How to compute the unitary dual

David Vogan

Massachusetts Institute of Technology

Representation Theory XVII Dubrovnik October 2022 How to compute the unitary dual

David Vogan

Outline

Introduction

Spherical representations

Polygon geometry

Relation to Dirac inequality

Slides eventually at http://www-math.mit.edu/~dav/paper.html

How to compute the unitary dual

David Vogan

What's this about really?

 $G(\mathbb{R})$ any real reductive algebraic group. $\widehat{G(\mathbb{R})}_{u} = (\text{equiv classes of}) \text{ irr unitary reps of } G(\mathbb{R}).$ I'll assume that studying this set (the unitary dual problem) is the most world's best problem.

How can you approach it?

Goal for today: focus on a small piece of the unitary dual problem for which the answer involves some interesting and accessible mathematics; and which displays many ideas from the general case. How to compute the unitary dual

David Vogan

Two important subgroups for $GL(n, \mathbb{R})$

 $K(\mathbb{R}) = O(n) =$ orthogonal group,

A =positive diagonal matrices,

 A^+ = positive diag mats with decreasing entries.

Any invertible $n \times n$ real g has a polar decomposition

 $g = k_1 a k_2,$ $(a \in A^+, k_i \in O(n).$

Matrix *a* is unique. Diag entries are the singular values of *g*. Largest singular value is

$$a_1 = \max_{\boldsymbol{\nu} \in \mathbb{R}^n \setminus 0} \frac{\|\boldsymbol{g}\boldsymbol{\nu}\|}{\|\boldsymbol{\nu}\|},$$

the largest amount that g can stretch a vector.

Similarly, a_n is the least that g can shrink a vector.

Since $K(\mathbb{R})$ is compact, polar decomp says that *A*—better, A^+ —enumerates all ways to go to infinity in $G(\mathbb{R})$.

How to compute the unitary dual

David Vogan

So what can you do with KAK?

- K = O(n) =orthogonal group,
- A = positive diagonal matrices,

 A^+ = positive diag mats with decreasing entries.

Study harmonic functions on the unit disc by boundary values: limiting behavior in radial directions.

Same applies to functions on $GL(n, \mathbb{R}) = KAK$: helps to study limiting behavior in the *A* variable, particularly along A^+ .

(approximate) Theorem (Harish-Chandra). If ϕ nice function on $GL(n, \mathbb{R})$, (say matrix coeff of irr rep) then there is an asymptotic expansion at infinity on A^+

 $\phi(k_1 a k_2) \sim c(k_1, k_2) a^{\vee} + \text{ lower terms}, \quad (a \in A^* \to \infty)$

with $v \in \mathbb{C}^n$. Here $a^v = a_1^{v_1} \cdots a_n^{v_n}$, and "lower terms" are

 $c_m(k_1, k_2)a^{v-m}$, $m \in \mathbb{Z}^n$ sum of $e_i - e_j$ with i < j. Condition on m makes a^{-m} decay exponentially on A^+ .

irr repn $\pi \xrightarrow{\text{mat coeff}}$ function $\phi \xrightarrow{\text{asymp}} v \in \mathbb{C}^n = \mathfrak{a}^*$.

This is a hint of what the Langlands classification looks like.

How to compute the unitary dual

David Vogan

Two important subgroups for $G(\mathbb{R})$

Suppose $G(\mathbb{R})$ real reductive algebraic. Define

 $K(\mathbb{R}) =$ maximal compact subgroup, $G(\mathbb{R}) = K(\mathbb{R})AN(\mathbb{R})$ Iwasawa decomposition $A \simeq \mathfrak{a} = \text{Lie}(A)$ vector group A^+ = subgroup acting on $\mathfrak{n}(\mathbb{R})$ by eigvals ≥ 1 . Any $g \in G(\mathbb{R})$ has a Cartan decomposition $g = k_1 a k_2$, $(a \in A^+, k_i \in K(\mathbb{R}))$. Element a is unique. Measures distance of g from $K(\mathbb{R}).$ Since $K(\mathbb{R})$ is compact, polar decomp says that A^+

enumerates ways to go to infinity in $G(\mathbb{R})$.

How to compute the unitary dual

David Vogan

Spherical reps

So what can you do with KAK?

Study nice functions on $G(\mathbb{R}) = KAK$ via their limiting behavior in the the A variable, particularly along the cone A^+ .

(approximate) Theorem (Harish-Chandra). If ϕ nice function on $G(\mathbb{R})$, (say matrix coeff of irr rep) then there is an asymptotic expansion at infinity on A^+

 $\phi(k_1 a k_2) \sim c(k_1, k_2) a^{\nu} + \text{ lower terms}, \quad (a \in A^* \to \infty)$

with $\nu \in \mathfrak{a}^*$. Here $a^{\nu} = \exp(\nu(\log(a)))$; "lower terms" are

 $c_m(k_1, k_2)a^{\nu-m}$, $m \in \mathfrak{a}^*$ sum of weights of \mathfrak{a} on $\mathfrak{n}(\mathbb{R})$.

Condition on *m* makes a^{-m} decay exponentially on A^+ .

irr repn $\pi \xrightarrow{\text{mat coeff}}$ function $\phi \xrightarrow{\text{asymp}} \nu \in \mathbb{C}^n = \mathfrak{a}^*$.

This display is the idea of the Langlands classification: irreducible representations of $G(\mathbb{R})$ are approximately indexed by complex-valued linear functionals on the real vector space α .

How to compute the unitary dual

David Vogan

Langlands classification for spherical reps

 $G(\mathbb{R}) = K(\mathbb{R})AN(\mathbb{R})$ lwasawa decomposition.

Real vector space α comes with (maybe not reduced) restricted root datum (X^* , R, X_* , R^{\vee}), so small Weyl group W_A .

Repn (π, V_{π}) of $G(\mathbb{R})$ called spherical if $V_{\pi}^{K(\mathbb{R})} \neq 0$.

Theorem (Harish-Chandra)

- 1. Irreducible (not necessarily unitary) spherical reps of $G(\mathbb{R})$ are in bijection with \mathfrak{a}^*/W_A .
- 2. Suppose π is such a representation, $v \in V_{\pi}^{K(\mathbb{R})}$, $\lambda \in (V_{\pi}^{d})^{K(\mathbb{R})}$, and $\lambda(v) = 1$. Then the function $\phi_{\pi}(g) = \lambda(\pi(g)v) \in C^{\infty}(G)$

is $K(\mathbb{R})$ -bi-invariant, indep of choices of v and λ .

3. The function ϕ_{π} has an asymptotic expansion along A^+ with a leading term

 $a \mapsto a^{\nu-\rho}, \quad \nu \in \mathfrak{a}^*, \quad \operatorname{Re}(\nu(H_\alpha)) \ge 0 \quad (\text{all } H_\alpha \in \mathbb{R}^{\vee,+}).$

4. The correspondence in (1) is $\pi \mapsto W_A \cdot v$.

How to compute the unitary dual

David Vogan

ntroduction

Spherical reps

Polygon geom

Dirac

What does that tell you?

Function $\phi_{\pi}(g) = \lambda(\pi(g)v)$ is a matrix coeff of π .

Representation π is unitarizable iff ϕ_{π} is positive definite, so that's the big question.

Reduction from Knapp's book Overview: write

 $v = v_{Re} + iv_{im}$, with v_{Re} and v_{im} real-valued linear functionals

 $P_{\nu_{im}}(\mathbb{R}) = L_{\nu_{im}}(\mathbb{R}) U_{\nu_{im}}(\mathbb{R})$ parabolic def by ν_{im} .

 $\pi_L = \text{spherical rep of } L_{\nu_{\text{im}}(\mathbb{R})} \text{ defined by } \nu_{\text{Re}}.$

Then π is unitary for $G(\mathbb{R})$ iff π_L is unitary for $L_{\nu_{im}}(\mathbb{R})$; and in this case π_L is unitarily induced from $P_{\nu_{im}}(\mathbb{R})$. Reduced big question: for which real $\nu \in \mathfrak{a}^*$ is π unitary? Theorem (Helgason-Johnson): ϕ_{π} is bdd iff $\nu \in \text{cvx}$ hull($W_A \cdot \rho$). So need to run the unitarity algorithm on all $\nu \in \text{cvx}$ hull. Good news: that's a compact polyhedron. Bad news: it's enormous.

Worst news: it's uncountably infinite.

How to compute the unitary dual

David Vogan

Polygon Pollyanna

$$\mathfrak{a}_{0}^{*} \supset \operatorname{cvx} \operatorname{hull} \langle W \cdot \rho \rangle \supset \langle W \cdot \rho \rangle \cap \mathfrak{a}_{0}^{*,+} =_{\operatorname{def}} HJ$$

Worst news was that we need to check unitarity for uncountably many points in *HJ*.

"Pollyanna" is one who looks at huge polytope and says, "There must be a root datum in here somewhere."

Recall restricted root datum (X^*, R, X_*, R^{\vee}) .

Root datum vaff coroot hyperplanes and aff reflections

$$H_{\alpha^{\vee},m} = \{ \nu \in \mathfrak{a}_0^* \mid \langle \nu, \alpha^{\vee} \rangle = m \}, \quad S_{\alpha^{\vee},m}(\nu) = \nu - (\langle \nu, \alpha^{\vee} \rangle - m) \alpha.$$

Affine Weyl group $W_{A,aff} = \langle s_{\alpha^{\vee},m} \rangle$, a Coxeter group.

Like any loc fin hyperplane arrangement, affine coroot hyperplanes partition \mathfrak{a}_0^* into facets, each the interior of a (probably lower dimensional) convex polytope.

Any compact set (like *HJ*) meets only finitely many facets. Unitarity status is constant on facets. How to compute the unitary dual

David Vogan

How to compute (spherical) unitary dual

- 1. Find a compact set (like $HJ = \langle W \cdot \rho \rangle \cap \mathfrak{a}_0^{*,+}$) containing all the unitary points.
- 2. Compute the (finite) partition of your set into facets.
- 3. On each facet, test the unitarity of one point.

Barbasch and Ciubotaru have an improvement of (1):

The fundamental parallelepiped is

 $\begin{aligned} FPP =_{\mathsf{def}} \left\{ \nu \in \mathfrak{a}_0^* \mid \mathbf{0} \leq \langle \nu, \alpha^{\vee} \rangle \leq 1, \\ \text{all simple restricted coroots } \alpha^{\vee} \right\} \end{aligned}$

At least for $G(\mathbb{R})$ split, they prove

if $\nu \in \mathfrak{a}_0^{*,+}$ and $\pi(\nu)$ unitary, then $\nu \in FPP$.

The set *FPP* is much smaller than *HJ*, so computationally this is a big improvement.

How to compute the unitary dual

David Vogan

Connection with the Dirac inequality

The original abstract promised that there would be a connection with Dirac operators.

Parthasarathy's Dirac inequality says

if $\nu \in \mathfrak{a}_0^{*,+}$ and $\pi(\nu)$ unitary, then $\langle \nu, \nu \rangle \leq \langle \rho, \rho \rangle$.

This statement is slightly weaker than the Helgason-Johnson bound appearing two slides earlier.

It would be interesting to use ideas related to the unitary representation $V_{\pi} \otimes \text{Spin}$ of $U(\mathfrak{g}) \otimes C(\mathfrak{p})$ —that is, to the world of the Dirac operator—to prove the B-C statement about *FPP* on the previous slide.

Really what I would like is a proof of a statement like that of Barbasch-Ciubotaru applicable to not-necessarily spherical representations. How to compute the unitary dual

David Vogan