q7

+2031q6 + 1237q5 + 585q4 + 216q3 + 60q2 + 11q + 1

Split E8. This is the tough one.
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What’s a group representation?

A way to change under symmetry.
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What’s a group representation?

A way to change under symmetry.
This time what we do is actually less complicated.

We look for irreducible representations: simplest
possible ways to change under symmetry.

Irreducible representations are like atoms in chemistry.
Knowing the atoms doesn’t tell you all the molecules
you can build from those atoms.

But knowing the atoms is a good place to start.

First Lie group is 1-dimensional: symmetry in time.
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Representations of time symmetry

Means all possible ways to change in time: hard.

Irreducible representations are simplest ways to
change. . .

No change: trivial representation.
Exponential growth or decay.
Oscillation.
Exponentially growing or decaying oscillation.

That’s all the irreducible
representations for time
symmetry. Given by
two real numbers: growth
rate, frequency.
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Representations of time symmetry

Means all possible ways to change in time: hard.

Irreducible representations are simplest ways to
change. . .

No change: trivial representation.
Exponential growth or decay.
Oscillation.
Exponentially growing or decaying oscillation.

That’s all the irreducible
representations for time
symmetry. Given by
two real numbers: growth
rate, frequency.

df

dt
= z · f
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Time symmetry is not the easiest Lie group. Simplest is
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

No change: trivial representation.
Oscillation with frequency F = 1 or 2
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Time symmetry is not the easiest Lie group. Simplest is
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Technical term is compact.
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Repns of compact time symmetry

Time symmetry is not the easiest Lie group. Simplest is
time symmetries repeating after unit time.

Technical term is compact.

Irreducible representations are simplest kinds of
change repeating after unit time. Examples:

No change: trivial representation.
Oscillation with frequency F = 1 or 2 or 3. . .

That’s all the irreducible

repns for compact time

symmetry. Given by one

integer: frequency.
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Representations of rotation group
Next simplest Lie group is rotations of the sphere.

Irreducible representations of rotation group are simplest ways
to change with rotation. Examples:

No change: trivial repn.

Oscillation with freq F = 1.

Different from compact time

symmetry: need also direction to

oscillate (up/down, left/right, in/out).

This repn has dimension 3.

Oscillation freq F = 2 or 3. . .

This repn has dimension 2F + 1.

That’s all irreducible representations for the rotation group.
Given by one integer F : frequency.
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Representations of Lorentz group

Representations of Lorentz group are ways to change under
relativistic symmetry. Two families. . .
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Representations of Lorentz group

Representations of Lorentz group are ways to change under
relativistic symmetry. Two families. . .

Discrete series with frequency F = ±1 or ±2 or. . . .

! holomorphic functions on hyperboloid of two sheets.

Principal series with growth rate z = complex number.

! functions of homogeneity degree z on hyperboloid of one sheet.

That’s all irreducible representations for

the Lorentz group: two families, indexed

by integer F or complex number z.

Representations are infinite-dimensional,

except principal series z = ±1,±2, . . ..
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rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)
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Morals of our story so far

Each representation identified by a few magic numbers, like. . .

rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)
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Morals of our story so far

Each representation identified by a few magic numbers, like. . .

rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)

compact time symm. third harmonic 3 (frequency)
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Morals of our story so far

Each representation identified by a few magic numbers, like. . .

rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)

compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)
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frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)

compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

Magic numbers completely characterize the representation.
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Each representation identified by a few magic numbers, like. . .

rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)

compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

Magic numbers completely characterize the representation.

Group (partly) compact (some) magic numbers integers
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Morals of our story so far

Each representation identified by a few magic numbers, like. . .

rate of growth

frequency of oscillation

group representation magic numbers

time symmetry prime rate .0825 (growth), 0.0 (frequency)

time symmetry middle A 0.0 (growth), 440.0 (frequency)

compact time symm. third harmonic 3 (frequency)

rotations d orbital electrons 2 (frequency)

Magic numbers completely characterize the representation.

Group (partly) compact (some) magic numbers integers

 mathematical basis of integers in quantum physics.
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A description of all the representations.
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What’s a character table?

A description of all the representations.
One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol T refers to moving
forward T units of time.
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What’s a character table?

A description of all the representations.
One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol T refers to moving
forward T units of time.

trivial
exp decay
half-life H

exp growth
doubling time D

oscillation
frequency F

oscillatory
growth

T 1 2−T/H 2T/D e2πiTF 2T/De2πiTF
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What’s a character table?

A description of all the representations.
One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol T refers to moving
forward T units of time.

trivial
exp decay
half-life H

exp growth
doubling time D

oscillation
frequency F

oscillatory
growth

T 1 2−T/H 2T/D e2πiTF 2T/De2πiTF

Consolidate. . .
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What’s a character table?

A description of all the representations.
One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol T refers to moving
forward T units of time.

trivial
exp decay
half-life H

exp growth
doubling time D

oscillation
frequency F

oscillatory
growth

T 1 2−T/H 2T/D e2πiTF 2T/De2πiTF

Consolidate. . .
z

T 1 · ezT
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What’s a character table?

A description of all the representations.
One column for each irreducible representation, one
row for each kind of symmetry. Here’s the character
table for time symmetry; the symbol T refers to moving
forward T units of time.

trivial
exp decay
half-life H

exp growth
doubling time D

oscillation
frequency F

oscillatory
growth

T 1 2−T/H 2T/D e2πiTF 2T/De2πiTF

Consolidate. . .
z

T 1 · ezT

Atlas shorthand:
(

1
)

.
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Character table for Lorentz rotations

Write θ for rotation, s for Lorentz boost.
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Character table for Lorentz rotations

Write θ for rotation, s for Lorentz boost.
positive discrete
series repn #f

negative discrete
series repn #−f

finite-dimensional #F

θ −1·e(2f+1)iθ/2

2i sin(θ/2)
1·e−(2f+1)iθ/2

2i sin(θ/2)
1·e(2F+1)iθ/2−1·e−(2F+1)iθ/2

2i sin(θ/2)

s > 0 e−(2f+1)s/2

2 sinh(s/2)
e−(2f+1)s/2

2 sinh(s/2)
1·e(2F+1)s/2−e−(2F+1)s/2

2 sinh(s/2)
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Character table for Lorentz rotations

Write θ for rotation, s for Lorentz boost.
positive discrete
series repn #f

negative discrete
series repn #−f

finite-dimensional #F

θ −1·e(2f+1)iθ/2

2i sin(θ/2)
1·e−(2f+1)iθ/2

2i sin(θ/2)
1·e(2F+1)iθ/2−1·e−(2F+1)iθ/2

2i sin(θ/2)

s > 0 e−(2f+1)s/2

2 sinh(s/2)
e−(2f+1)s/2

2 sinh(s/2)
1·e(2F+1)s/2−e−(2F+1)s/2

2 sinh(s/2)

Atlas shorthand:







1 0 1
0 1 1
0 0 1






.
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Character table for Lorentz rotations

Write θ for rotation, s for Lorentz boost.
positive discrete
series repn #f

negative discrete
series repn #−f

finite-dimensional #F

θ −1·e(2f+1)iθ/2

2i sin(θ/2)
1·e−(2f+1)iθ/2

2i sin(θ/2)
1·e(2F+1)iθ/2−1·e−(2F+1)iθ/2

2i sin(θ/2)

s > 0 e−(2f+1)s/2

2 sinh(s/2)
e−(2f+1)s/2

2 sinh(s/2)
1·e(2F+1)s/2−e−(2F+1)s/2

2 sinh(s/2)

Atlas shorthand:







1 0 1
0 1 1
0 0 1






.

This is how a character table looks, even for a big group: entries are
combinations of combinations of trigonometric and exponential
functions.
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Character table for Lorentz rotations

Write θ for rotation, s for Lorentz boost.
positive discrete
series repn #f

negative discrete
series repn #−f

finite-dimensional #F

θ −1·e(2f+1)iθ/2

2i sin(θ/2)
1·e−(2f+1)iθ/2

2i sin(θ/2)
1·e(2F+1)iθ/2−1·e−(2F+1)iθ/2

2i sin(θ/2)

s > 0 e−(2f+1)s/2

2 sinh(s/2)
e−(2f+1)s/2

2 sinh(s/2)
1·e(2F+1)s/2−e−(2F+1)s/2

2 sinh(s/2)

Atlas shorthand:







1 0 1
0 1 1
0 0 1






.

This is how a character table looks, even for a big group: entries are
combinations of combinations of trigonometric and exponential
functions.

Hard part: finding coefficients like colored numbers 1 in this table.
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How do you write a character table?

Read Weyl and Harish-Chandra.
Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like df

dt = z · f (constant coefficient
eigenvalue equations.) So solutions are combinations of
functions like ezt.

The character table for E8 – p. 21/33
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Read Weyl and Harish-Chandra.
Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like df

dt = z · f (constant coefficient
eigenvalue equations.) So solutions are combinations of
functions like ezt.

Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations f1, f2, . . . fN .
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How do you write a character table?

Read Weyl and Harish-Chandra.
Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like df

dt = z · f (constant coefficient
eigenvalue equations.) So solutions are combinations of
functions like ezt.

Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations f1, f2, . . . fN .

Any solution of differential equations (like a character) must be
combination of basic solutions. Character matrix says which
combinations are characters.
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How do you write a character table?

Read Weyl and Harish-Chandra.
Weyl and Harish-Chandra (1925, 1955): characters
satisfy differential equations like df

dt = z · f (constant coefficient
eigenvalue equations.) So solutions are combinations of
functions like ezt.

Harish-Chandra (1965), Takeshi Hirai (1976): wrote basic
solutions to differential equations f1, f2, . . . fN .

Any solution of differential equations (like a character) must be
combination of basic solutions. Character matrix says which
combinations are characters.

Langlands (1970): Character matrix is upper triangular
matrix of integers, ones on diagonal.
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How do you write a character matrix?
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How do you write a character matrix?

Read Kazhdan and Lusztig.
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

The character table for E8 – p. 22/33



How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties! projective Euclidean
geometry of lines, planes. . .
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties! projective Euclidean
geometry of lines, planes. . .

Exceptional groups: flag varieties are more mysterious.
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties! projective Euclidean
geometry of lines, planes. . .

Exceptional groups: flag varieties are more mysterious.

Kazhdan/Lusztig (1979): how to compute char matrix.
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties! projective Euclidean
geometry of lines, planes. . .

Exceptional groups: flag varieties are more mysterious.

Kazhdan/Lusztig (1979): how to compute char matrix.

Coxeter: simple Lie group regular polyhedron finite math.
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How do you write a character matrix?

Read Kazhdan and Lusztig.
Beilinson and Bernstein (1981): Character matrix is
described by geometry of flag variety for G.

Idea: flag variety is simplest/most complicated geometry for G.
Understand the flag variety and understand everything!

Classical groups: flag varieties! projective Euclidean
geometry of lines, planes. . .

Exceptional groups: flag varieties are more mysterious.

Kazhdan/Lusztig (1979): how to compute char matrix.

Coxeter: simple Lie group regular polyhedron finite math.

Kazhdan/Lusztig: finite math geometry of flag variety.

The character table for E8 – p. 22/33
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Example: Lorentz group

Flag variety is sphere.

NP SP rest
NP 1 0 1
SP 0 1 1
rest 0 0 1

Sphere divided in 3 parts: north pole, south pole, rest.

Matrix! geometry of sphere! character table.
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Example: Lorentz group

Flag variety is sphere.

NP SP rest
NP 1 0 1
SP 0 1 1
rest 0 0 1

Sphere divided in 3 parts: north pole, south pole, rest.

Matrix! geometry of sphere! character table.

Entry (i, j) says how big piece j looks near little piece j.
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Example: Lorentz group

Flag variety is sphere.

NP SP rest
NP 1 0 1
SP 0 1 1
rest 0 0 1 NP SP

rest

Sphere divided in 3 parts: north pole, south pole, rest.

Matrix! geometry of sphere! character table.

Entry (i, j) says how big piece j looks near little piece j.

Graph records order of assembling pieces.
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Example: Lorentz group

Flag variety is sphere.

NP SP rest
NP 1 0 1
SP 0 1 1
rest 0 0 1 NP SP

rest

Sphere divided in 3 parts: north pole, south pole, rest.

Matrix! geometry of sphere! character table.

Entry (i, j) says how big piece j looks near little piece j.

Graph records order of assembling pieces.

For big groups: graph directs computation of matrix.
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So what did you guys do exactly?

Read Weyl and Harish-Chandra and. . .
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So what did you guys do exactly?

Read Weyl and Harish-Chandra and. . .

v0v1v2v3 v4v5

v6 v7v8 v9v10 v11v12 v13v14 v15 v16v17

v18 v19v20 v21 v22v23 v24v25 v26v27 v28v29 v30v31 v32v33v34 v35v36

v37v38v39v40 v41 v42v43 v44v45 v46v47 v48v49 v50v51 v52v53v54 v55v56 v57 v58 v59v60 v61v62v63

v64v65v66 v67v68 v69 v70v71 v72 v73v74 v75v76v77 v78 v79v80 v81v82 v83v84 v85 v86v87 v88v89 v90v91 v92 v93v94 v95v96 v97

v98 v99 v100v101 v102v103 v104v105 v106v107 v108v109 v110v111 v112v113 v114v115 v116 v117v118 v119v120v121 v122 v123v124 v125v126v127 v128v129v130 v131

v132v133 v134 v135 v136v137 v138 v139 v140v141 v142 v143 v144v145 v146 v147v148 v149v150 v151v152v153 v154v155v156v157 v158v159 v160 v161v162 v163 v164

v165v166v167 v168v169 v170v171v172 v173v174v175 v176 v177v178 v179v180 v181v182 v183 v184v185 v186v187 v188 v189 v190v191 v192 v193

v194 v195 v196 v197v198 v199v200 v201 v202v203 v204 v205v206 v207v208v209 v210v211 v212v213v214 v215v216

v217v218 v219 v220 v221v222 v223v224 v225v226 v227 v228 v229 v230v231 v232 v233

v234 v235v236 v237v238 v239v240 v241 v242 v243v244

v245 v246v247v248 v249

v250

Graph for group SO(5, 5) (corresponding to equilateral △).
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So what did you guys do exactly?

Read Weyl and Harish-Chandra and. . .

v64v65v66 v67v68 v69 v70v71 v72 v73v78 v85v92v94 v95v97

v98 v99 v100v101 v102v103 v104v105 v106v107 v108v109v116 v117v122 v123

v132v133 v134 v135 v136v137 v138 v139 v140v141 v142 v143 v144v145 v146

v165v166v167 v168v169 v170v171v172 v173v174v175 v176 v177v178 v179v180

v194 v195 v196 v197v198 v199v200 v201 v202v203 v204 v205v206 v207v208v209

closeup view

Graph for group SO(5, 5) (corresponding to equilateral △).

251 vertices 251 pieces of 40-dimensional flag variety.
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So what did you guys do exactly?

Read Weyl and Harish-Chandra and. . .

v64v65v66 v67v68 v69 v70v71 v72 v73v78 v85v92v94 v95v97

v98 v99 v100v101 v102v103 v104v105 v106v107 v108v109v116 v117v122 v123

v132v133 v134 v135 v136v137 v138 v139 v140v141 v142 v143 v144v145 v146

v165v166v167 v168v169 v170v171v172 v173v174v175 v176 v177v178 v179v180

v194 v195 v196 v197v198 v199v200 v201 v202v203 v204 v205v206 v207v208v209

closeup view

Graph for group SO(5, 5) (corresponding to equilateral △).

251 vertices 251 pieces of 40-dimensional flag variety.

E8: 453, 060 vertices pieces of 240-dimensional flag variety.
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How the computation works
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.

Px,y(1) is coefficient of term x in irreducible character y.
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.

Px,y(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.
For each y, start with x = y, work down.
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.

Px,y(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.
For each y, start with x = y, work down.

Seek line up x′

|
x

from x color of a line down

y
|
y′ from y.
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.

Px,y(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.
For each y, start with x = y, work down.

Seek line up x′

|
x

from x color of a line down

y
|
y′ from y.

If it’s there, then Px,y = Px′,y (known by induction).
If not, (x, y) is primitive: no color down from y goes up from x.
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How the computation works
graph vertex y! irreducible character

lower vertices x! terms in character formula

For each pair (x, y), compute KL polynomial Px,y.

Px,y(1) is coefficient of term x in irreducible character y.

Induction: start with y’s on bottom of graph, work up.
For each y, start with x = y, work down.

Seek line up x′

|
x

from x color of a line down

y
|
y′ from y.

If it’s there, then Px,y = Px′,y (known by induction).
If not, (x, y) is primitive: no color down from y goes up from x.

One hard calculation for each primitive pair (x, y).
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What to do for primitive pair (x, y)
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.

Pick line down y

|
y′

; means Fy ≈ Fy′ × 2-diml sphere.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.

Pick line down y

|
y′

; means Fy ≈ Fy′ × 2-diml sphere.

Primitive means red line x

|
x′

is also down from x.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.

Pick line down y

|
y′

; means Fy ≈ Fy′ × 2-diml sphere.

Primitive means red line x

|
x′

is also down from x.

Geometry translates to algebra Px,y ≈ Px′,y′ + qPx,y′ . Precisely:
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.

Pick line down y

|
y′

; means Fy ≈ Fy′ × 2-diml sphere.

Primitive means red line x

|
x′

is also down from x.

Geometry translates to algebra Px,y ≈ Px′,y′ + qPx,y′ . Precisely:

Px,y = Px′,y′ + qPx,y′ −
∑

x′≤z<y′

µ(z, y′)q(l(y′)−l(z)−1)/2Px′,z.
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What to do for primitive pair (x, y)

graph vertex y! big piece Fy of flag variety.

lower vertex x! little piece Fx of flag variety.

Want to know how singular Fy is near Fx.

Pick line down y

|
y′

; means Fy ≈ Fy′ × 2-diml sphere.

Primitive means red line x

|
x′

is also down from x.

Geometry translates to algebra Px,y ≈ Px′,y′ + qPx,y′ . Precisely:

Px,y = Px′,y′ + qPx,y′ −
∑

x′≤z<y′

µ(z, y′)q(l(y′)−l(z)−1)/2Px′,z.

For E8, the big sum averages about 150 nonzero terms.
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How do you make a computer do that?
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How do you make a computer do that?
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How do you make a computer do that?

Jun 2002: Jeff Adams asked Fokko du Cloux.
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How do you make a computer do that?

Jun 2002: Jeff Adams asked Fokko du Cloux.
Nov 2005: Fokko finished the program.
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How do you make a computer do that?

Jun 2002: Jeff Adams asked Fokko du Cloux.
Nov 2005: Fokko finished the program.
Wasn’t that easy?
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What’s the computer have to do?
TASK COMPUTER NEEDED
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What’s the computer have to do?
TASK COMPUTER NEEDED

Make graph: 453,060 nodes, 8
edges from each

250M RAM, 10 minutes

List primitive pairs of vertices:
6,083,626,944

450M RAM, few seconds

Calculate the polynomial for
each primitive pair

Fetch few kB from memory,
few thousand integer ops

× 6 billion

Look for polynomial in store, add
if it’s a new one

4 × 20 × ??
bytes
coef

coefs
poly polys

RAM

Record polynomial number 25G RAM

Big unknown: number of distinct polynomials.
Hoped 400 million polynomials 75G total RAM.
Feared 1 billion polynomials 150G total RAM.
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Nov 2006 Experiments by Birne Binegar on William Stein’s
computer sage showed we needed 150G.
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Nov 2006 Experiments by Birne Binegar on William Stein’s
computer sage showed we needed 150G.

28 Nov 2006 Asked about pure math uses for 256G computer.
30 Nov 2006 Noam Elkies told us we didn’t need one. . .

one 150G computation
( modular
arithmetic)

−−−−−−−→ four 50G computations

03 Dec 2006 Marc van Leeuwen made Fokko’s code modular.
19 Dec 2006 mod 251 computation on sage. Took 17 hours:

Total elapsed time = 62575s. Finished at l = 64, y = 453059

d store.size() = 1181642979, prim size = 3393819659

VmData: 64435824 kB

Writing to disk took two days. Investigating why 
output bug, so mod 251 character table no good.
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Middle of the End of the Story
21 Dec 2006 9 P.M. Started mod 256 computation on sage.

Computed 452,174 out of 453,060 rows of character
table in 14 hours, then sage crashed.
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Computed 452,174 out of 453,060 rows of character
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hip, hip, HURRAH! pthread join(cheer[k], NULL);):
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Decided not to abuse sage further for one year.
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27 Dec 2006 Started computation mod 253. Halfway through,

sage crashed.
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Decided not to abuse sage further for one year.

3 Jan 2007 Atlas members one year older twenty years wiser
as team safe to go back to work.
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So we’ve got mod 256. . .
26 Dec 2006 sage rebooted. Wrote character table mod 255.
27 Dec 2006 Started computation mod 253. Halfway through,

sage crashed.
consult experts probably not Sasquatch.
Did I mention sage is in Seattle?
Decided not to abuse sage further for one year.

3 Jan 2007 Atlas members one year older twenty years wiser
as team safe to go back to work.
Wrote character table mod 253 (12 hrs).
Now we had answers mod 253, 255, 256.

Chinese Remainder Theorem (CRT)
gives answer mod 253·255·256 = 16,515,840.
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So we’ve got mod 256. . .
26 Dec 2006 sage rebooted. Wrote character table mod 255.
27 Dec 2006 Started computation mod 253. Halfway through,

sage crashed.
consult experts probably not Sasquatch.
Did I mention sage is in Seattle?
Decided not to abuse sage further for one year.

3 Jan 2007 Atlas members one year older twenty years wiser
as team safe to go back to work.
Wrote character table mod 253 (12 hrs).
Now we had answers mod 253, 255, 256.

Chinese Remainder Theorem (CRT)
gives answer mod 253·255·256 = 16,515,840.
One little computation for each of 13 billion coefficients.
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The End of the End of the Story

4 Jan 2007 Marc van Leeuwen started his CRT software.
On-screen counter displayed polynomial number:
0, 1, 2, 3, . . . , 1181642978. Turns out that’s a bad idea.
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5 Jan 2007 MORNING Restarted CRT computation, with counter
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Worked fine until sage crashed.
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5 Jan 2007 AFTERNOON Re-restarted CRT computation.
6 Jan 2007 7 A.M. Output file 7G too big: BUG in output routine.
7 Jan 2007 2 A.M. Marc found output bug. Occurred only after

polynomial 858,993,459; had tested to 100 million.
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8 Jan 2007 9 A.M. Wrote to disk the character table of E8.
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8 Jan 2007 9 A.M. Wrote to disk the character table of E8.

So what was the point?

In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow

atlas member Dan Ciubotaru. Fokko was halfway through writing

the software I’ve talked about: the point at which neither the end of

the tunnel nor the beginning is visible any longer.

The character table for E8 – p. 33/33



Happily Ever After. . .

8 Jan 2007 9 A.M. Wrote to disk the character table of E8.

So what was the point?

In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow
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the tunnel nor the beginning is visible any longer.

Walking home after a weekend in the math department, Dan said,

“Fokko, look at us. We’re spending Sunday alone at work.”
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Happily Ever After. . .

8 Jan 2007 9 A.M. Wrote to disk the character table of E8.

So what was the point?

In the fall of 2004, Fokko du Cloux was at MIT, rooming with fellow

atlas member Dan Ciubotaru. Fokko was halfway through writing

the software I’ve talked about: the point at which neither the end of

the tunnel nor the beginning is visible any longer.

Walking home after a weekend in the math department, Dan said,

“Fokko, look at us. We’re spending Sunday alone at work.”

Fokko was startled by this remark, but not at a loss for words.

“I don’t know about you, but I’m having the time of my life!”
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Happily Ever After. . .

8 Jan 2007 9 A.M. Wrote to disk the character table of E8.

Fokko du Cloux
20 December 1954–10 November 2006
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