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What’s this about really?

G(R) any real reductive algebraic group.

Ĝ(R)u = (equiv classes of) irr unitary reps of G(R).
I’ll assume that studying this set (the unitary dual
problem) is the most world’s best problem.

How can you approach it?
Goal for today: focus on a small piece of the unitary
dual problem for which the answer involves some
interesting and accessible mathematics; and which
displays many ideas from the general case.
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Two important subgroups for GL(n,R)

K (R) = O(n) = orthogonal group,
A = positive diagonal matrices,

A+ = positive diag mats with decreasing entries.

Any invertible n × n real g has a polar decomposition
g = k1ak2, (a ∈ A+, ki ∈ O(n).

Matrix a is unique. Diag entries are the singular values of
g. Largest singular value is

a1 = max
v∈Rn\0

‖gv‖
‖v‖

,

the largest amount that g can stretch a vector.

Similarly, an is the least that g can shrink a vector.

Since K (R) is compact, polar decomp says that A—better,
A+—enumerates all ways to go to infinity in G(R).
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So what can you do with KAK ?
K = O(n) = orthogonal group,

A = positive diagonal matrices,

A+ = positive diag mats with decreasing entries.

Study harmonic functions on the unit disc by boundary values:
limiting behavior in radial directions.

Same applies to functions on GL(n,R) = KAK : helps to study
limiting behavior in the A variable, particularly along A+.

(approximate) Theorem (Harish-Chandra). If φ nice function on
GL(n,R), (say matrix coeff of irr rep) then there is an asymptotic
expansion at infinity on A+

φ(k1ak2) ∼ c(k1, k2)aν + lower terms, (a ∈ A∗ → ∞)

with ν ∈ Cn. Here aν = aν1
1 · · · · · a

νn
n , and “lower terms” are

cm(k1, k2)aν−m, m ∈ Zn sum of ei − ej with i < j .
Condition on m makes a−m decay exponentially on A+.

irr repn π
mat coeff
−→ function φ

asymp
−→ ν ∈ Cn = a∗.

This is a hint of what the Langlands classification looks like.
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Two important subgroups for G(R)

Suppose G(R) real reductive algebraic. Define

K (R) = maximal compact subgroup,
G(R) = K (R)AN(R) Iwasawa decomposition

A ' a = Lie(A) vector group
A+ = subgroup acting on n(R) by eigvals ≥ 1.

Any g ∈ G(R) has a Cartan decomposition
g = k1ak2, (a ∈ A+, ki ∈ K (R)).

Element a is unique. Measures distance of g from
K (R).
Since K (R) is compact, polar decomp says that A+

enumerates ways to go to infinity in G(R).
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So what can you do with KAK ?

Study nice functions on G(R) = KAK via their limiting behavior
in the the A variable, particularly along the cone A+.

(approximate) Theorem (Harish-Chandra). If φ nice function on
G(R), (say matrix coeff of irr rep) then there is an asymptotic
expansion at infinity on A+

φ(k1ak2) ∼ c(k1, k2)aν + lower terms, (a ∈ A∗ → ∞)

with ν ∈ a∗. Here aν = exp(ν(log(a))); “lower terms” are

cm(k1, k2)aν−m, m ∈ a∗ sum of weights of a on n(R).

Condition on m makes a−m decay exponentially on A+.

irr repn π
mat coeff
−→ function φ

asymp
−→ ν ∈ Cn = a∗.

This display is the idea of the Langlands classification:
irreducible representations of G(R) are approximately indexed
by complex-valued linear functionals on the real vector space a.
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Langlands classification for spherical reps

G(R) = K (R)AN(R) Iwasawa decomposition.

Real vector space a comes with (maybe not reduced) restricted
root datum (X ∗,R,X∗,R∨), so small Weyl group WA.

Repn (π,Vπ) of G(R) called spherical if V K (R)
π , 0.

Theorem (Harish-Chandra)

1. Irreducible (not necessarily unitary) spherical reps of G(R)

are in bijection with a∗/WA.
2. Suppose π is such a representation, v ∈ V K (R)

π ,
λ ∈ (V d

π )
K (R), and λ(v) = 1. Then the function

φπ(g) = λ(π(g)v) ∈ C∞(G)

is K (R)-bi-invariant, indep of choices of v and λ.
3. The function φπ has an asymptotic expansion along A+ with

a leading term

a 7→ aν−ρ, ν ∈ a∗, Re(ν(Hα)) ≥ 0 (all Hα ∈ R∨,+).

4. The correspondence in (1) is π 7→WA · ν.
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What does that tell you?
Function φπ(g) = λ(π(g)v) is a matrix coeff of π.

Representation π is unitarizable iff φπ is positive definite, so that’s
the big question.

Reduction from Knapp’s book Overview: write

ν = νRe + iνim, with νRe and νim real-valued linear functionals

Pνim (R) = Lνim (R)Uνim (R) parabolic def by νim.

πL = spherical rep of Lνim(R) defined by νRe.

Then π is unitary for G(R) iff πL is unitary for Lνim(R);

and in this case πL is unitarily induced from Pνim(R).

Reduced big question: for which real ν ∈ a∗ is π unitary?

Theorem (Helgason-Johnson): φπ is bdd iff ν ∈ cvx hull(WA · ρ).

So need to run the unitarity algorithm on all ν ∈ cvx hull.

Good news: that’s a compact polyhedron.

Bad news: it’s enormous.

Worst news: it’s uncountably infinite.
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Polygon Pollyanna

a∗0 ⊃ cvx hull 〈W · ρ〉 ⊃ 〈W · ρ〉 ∩ a∗,+0 =def HJ

Worst news was that we need to check unitarity for
uncountably many points in HJ.

“Pollyanna” is one who looks at huge polytope and says, “There must be
a root datum in here somewhere.”

Recall restricted root datum (X ∗,R,X∗,R∨).

Root datum aff coroot hyperplanes and aff reflections

Hα∨ ,m = {ν ∈ a∗0 | 〈ν, α
∨〉 = m}, sα∨ ,m(ν) = ν − (〈ν, α∨〉 −m)α.

Affine Weyl group WA,aff = 〈sα∨,m〉, a Coxeter group.

Like any loc fin hyperplane arrangement, affine coroot
hyperplanes partition a∗0 into facets, each the interior of a
(probably lower dimensional) convex polytope.

Any compact set (like HJ) meets only finitely many facets.

Unitarity status is constant on facets.
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How to compute (spherical) unitary dual

1. Find a compact set (like HJ = 〈W · ρ〉 ∩ a∗,+0 )
containing all the unitary points.

2. Compute the (finite) partition of your set into facets.
3. On each facet, test the unitarity of one point.

Barbasch and Ciubotaru have an improvement of (1):

The fundamental parallelepiped is

FPP =def

{
ν ∈ a∗0 | 0 ≤ 〈ν, α

∨〉 ≤ 1,
all simple restricted coroots α∨

}
At least for G(R) split, they prove

if ν ∈ a∗,+0 and π(ν) unitary, then ν ∈ FPP.

The set FPP is much smaller than HJ, so computationally
this is a big improvement.
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Connection with the Dirac inequality

The original abstract promised that there would be a
connection with Dirac operators.

Parthasarathy’s Dirac inequality says

if ν ∈ a∗,+0 and π(ν) unitary, then 〈ν, ν〉 ≤ 〈ρ, ρ〉.

This statement is slightly weaker than the
Helgason-Johnson bound appearing two slides earlier.

It would be interesting to use ideas related to the unitary
representation Vπ ⊗ Spin of U(g) ⊗ C(p)—that is, to the
world of the Dirac operator—to prove the B-C statement
about FPP on the previous slide.

Really what I would like is a proof of a statement like that
of Barbasch-Ciubotaru applicable to not-necessarily
spherical representations.
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