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These are notes on several topics related to certain representation of the
Weyl group. These include the coherent continuation representation and the
representation of W on involutions studied in [4] and [3].

We fix a connected complex reductive group G = G(C), with Weyl group
W . At various points we will also assume G is defined over R, or equivalently
we are given an algebraic involutive automorphism of G.

Let G = Lie(G), and if G is defined over R, define G(R) and g0 = Lie(G(R)).
Let N = N (G) be the set of nilpotent orbits of G = G(C) acting on g = Lie(G).
Let Γ = Gal(C/R).

Suppose O ∈ N (G). Let D(O) be the space spanned by the orbital integrals
of G(R)-orbits in O∩G(R). This is a space of tempered, invariant distributions
supported on O.

We have the following objects.

GX = StabG(X)

A(O) = GX/(GX)0

A(O) = Lusztig’s canonical quotient of A(O) (O special)

H1(Γ, A(O)), H1(Γ, A(O)) = Galois cohomology spaces

A(O)2 = {g ∈ A(O) | g2 = 1}
[A(O)2] = conjugacy classes in A(O)2

r(O) = dim(D(O))

= |O ∩ g0/G(R)|
Dst(O) = subspace of D(O) consting of stable distributions

s(O) = dim(Dst(O))

0.1 Some Group Cohomology

Suppose there is an action of Z/2Z on a (possibly non-abelian) group G, and
write τ for the action of the non-trivial element. Then

H0(Z/2Z, G) = Gτ

H1(Z/2Z, G) = {g | gτ(g) = 1}/[g ∼ xgτ(x−1)]
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In particular if the action is trivial then

H1(Z/2Z, G) = {g | g2 = 1}/conjugacy = [G2]

Thus if Γ acts triviall y on A(O) (O is special) so

H1(Γ, A(O))↔ [A(O)2]

According to [5, Section 1.9] this holds if G is simple, quasi-split and classical.
By general Galois cohomology arguments

(O ∩ g0)/G(R)←→ ker: H1(Γ, GX)→ H1(Γ, G)

1 The space M(A(O))

Now let G be a finite group. For x ∈ G let Gx = CentG(x), and let Ĝx be the
set of irreducible representations of Gx.

Define:
M(G) = {(x, ξ) | x ∈ G, ξ ∈ Ĝx}/G

where the quotient is by the natural action of G on the pairs. This set has a
basepoint (1, 1).

For x ∈ G define
Sx = {g ∈ Gx | g2 = x}/Gx

(the quotient is by the conjugation action of Gx). For x ∈ G, y ∈ Gx set

Gx,y = CentGx(y) = Gx ∩Gy.

We define a function φ̂0 on M(G):

φ̂0(x, ξ) =
∑
s∈Sx

dim(ξGx,s)

Let’s unwind this. On the left hand side x ∈ G, ξ ∈ Ĝx. On the right, each s
is a Gx-conjugacy class in Gx. If t ∈ s then Gx,t = CentGx(t), and ξGx,t is the
set of fixed points of this group acting on ξ. If t′ is another element of s, then
t′ = hth−1 for some h ∈ Gx. Then Gx,t′ = h(Gx,t)h

−1, and ξGx,t′ = ξ(h)ξGx,t .
Therefore the dimensions of these spaces are the same, which we’ve written as
dim(ξGx,s).

For example consider φ̂0(1, 1). Then Sx = {g ∈ G | g2 = 1}, and each
dimension term is 1, so

φ̂0(1, 1) = |{g ∈ G | g2 = 1}|/G,

the number of conjugacy classes of elements of order 1 or 2.

2



Suppose G is an elementary two-group. Then for all x ∈ G, Sx = G, and for
all s ∈ Sx, Gx,s = G. Therefore

φ̂0(x, ξ) =
∑
s∈G

dim(ξG) =

|G| ξ is trivial

0 otherwise

Suppose O is a nilpotent orbit, and φ ∈ Â(O). Write Springer(O, φ) ∈ Ŵ
for the irreducible representation of O given by the Springer correspondence.
This is a bijection from {(O, φ) | Springer(O, φ) 6= 0} to Ŵ (and the number of
excluded pairs (O, φ) is small, and often 0). The special representations of W
are the representations Springer(O, 1) where O is special.

Write d for duality of nilpotent orbits.

Definition 1.1 We define the special piece of a nilpotent orbit O:

SP(O) = {O′ | d(O′) = d(O)}

Define the special support of O, denoted Os to be the unique special orbit in
SP(O). In other words, Os = d2(O).

Thus SP(O) consists of a single special orbit Os, (the special support of O)
and all of the orbits O′ (including O), contained in the closure of Os but in the
closure of no smaller special orbit.

Definition 1.2 Set

W(G) = {(O,m) | O ∈ N (G),m ∈M(A(O))}

Thus m is a G-orbit of pairs (x, ξ) with x ∈ A(O) and ξ ∈ ̂CentA(O)(x).

The notationW is intended to suggest something to do with the Weyl group,
any suggestions for a better name here?

Lusztig defines a map

(1.3) Ψ : Ŵ →W(G).

It satisfies the following properties. Recall if O ∈ N then Os = d2(O) is the
special support of O.

(1) Ψ is injective.

(2) Ψ(Springer(O, φ)) = (Os,m) where Os = d2(O) is the special support of
O, for some m ∈ M(A(O)). In particular the orbits occuring in W(G)
are all special.

(3) Ψ(Springer(O, 1)) = (Os, (x, 1)) for some x ∈ [A(Os)].
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(4) If O is special Ψ(Springer(O, 1)) = (O, (1, 1)), and Ψ restricts to a bi-

jection from the special representations in Ŵ to {(O, (1, 1)} where O is
special. The inverse map is (O, (1, 1)} 7→ Springer(O).

(5) Fix a special orbit O, and set

C(O) = {Ψ−1(O,m) | m ∈M(A(O))}

Then C(O) is a two-sided cell, and all two-sided cells arise this way.
Thus the two-sided cells are parametrized by special orbits, and C(O) ↪→
M(A(O)). Each two-sided cell contains a unique special representation
σ, which satisfies Ψ(σ) = (O, (1, 1).

(6) Suppose O is special. By (3) if O′ ∈ SP(O) then Ψ(Springer(O′, 1)) =
(O, (x, 1)) for some x ∈ [A(O)]. The map O′ 7→ x injective:

(1.4) SP(O) ↪→ [A(O)].

(7) Suppose O is special and d(O) is even. Then the map (1.4) is a bijection

SP(O)←→ [A(O)]

(8) If O is special then every element (O, (x, 1)) ∈ W(G) is in the image of

Ψ. This gives a set {σ ∈ Ŵ | Ψ(σ) = (O, (x, 1)), parametrized by [A(O)].
This is a Lusztig cell (see below).

This result is assembled from various sources. Here are some references and
explanations.

The map Ψ is defined in [7], Sections 4.4-4.13, and Properties (1)-(5) are
part of the definitions. Assertion (6) is part of [6, Theorem 0.4].

If G = E8 and O = E8(a4) then A(O) = Z/2Z, and SP(O) = O. This
is an example where SP(O) embeds in A(O), but not surjectively. Note that
d(O) = A2 +A1 which is not even.

On the other hand if O = A2+A1 then d(O) = E8(a4) is even, |SP(O)| = 2,
A(O) = Z2, and (7) holds.

Property (7) is implicit in [2, Proposition 3.2], although the references given
in the proof there do not address this fact. Probably it follows from a close
reading of [6].

Suppose O is special and let ∨O = d(O). It is well known that A(O) '
A(∨O). If A(O) = 1 then (5) implies

|SP(O)| = |SP(∨O)| = 1

so (7) is true in this case. Thus (7) only has content if A(O) 6= 1.
We use (7) quite a bit so we state it separately.

Proposition 1.5 Suppose O is special, and the dual of O is even. Then

|[A(O)]| = |SP(O)|.
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An alternative statement is: suppose O is even. Then

|[A(O)]| = |[A(d(O))]| = |SP(d(O))|.

and keep in mind this is a formula for the size of the special piece not of the
even orbit O, but of its (possiby not even) dual.

Here is confirmation that the Proposition holds for E8. It is enough to
consider orbits with A(O) 6= 1.

Here is a list of special nilpotent orbits O for E8 for which A(O) 6= 1.

O diagram ∨O A(O) |SP(O)| |SP(∨O)|
A2 00000002 E8(a3) S2 2 2

A2+A1 10000001 E8(a4) S2 2 1

2A2 20000000 E8(a5) S2 2 2

D4(a1) 00000020 E8(b5) S3 3 3

D4(a1)+A1 01000010 E8(a6) S3 3 1

A4 20000002 E7(a3) S2 1 2

D4(a1)+A2 02000000 E8(b6) S2 2 2

A4+A1 10000101 E6(a1)+A1 S2 1 1

D5(a1) 10000102 E6(a1) S2 2 1

A4+2A1 00010001 D7(a2) S2 2 1

E6(a3) 20000020 D6(a1) S2 2 2

E8(a7) 00002000 E8(a7) S5 7 7

D6(a1) 01100012 E6(a3) S2 2 2

E6(a1) 20000202 D5(a1) S2 1 2

D7(a2) 10010101 A4+2A1 S2 1 2

E6(a1)+A1 10010102 A4+A1 S2 1 1

E8(b6) 00020002 D4(a1)+A2 S2 2 2

E7(a3) 20010102 A4 S2 2 1

E8(a6) 00020020 D4(a1)+A1 S3 1 3

E8(b5) 00020022 D4(a1) S3 3 3

E8(a5) 20020020 2A2 S2 2 2

E8(a4) 20020202 A2+A1 S2 1 2

E8(a3) 20020222 A2 S2 2 2

The Proposition says: if O is even, the number of conjugacy classes of A(O)
and the cardinality of the special piece of ∨O agree, as indicated by the bold
face entries.
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1.1 Example

We interrupt or program for an example.
Consider the special orbits E8(b4) ⊂ E8(a4). Both special pieces are empty.

The duals are: E8(b4)→ A2 + 2A1, E8(a4)→ A2 +A1, and we have the picture
The duals are 4A1 ⊂ A2 +A1 ⊂ A2 + 2A1; the special piece of A2 +A1 is (itself
and) 4A1.

Here is the Springer correspondence.

orbit O A(O) A(O) φ σ(O, φ) a(σ) b(σ)

E8(a4) Z/2Z Z/2Z 1 φ210,4 4 4

E8(a4) ε φ160,7 4 7

E8(b4) Z/2Z 1 1 φ560,5 6 6

E8(b4) ε φ50,8 6 8

A2 +A1 Z/2Z Z/2Z 1 φ210,52 52 52

A2 +A1 ε φ160,55 52 55

A2 + 2A1 1 1 1 φ560,47 47 47

4A1 1 1 1 φ50,56 56 56

Here are the special orbits, families/double cells, and the corresponding el-
ements (x, ξ) of M(A(O)).

orbit σ x ξ

E8(a4) φ210,4 1 1

φ50,8 g2 1

φ160,7 1 ε

E8(b4) φ560,5 1 1

A2 +A1 φ210,52 1 1

φ50,56 g2 1

φ160,55 1 ε

A2 + 2A1 φ560,47 1 1

Here are the special orbits and Lusztig cells.

orbit O L(O)

E8(a4) φ210,4, φ50,8

E8(b4) φ60,6

A2 +A1 φ210,52, φ50,56

A2 + 2A1 φ560,47

Definition 1.1.1 Let O be a special orbit. Let

Σ(O) = {σ ∈ Ŵ | Ψ(σ) = (O,m) for some m ∈ A(O)}
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This is the double cell defined by O.
The Lusztig (left) cell defined by O is:

L(O) = {σ ∈ Ŵ | Ψ(σ) = (O, (x, 1)) for some x ∈ [A(O)]} ⊂ Σ(O)

The Springer (left) cell defined by O is:

S(O) = {σ ∈ Ŵ | Ψ(σ) = (O, (1, ξ)) for some ξ ∈ [Â(O)]} ⊂ Σ(O)

Note that
L(O) ∩ S(O) = {Springer(O)}

and this is the unique special representation in Σ(O).

Lemma 1.1.2 Suppose O is special. Then |L(O)| = |[A(O)]|.

Recall
L(O) = {Ψ−1(O, (x, 1)) | x ∈ [A(O)]}.

Thus
{Springer(O′, 1) | O′ ∈ SP(O)} ⊂ L(O)

with equality if d(O) is even.
Back to our regularly scheduled programming.
Here is a formula for the size of a weak Arthur packet. See unipotentExep-

tional.pdf. For γ ∈ h∗ let Mγ(G(R)) be Grothendieck group of representations
of G(R) with infinitesimal character γ, equipped with the coherent continuation
representation of W .

Proposition 1.1.3 ([2, Proposition 3.1]) Assume ∨O is even. Let γ = γ(∨O).
Then

|Π(∨O)| = dim Hom(L(∨O)⊗ sgn,Mγ(G(R))

Corollary 1.1.4 Suppose ∨O is even, and set γ = γ(∨O). Let O be the dual
(special) orbit for G. Then

|Π(∨O)| =
∑

O′∈SP(O)

dim Hom(Springer(O′, 1),Πγ(G(R)))

The special orbits A4 + A1 for E7 and A4 + A1, E6(a1) + A1 for E8 are
said to be exceptional. We also say the the special Springer representations
Springer(O, 1) for these orbits are exceptional; these have dimension 512, 4096, 4096
respectively.

Note: I’m not sure if the statements above, especially the Corollary, need to be
modified for these orbits.
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2 Three Representations of the Weyl group

We will work (somewhat) in the atlas setting, with a fixed Cartan subgroup
H and choice of positive roots ∆+. Suppose θ is an involutive automorphism of
W . Define the imaginary roots ∆i(θ), with positive roots ∆+

i (θ) = ∆i(θ)∩∆+,
ρi(θ), and Weyl group Wi(θ) as usual, and similarly ∆r(θ) etc. If θ is understood
we drop it from the notation, although frequently θ is varying.

Define
εi(θ, w) = |{α ∈ ∆+

i | w
−1(α) ∈ −∆+}

The restriction of εi(θ, ∗) to W θ is a character, although εi(θ, ∗) is typically not
a character of W .

Suppose x is a KGB element. Then θx is an involutive automorphism of H
and W , and define ρi(x) accordingly. Note that for α a simple root

ρi(sαxsα) = εi(x, sα)sαρi(x)

and therefore
ρi(wxw

−1) = εi(x,w)(wρi(x)) (w ∈W ).

2.1 Representation on the space of involutions

First of all let I = {w ∈ W | w2 = 1}, the involutions in W . If w ∈ I define
θw(u) = wuw−1, and εi(w, u) = εi(θw, u) (u ∈ W ). Define a representation of
W on the space VI with basis {aw | w ∈ I} by:

πI(w)(ay) = εi(θy, w)awyw−1 (w ∈W, y ∈ I).

This is a representation of W of dimension |I|.
If w ∈ I then εi,w(u) := εi(θw, u) is a character when restricted to W θw , and

πI '
∑

w∈I/W

IndWW θw (εi,w)

Let

(2.1.1) T = I/W ;

this is in bijection with K-conjugacy classes of Cartan subgroups of G, or equiv-
alently G(R)-conjugacy classes of Cartan subgroups of G(R).

2.2 Representation on the KGB space

Now suppose we are given a real form of G, and let X be the corresponding
KGB space. Then w acts on X by the cross action w : x→ w×x. In particular
sα × x = x if and only if x is real or imaginary. Define a representation of W
on the space VX with basis {ax | x ∈ X} by

πX(w)(ax) = εi(θx, w)aw×x (w ∈W,x ∈ X)
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This is a representation of W of dimension |X|.
Recall that Wx := StabW (x) is equal to W (Gθx , Hθx), and this is isomorphic

to the “real” or “rational” Weyl group W (G(R), H(R)).
If x ∈ X then εi,x(u) := εi(θx, u) is a character when restricted to W θx , and

πX '
∑

w∈X/W

IndWWx
(εi,x)

Note that W acts transitively on the fibers of the map X → I, and therefore

X/W ' I/W = T .

2.3 Representation on a block

Now suppose we are given a real form of G, and a block B for this real form.
Then W acts on the space B by the cross action. Define a representation of W
on the space VB with basis {aγ | γ ∈ B}

πB(w)(aγ) = εi(θx(γ), w)aw×γ (w ∈W,γ ∈ B)

This is precisely the coherent continutation representation of W on the block;
the formulas for the action of W have some Cayley transform terms, but these
do not contribute to the trace (i.e. we can filter the representation by Cartan
subgroups, and replace it by the associated graded).

If γ ∈ B let Wγ = StabW (γ), and let θγ = θx where γ = (x, λ, ν). Then
εi,γ(w) := ε(θγ , w) is a character of Wγ , and

πB '
∑

w∈B/W

IndWWγ
(εi,γ).

Note that B/W ↪→ T , and this is a bijection of G is quasisplit. In particular if
G is quasisplit all three formulas are sums over the same set T .

Remark 2.3.1 The three subgroups of W just discussed are related as follows.
If γ = (x, λ, ν) is a parameter then

StabW (γ) ⊂ StabW (x) ⊂W θx

Here is a result of Rossmann [8]. Recall for O a complex nilpotent orbit:

r(O) = dim(D(O)) = |O ∩ g0/G(R)|,

the number of “real forms” of O.

Theorem 2.3.2 For any complex nilpotent orbit O:

r(O) = mult(Springer(O), πX)
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Here is a generalization due to Kottwitz [5, Theorem 1.8]. Recall

s(O) = dim(Dst(O))

Theorem 2.3.3 For any complex nilpotent orbit O:

s(O) = mult(Springer(O), πI)

Note: If G is split and classical, and O is not special, then by [4, Theorem
1] s(O) = 0. This is known to be false for G split and exceptional.

3 Kottwitz’s result

Kottwitz has a conjecture generalizing Theorem 2.3.3 to replace Springer(O)
with any irreducible representation of W . This was proved by Kottwitz [4]
(classical groups) and Casselman (exceptional groups) [3].

Theorem 3.1 Assume G is simple.

mult(σ, πI) =

φ̂(xσ) σ not exceptional

1 σ exceptional

Here are some cases spelled out.

(1) σ = Springer(O, 1): s(O) (Theorem 2.3.3)

(2) σ special, not exceptional: |[A(O)2]|

(3) σ special, G classical: |[A(O)2]| = |[A(O)]|.

(4) G classical, σ not special: 0

(5) σ special, exceptional: 1

There is substantial overlap among these cases. For example suppose G is
classical and σ = Springer(O, 1). Then by cases 1, 3 and 4:

mult(σ, πI) = s(O) =

|[A(O)]| O is special

0 otherwise

Also if σ is special, so σ = Springer(O, 1) with O special and not exceptional,
then by 1 and 2:

mult(σ, πI) = s(O) = |[A(O)2]|
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