Deforming subgroups

This is a sketch of a solution of the homework assigned for March 17, to deform a subgroup H to another H_0 of the same dimension, such that H_0 is normal in a parabolic subgroup P.

Write $I_H \subset k[G]$ for the ideal of the subgroup H. I'll write $\langle E \rangle$ for the ideal generated by a set E of functions. Arguing as in the construction of the quotient variety G/H (text, 5.5) we can find a finite-dimensional subspace $V \subset k[G]$ with the following properties.

1) The space V is stable under left translations λ and right translations ρ :

$$[\lambda(g)f](x) = f(g^{-1}x), \qquad [\rho(g)f](x) = f(xg).$$

2) The ideal I_H is generated by its intersection with V:

$$I_H(1) = I_H \cap V, \qquad I_H = \langle I_H(1) \rangle.$$

Here is the approximate idea. The ideal of the subgroup $gHg^{-1} = \operatorname{Ad}(g)H$ is

$$I_{qHq^{-1}} = \operatorname{Ad}(g)I_H = \langle \operatorname{Ad}(g)I_H(1) \rangle.$$

The action of $\operatorname{Ad}(g)$ on functions is $\lambda(g)\rho(g)$, so it preserves the finite-dimensional space V. We consider the action of Ad on the (projective) Grassmann variety $\operatorname{Gr}_d(V)$ of d-dimensional subspaces of V (with $d = \dim I_H(1)$). The ideals of the conjugates of H form a single G-orbit. The isotropy group for this action is clearly the normalizer of H:

$$\{gHg^{-1} \mid g \in G\} \simeq \operatorname{Ad}(G)I_H(1) \simeq G/N_G(H) \subset \operatorname{Gr}_d(V).$$

In the closure of this G-orbit there must be a closed G orbit $\operatorname{Ad}(g)W(1)$, with W(1) a d-dimensional subspace of V. Since the Grassmannian is projective, this closed orbit is complete, so its isotropy group P(1) is parabolic.

Approximately H_0 should be the subgroup defined by the ideal $\langle W(1) \rangle$ generated by W(1).

The difficulty is that this ideal may be much smaller than you expect (so that the dimension of the corresponding variety is larger). Even though W(1) is a limit of the corresponding part of the ideals for conjugates of H, it may not be true that the entire ideals (for conjugates of H) converge to $\langle W(1) \rangle$.

I don't know a really simple way to fix matters, but here is something that seems to work. We may (after enlarging V) assume that it generates k[G]. We may then filter k[G] by defining

 $k[G]_m =$ span of products of at most m factors in V,

so that

$$k[G]_0 = k \subset k[G]_1 = k + V \subset k[G]_2 \subset \cdots$$

This is an exhaustive increasing filtration which respects multiplication:

$$k[G]_m \cdot k[G]_n \subset k[G]_{m+n},$$

and the associated graded ring is a finitely generated commutative algebra over k (the quotient of a polynomial ring in dim V variables by a homogeneous ideal).

Now we can define

$$I_H(m) = I_H \cap k[G]_m, \qquad \dim I_H(m) = d_m.$$

Define a "partial flag variety"

 $X(m) = \{ \text{chains of subspaces } W = \{ W(1) \subset W(2) \subset \cdots \subset W(m) \subset k_m[G] \} \}$

subject to the requirements

$$\dim W(j) = d_j, \qquad W(j) \subset k[G]_j.$$

This is a projective algebraic variety. The choice of V and the construction of the filtration makes $k[G]_m$ stable by ρ , λ , and Ad, so these actions apply to X(m). Forgetting the largest subspace defines a proper morphism

$$\pi(m+1): X(m+1) \to X(m).$$

Inside X(m) is the *G*-orbit

$$Z(m) = \operatorname{Ad}(G)I_H.$$

Since by construction $I_H(1)$ generates I_H , it is very easy to check that all the isotropy groups

$$\{g \in G \mid \operatorname{Ad}(g)I_H(i) = I_H(i), 1 \le i \le m\}$$

are equal to $N_G(H)$; so

$$Z(m) \simeq G/N_G(H), \qquad m \ge 1.$$

Each closure Z(m) is Ad(G)-stable and closed in the projective variety X(m), and therefore complete. I am going to choose a compatible family of closed G orbits

$$O(m) = \operatorname{Ad}(G)W_0 \subset \overline{Z(m)}.$$

The notation is a little ambiguous. The flag W_0 in the preceding formula consists of m subspaces

$$W_0(i) \qquad (1 \le i \le m);$$

but the *m* does not appear in the notation. When I choose another flag W'_0 in Z(m+1), its first *m* subspaces $W'_0(i)$ will be equal to $W_0(i)$. So calling the new flag W_0 is more or less harmless.

We have already seen that $\pi(m+1)$ maps Z(m+1) isomorphically onto Z(m); so

$$\pi(m+1):\overline{Z(m+1)}\to\overline{Z(m)}$$

is a surjective proper map.

Begin by choosing a closed orbit

$$O(1) = \operatorname{Ad}(G)W_0(1) \subset \overline{Z(1)}.$$

Once the closed orbit

$$O(m) = \operatorname{Ad}(G)W_0 \subset \overline{Z(m)}$$

is chosen, its preimage

$$\pi(m+1)^{-1}(O(m)) \subset \overline{Z(m+1)}$$

is necessarily a complete subvariety, preserved by Ad (since $\pi(m+1)$ is proper and respects all the group actions). Consequently there is a closed orbit

$$O(m+1) = \operatorname{Ad}(G)W'_0 \subset \pi(m+1)^{-1}(O(m)).$$

We may choose the orbit representative W'_0 to project to W_0 , which means exactly that the first *m* subspaces in the flag W'_0 agree with those already chosen.

Because the orbits are closed, the isotropy groups

$$P(m) = \{ g \in G \mid \mathrm{Ad}(g) W_0(i) = W_0(i) (1 \le i \le m) \}$$

are all parabolic.

We now consider the increasing family of ideals

$$I_0(m) = \langle W_0(m) \rangle \subset k[G].$$

Because k[G] is Noetherian, this family is eventually constant:

$$I_0(m) = I_0(M) \qquad (m \ge M).$$

We call this limiting ideal I_0 , and define

$$H_0 =$$
variety of I_0 .

Because I_0 was constructed as a limit of ideals, it is easy to check that

$$I_0 \cap k[G]_m = W_0(m) \qquad (1 \le m < \infty),$$

and in particular that

$$\dim(I_0 \cap k[G]_m) = \dim(I_H \cap k[G]_m) \qquad (1 \le m < \infty).$$

From this knowledge of Hilbert functions we conclude that H_0 has the same dimension as H.

We want to show that H_0 is a group. Recall the product morphism

$$\mu: G \times G \to G, \qquad \mu(x, y) = xy,$$

and the corresponding algebra homomorphism

$$\mu^*: k[G] \to k[G] \otimes k[G].$$

If A, B, and C are closed subsets of G, with ideals I_A , I_B , and I_C , then the ideal of $A \times B$ is $I_A \otimes k[G] + k[G] \otimes I_B$; so the condition $A \cdot B \subset C$ is equivalent to

$$\mu^*(I_C) \subset I_A \otimes k[G] + k[G] \otimes I_B).$$

In particular, the condition that H is closed under multiplication is

$$\mu^*(I_H) \subset I_H \otimes k[G] + k[G] \otimes I_H).$$

For every positive integer m, the subspace $I_H(m)$ is finite-dimensional; so there must be positive N(m) so that

$$\mu^*(I_H(m)) \subset I_H(N) \otimes k[G]_N + k[G]_N \otimes I_H(N)).$$

Because this condition (concerning behavior of subspaces under the fixed linear map μ^* on fixed finite-dimensional spaces like $k[G]_m$) is satisfied for all the ideals (and corresponding flags) $I_{gHg^{-1}}$, it is satisfied by the limit ideal I_0 as well. It follows that H_0 is closed under multiplication.

Similar arguments show that H_0 is closed under inversion and contains the identity of G, so H_0 is a subgroup.

The ideal I_0 may not be radical, so the ideal of H_0 may be slightly larger than I_0 ; but at any rate it is clear that $N_G(H_0)$ contains the isotropy group P(M) of the closed orbit O(M). Since P(M) is parabolic, the larger group $N_G(H_0)$ is parabolic as well.

4