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1 Introduction

Guided by the theory of the trace formula, Arthur conjectured a classification of automorphic
representations of a connected reductive algebraic group G in terms of A-parameters ([Art84],
[Art89]). These A-parameters are global objects, which conjecturally decompose as a product
of local A-parameters. The local part of Arthur’s conjectures states that associated to an A-
parameter ψ over a local field F is a finite set Πψ, called an Arthur packet. This is a set of
irreducible representations of G(F ) satisfying conditions to be given in Problems A-E below.

Assume for the moment that G is either the split form of GLN , or a quasisplit form of SpN
or SON , N ≥ 2 over a local field F of characteristic 0. For these groups, Arthur defines a set,
which we denote ΠAr

ψ , and proves that it satisfies most of the conditions [Art13]. His approach uses
harmonic analysis, and both local and global methods.

On the other hand, for a general connected real reductive group Adams, Barbasch and Vogan
define a set which we denote by ΠABV

ψ , and prove these satisfy most of Arthur’s conditions [ABV92].
Their methods are quite different, being based on the connection between representations and
equivariant sheaves.

It has long been expected that the definitions agree when both are defined ([Art08]*Section 8),
i.e. for the real quasisplit groups SpN and SON . The main result of this paper is that, aside from
the case of even rank special orthogonal groups, it is indeed true that

ΠAr
ψ = ΠABV

ψ .

The case of even rank special orthogonal groups requires a slightly modified identity, which we give
later in the introduction.

Imitating [ABV92], we state Arthur’s original conjectures as a sequence of problems. We then
describe the two approaches to these problems. We assume that the reader is somewhat familiar
with the theory of endoscopy for tempered representations [She08]. We follow the notation of
[ABV92] and also provide references from [ABV92] for convenience.

Let Γ be the Galois group of C/R and let ∨GΓ = ∨Go Γ be the Galois form of the L-group of
G. An A-parameter for G, is a group homomorphism

ψG : WR × SL2 → ∨GΓ (1)

such that ψG|WR is a tempered L-parameter and ψG|SL(2,C) is algebraic. For the definition of WR
and tempered L-parameters see [Bor79].

Problem A Associate to ψG a finite linear combination of irreducible characters ηψG of G(R)
which is a stable distribution ([She79], [ABV92]*Definition 18.2).

The finite set ΠψG of irreducible characters occurring in the stable distribution ηψG is defined to
be the Arthur packet (or A-packet) of ψG. Let AψG be the component group of the centralizer in
∨G of the image of ψG. For the groups in question this is a finite abelian group ([Art13]*p. 32).

Problem B Associate to each π ∈ ΠψG a non-zero finite-dimensional representation τψG(π) of
AψG .

Problem C Prove that
ηψG =

∑
π∈ΠψG

επ dim(τψG(π))π

for some επ = ±1.

Problem D Prove that the stable distributions ηψG satisfy analogues of Shelstad’s theorem on
endoscopic lifting for tempered representations [ABV92]*Chapter 26.

Problem E Prove that the irreducible representations of ΠψG are all unitary.

For the remainder of this section we assume G is either the split form of GLN , a quasisplit
form of SpN , or SON . [Art13]*Theorem 2.2.1 is a solution to nearly all of these problems, the only
exceptions being the signs επ in Problem C, and in the case that G = SO2N , a general weakening
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of the results due to the existence of an outer automorphism. We shall return to both of these
points.

The main idea of Arthur’s approach is to express a symplectic or special orthogonal group G as
a twisted endoscopic group of (GLN , ϑ) [KS99]*Section 2. In this pair ϑ is the outer automorphism
of GLN of order two defined by

ϑ(g) = J̃ (g−1)ᵀ J̃−1, g ∈ GLN , (2)

where J̃ is the anti-diagonal matrix

J̃ =

 0 1
−1

. .
.

(−1)N−1 0

 .
The semidirect product GLN o 〈ϑ〉 is a disconnected algebraic group with non-identity component
GLN o ϑ. The group G is attached to the pair (GLN , ϑ) through the existence of an element sϑ ∈
GLN o ϑ for which ∨G is the identity component of the fixed-point set (∨GLN )sϑ. Furthermore,
there is a natural inclusion

ε : ∨GΓ ↪→ ∨GLΓ
N (3)

which allows us to define the A-parameter

ψ = ε ◦ ψG (4)

for GLN using (1).
As in Problem D there are theorems on twisted endoscopic lifting for tempered representations

([She12], [Mez13], [Mez16]). One may therefore extend Problem D to

Problem D′ Prove that the stable distributions ηψG satisfy analogues of both standard and
twisted endoscopic lifting for tempered representations.

The solution to Problem D′ in the twisted setting above opens a path towards defining ηψG . We
may take for granted the existence of an irreducible character πψ of GLN (R) ([Art13]*p. 64) such
that πψ solves Problems A-E, i.e.

ηψ = πψ.

Now suppose π∼
ψ is an extension of πψ to GLN (R)o〈ϑ〉. Let Trϑ(π∼

ψ ) be the twisted trace of π∼
ψ ,

which is obtained by restricting the distribution character of π∼
ψ to the non-identity component

GLN o ϑ. The extension π∼
ψ is not unique; we choose it following [Art13]*pp. 62-63 by fixing a

Whittaker datum. Towards a solution to Problem A, Arthur defines a stable virtual character ηAr
ψG

using a twisted endoscopic transfer identity

Trϑ(π∼
ψ ) = TransGLNoϑ

G (ηAr
ψG). (5)

The endoscopic transfer map TransGLNoϑ
G is defined on the space of stable virtual characters of

G(R), and ηAr
ψG

is fixed under the action of any outer automorphisms. This defines ηAr
ψG

uniquely.

Arthur proves the existence of ηAr
ψG

satisfying (5) using the solution to Problem D′ in the tempered
setting.

Adams, Barbasch and Vogan use completely different methods to study Problems A-E. They
first construct a pairing between characters and equivariant sheaves. They then apply techniques
from microlocal geometry to these sheaves and use the pairing to transfer these back to the world
of virtual characters. An outline of their methods is given in the introduction to [ABV92]. Here
we summarize the main ideas, specialized to the case of quasisplit classical groups.

Adams, Barbasch and Vogan introduce a complex variety X(∨GΓ) equipped with a ∨G-action
[ABV92]*Section 6, so that the ∨G-orbits are in bijection with the equivalence classes of L-
parameters. The advantage to working with orbits of X(∨GΓ) lies in the additional topological
structure. The orbits provide a stratification of X(∨GΓ) which naturally leads to the notions of
local systems and constructible sheaves. We define a complete geometric parameter to be a pair

ξ = (S,V)
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consisting of an orbit S ⊂ X(∨GΓ), together with a ∨G-equivariant local system V on S ([ABV92]*Definition
7.6). The set of complete geometric parameters is denoted by Ξ(∨GΓ). This definition ignores more
general local systems [ABV92], which are equivariant for an algebraic cover of ∨G. These aren’t
needed here, and this simplifies the discussion. By [ABV92]*Theorem 10.11 there is a canonical
bijection

Ξ(∨GΓ)←→ Π(G/R) (6)

The set on the right is the set of (equivalence classes of) irreducible representations of certain forms
of G, including a fixed quasisplit form. We write bijection (6) as

ξ 7→ π(ξ).

Each irreducible representation π(ξ) is the unique irreducible quotient of a standard representation
M(ξ), so we also have a bijection

ξ 7→M(ξ)

between Ξ(∨GΓ) and a set of standard representations. Let KΠ(G/R) be the Grothendieck group
of the admissible representations of the strong involutions of G appearing on the right of (6). This
Grothendieck group has two bases, namely {π(ξ)} and {M(ξ)} for ξ ∈ Ξ(∨GΓ).

There is a parallel construction in terms of sheaves for the dual group ∨G. Suppose ξ ∈ Ξ(∨GΓ).
The local system of this complete geometric parameter is a ∨G-equivariant sheaf on S. Applying
the functors of extension by zero to the closure of S, and then taking the direct image gives an
irreducible ∨G-equivariant constructible sheaf µ(ξ) on X(∨GΓ). This defines a bijection

ξ 7→ µ(ξ)

between complete geometric parameters and irreducible ∨G-equivariant constructible sheaves. Al-
ternatively, one may apply the functors of intermediate extension and direct image. This defines
an irreducible ∨G-equivariant perverse sheaf P (ξ), and a bijection

ξ 7→ P (ξ)

between complete geometric parameters and irreducible ∨G-equivariant perverse sheaves. The
Grothendieck groups of the categories of ∨G-equivariant constructible and perverse sheaves are
isomorphic ([ABV92]*Lemma 7.8, [BBD82]). We identify the two Grothendieck groups and write
them as KX(∨GΓ). The sets {µ(ξ)} and {P (ξ)} for ξ ∈ Ξ(∨GΓ) each form a basis of KX(∨GΓ).

We now define a pairing

〈·, ·〉G : KΠ(G/R)×KX(∨GΓ)→ Z (7)

using the bases of standard representations and constructible sheaves:

〈M(ξ), µ(ξ′)〉G = e(ξ) δξ,ξ′ , ξ, ξ′ ∈ Ξ(∨GΓ).

Here e(ξ) is the Kottwitz sign ([ABV92]*Definition 15.8), and δξ,ξ′ is the Kronecker delta. It is
natural to ask what the formula for this pairing is in terms of the bases of irreducible representations
and perverse sheaves. It is a deep fact that in these alternative bases the pairing is also, up to
signs, given by the Kronecker delta function. More precisely

〈π(ξ), P (ξ′)〉G = e(ξ) (−1)d(ξ) δξ,ξ′ , ξ ∈ Ξ(∨GΓ).

where d(ξ) is the dimension of the orbit S in ξ = (S,V) ([ABV92]*Theorem 1.24).
Using the pairing (7) we may regard virtual characters as Z-valued linear functionals on

KX(∨GΓ). Of particular importance are the stable virtual characters. The theory of microlo-
cal geometry provides a family of linear functionals

χmic
S : KX(∨GΓ)→ Z (8)
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parameterized by the ∨G-orbits S ⊂ X(∨GΓ). These microlocal multiplicity maps appear in the
theory of characteristic cycles ([ABV92]*Chapter 19, [BGK+87]), and are associated with ∨G-
equivariant local systems on a conormal bundle over X(∨GΓ) ([ABV92]*Section 24, [GM88]). The
virtual characters associated by the pairing to these linear functionals are stable ([ABV92]*Theorems
1.29 and 1.31).

Now we return to the Arthur parameter ψG given in (1). Associated to ψG is a Langlands
parameter φψG [Art89]*Section 4 defined by

φψG(w) = ψG

(
w,

[
|w| 12 0

0 |w|− 1
2

])
, w ∈WR. (9)

Let SψG ⊂ X(∨GΓ) be the ∨G-orbit of φψG . We define ηmic
ψG

to be the virtual character associated

to χmic
SψG

by the pairing. That is, ηmic
ψG

is the unique virtual character satisfying

〈ηmic
ψG , µ〉G = χmic

SψG
(µ), µ ∈ KX(∨GΓ).

As a distribution, the stable virtual character ηmic
ψG

is supported on real forms of G which include
the quasisplit form G(R). In this more general context, Adams, Barbasch and Vogan show that
ηmic
ψG

satisfies the conditions of Problems B-D. For our purposes however, it suffices to consider the
restriction

ηABV
ψG = ηmic

ψG |G(R) (10)

of ηmic
ψG

to the quasisplit form G(R).

Having sketched the construction of ηAr
ψG

and ηABV
ψG

, we come to the main result.

Theorem 1.1. Let G be a real quasisplit form of SpN or SO2N+1 and suppose ψG is an Arthur
parameter for G. Then

ηAr
ψG = ηABV

ψG .

For the precise statement, including the case of SO2N , see Theorem 9.3. We continue by giving
an outline of the proof under the assumption that G is not a special orthogonal group of even rank.

Arthur’s definition of ηAr
ψG

is given in terms of the twisted endoscopic transfer map TransGLNoϑ
G

appearing in (5). The first step in the proof of Theorem 1.1 is to compare TransGLNoϑ
G with the

analogous twisted endoscopic lifting map Lift0 defined in [CM18]*Section 5. We wish to prove

Lift0 = TransGLNoϑ
G . (11)

The construction of the map Lift0 follows the construction in [ABV92]*Section 26 and is given in
terms of a pairing analogous to (7) in the setting of twisted characters and sheaves. Associated to
the involution ϑ is a Z-module of twisted characters KΠ(GLN (R), ϑ) [AV15] . On the dual side we
have a Z-module of twisted sheaves KX(∨GLΓ

N , ϑ) [LV14]. We wish to define a pairing

〈·, ·〉 : KΠ(GLN (R), ϑ)×KX(∨GLΓ
N , ϑ)→ Z. (12)

One of the technical difficulties in defining this pairing lies in making canonical choices of extensions.
Suppose ξ ∈ Ξ(∨GLΓ

N ) (see (6)), with associated standard representation M(ξ). If M(ξ) is fixed
by ϑ then it extends in two ways to a representation of GLN (R)o 〈ϑ〉. Each of the two resulting
characters restricts to GLN (R)oϑ to give a twisted character, and the Z-module KΠ(GLN (R), ϑ)
is defined so that if M(ξ)± are the two extensions, then M(ξ)− = −M(ξ)+ in KΠ(GLN (R), ϑ).

Similarly, the ∨GLN -equivariant constructible sheaf µ(ξ) extends in two ways to a (∨GLNo〈ϑ〉)-
equivariant constructible sheaf on X(∨GLΓ). The two extensions µ(ξ)± again differ by sign in
KX(∨GLΓ

N , ϑ).
A standard problem in the twisted theory is how to choose the extensions. On the sheaf-

theoretic side, we use a special property of irreducible ∨GLN -equivariant sheaves, namely that
they are all constant sheaves. We define µ(ξ)+ to be the irreducible (∨GLN o 〈ϑ〉)-equivariant
constant sheaf on X(∨GLΓ

N ).
On the representation-theoretic side, the literature offers two ways to choose an extension of

M(ξ). As mentioned earlier, Arthur uses Whittaker data to fix a preferred extension which we
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denote M(ξ)∼ and call the Whittaker extension. On the other hand [AV15] gives an extension
which we label M(ξ)+ and call the Atlas extension.

Having chosen the extensions we define pairing (12) by

〈M(ξ)∼, µ(ξ′)+〉 = δξ,ξ′ . (13)

The endoscopic lifting map Lift0 is defined through pairings (7), (12) and the map ε (see (3))
as follows. The map ε naturally induces a map

X(∨G)→ X(∨GLΓ
N ).

The usual inverse image functor on constructible sheaves then induces a homomorphism

ε∗ : KCX(∨GLΓ
N , ϑ)→ KCX(∨GΓ)

on the complexifications of the Z-modules. The adjoint of ε∗ with respect to the pairings is the
homomorphism

ε∗ : KCΠ(G/R)→ KCΠ(GLN (R), ϑ)

defined by
〈ε∗(η), µ〉 = 〈η, ε∗(µ)〉G, η ∈ KCΠ(G/R), µ ∈ KCX(∨GLΓ

N , ϑ).

Here, the pairings on the left and right are (12) and (7), respectively. Finally, the endoscopic lifting
map

Lift0 : KCΠ(G(R))st → KCΠ(GLN (R), ϑ)

is defined to be the restriction of ε∗ to the stable subspace of KCΠ(G(R)), the complex virtual
characters of G(R). That is, if η ∈ KCΠ(G/R) is stable then Lift0(η) is defined by

〈Lift0(η), µ〉 = 〈η, ε∗(µ)〉G (14)

for all µ ∈ KX(∨GLΓ
N , ϑ).

Now that Lift0 is defined, we may proceed to check the equality (11). Fix a ∨G-orbit SG ⊂ X.
The local multiplicity function taking a constructible sheaf to the dimension of a stalk at a point
in SG is a linear functional on KX(∨GΓ). By the pairing (7) this defines an element of KΠ(G/R).
This is a stable virtual character denoted by ηloc

SG
. It is the sum of the standard representations in

what is often called a pseudopacket.
Let S ⊂ X(∨GLΓ) be the ∨GLN -orbit containing ε(SG), and let M(S, 1) be the standard

representation defined by the trivial local system on S. By Proposition 5.3

Lift0(ηloc
SG) = (−1)`

I(S,1)−`Iϑ(S,1)M(S, 1)+ (15)(a)

(the terms in the exponent are defined in Section 4). On the other hand Arthur defines a stable
character η′SG by

TransGLNoϑ
G (η′SG) = M(S, 1)∼. (15)(b)

According to [AMR17] η′SG = ηloc
SG

. The two extensions of M(S, 1) are related by

M(S, 1)∼ = (−1)`
I(S,1)−`Iϑ(S,1)M(S, 1)+ (15)(c)

(see Proposition 7.8). Taken together, (15(a-c)) give

Lift0

(
ηloc
SG

)
= M(S, 1)∼ = TransGLNoϑ

G (ηloc
SG). (16)

Identity (11) follows from the fact that the ηloc
SG

form a basis of the stable virtual characters.

Going back to (5), and using (11) we see ηAr
ψG

is determined by

Lift0(ηAr
ψG) = π∼

ψ .

Therefore to prove Theorem 1.1 it is enough to show

Lift0(ηABV
ψG ) = π∼

ψ .
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According to (14), this identity is equivalent to

〈π∼
ψ , P (ξ′)+〉 = 〈ηABV

ψG , ε∗(P (ξ′)+)〉G. (17)

Recall from (13) that the pairing on the left-hand side is defined in terms of standard representations
and constructible sheaves. However, on the left of (17) we require a corresponding formula in terms
of irreducible representations and perverse sheaves. It turns out that the exact formula required is

〈π(ξ)+, P (ξ′)+〉 = (−1)`
I(ξ)−`Iϑ(ξ)δξ,ξ′ . (18)

We prove this formula from an identity involving the twisted Kazhdan-Lusztig-Vogan polynomials.
We are in the setting of [LV14] and [AV15], so we have all of the tools of the Hecke algebra available.
The proof of (18) is carried out in Section 4, and Theorem 1.1 then follows.

We now provide further details by running through the remaining sections in sequence. Section
2 begins with an outline of the local Langlands correspondence appearing in [ABV92]. One of the
features in this correspondence is the parameterization of inner forms of G(R) using strong involu-
tions, and the subsequent inclusion of representations of strong involutions in the correspondence.
Unlike the overview above, we shall be keeping track of the infinitesimal characters of these repre-
sentations. As a result, the variety X(∨GΓ) in the overview is replaced by X(∨O, ∨GΓ), where ∨O
is an infinitesimal character. We assume all infinitesimal characters to be regular until Section 9.
Another important theme of Section 2 is the equivalence of complete geometric parameters with
Atlas parameters for GLN (R). The equivalence between complete geometric parameters and Atlas
parameters forges a connection between [ABV92] and [AV15]. The Atlas parameters are indispens-
able in defining the Atlas extensions, and in the ensuing Hecke operator computations of Section 4.
The section closes with a discussion on twisted characters, and the Z-module KΠ(∨O,GLN (R), ϑ)
which contains them.

Section 3 is devoted to ∨G-equivariant sheaves, and their relationship with D-modules and
characteristic cycles. We recall a category of sheaves extended by an automorphism σ of ∨GLN
([ABV92]*(25.7)). The automorphism is of the form

σ = Int(s) ◦ ϑ

where s ∈ ∨GLN . The element s plays no meaningful role in this section, but becomes important
in the theory of endoscopy (Section 5). The category of extended sheaves is the counterpart to the
category of representations on GLN (R)o 〈ϑ〉. We define the canonical extended sheaves µ(ξ)+ and
P (ξ)+ in Lemma 3.4. The twisted characters that one obtains from representations of GLN (R)o〈ϑ〉
find their counterpart as microlocal traces ([ABV92]*(25.1)) which are supported on extensions of
irreducible sheaves. The Z-module counterpart to KΠ(∨O,GLN (R), ϑ) is defined in (58) and is
denoted by K(X(∨O, ∨GLΓ),σ). The pairings (7) and (12) are also defined in this section.

We provide a terse summary of D-modules and their relationship to equivariant sheaves, char-
acteristic cycles, the microlocal multiplicity maps (8), and the definition of ηABV

ψG
. The set of

irreducible characters in the support of ηABV
ψG

is denoted by ΠABV
ψG

and is called the ABV-packet of
ψG.

The main objective of Section 4 is to prove the equivalence of the twisted pairings (12) and (18).
Our proof is an adaptation of the proof of the equivalence for ordinary pairings ([ABV92]*Sections
16-17) using the tools of [AV15]. As noted earlier, Hecke operators are among these tools. A
conspicuous difference between [ABV92] and [AV15] is in the objects upon which Hecke operators
act. In [ABV92] Hecke operators are defined on both characters and sheaves. By contrast, the
Hecke operators of [AV15]*Section 7 are defined only on (twisted) characters. The links between
characters and sheaves in the Hecke actions are the Riemann-Hilbert and Beilinson-Bernstein
correspondences ([ABV92]*Theorems 7.9 and 8.3). In Sections 4.1 and 4.2 we describe these
correspondences as a bijection

P (ξ)←→ π(∨ξ), ξ ∈ Ξ(∨O, ∨GΓ),

where π(∨ξ) is the Vogan dual of π(ξ) (as the equivalence class of a Harish-Chandra module) (6.1
[AV15]). For G = GLN the correspondence is extended to

P (ξ)+ ←→ π(∨ξ)+
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for ϑ-fixed complete geometric parameters ξ. Once sheaves are aligned with characters in this
manner, the rest of the proof of the equivalence of the twisted pairings follows [ABV92] without
incident.

Subsection 4.8 is included in Section 4 only because it uses the same machinery. This subsection
presents an argument from the twisted Kazhdan-Lusztig-Vogan algorithm ([LV14], [Ada17]) which
is crucial to the comparison of Whittaker and Atlas extensions in Section 7.

In Section 5 we describe the theory of endoscopy, both standard and twisted, for GLN using the
framework of [ABV92]. The standard theory of endoscopy in Subsection 5.1 is simply a specializa-
tion of [ABV92]*Section 26 to G = GLN . It is included primarily to motivate the twisted theory,
but is also used in Proposition 6.3 further on. The twisted theory of endoscopy in Subsection 5.2 is
a specialization of [CM18]*Section 5.4 to GLN . In this subsection the ∨GLN -equivariant sheaves of
K(X(∨O, ∨GLΓ),σ) are recast as (∨GLN o 〈σ〉)-equivariant sheaves. The endoscopic lifting map
takes the form

Lift0 : KCΠ(∨OG, G(R))st → KCΠ(∨O,GLN (R), ϑ).

The precursor to (16) is Proposition 5.3, where the Atlas extension is used instead of the Whittaker
extension. The endoscopic lifting Lift0(ηABV

ψG
) is described as an element ηABV+

ψ ∈ KΠ(∨O,GLN (R), ϑ),

which reduces to ηABV
ψ when restricted to GLN (R) (Theorem 5.6). The endoscopic lifting map is

proved to be injective for GLN -regular infinitesimal character ∨OG.
In Section 6 we prove that for any A-parameter ψ of GLN (not necessarily of the form (4)),

there is only one irreducible character in the support of ηABV
ψ . This implies that ΠABV

ψ = {πψ}. It

also implies that ηABV+
ψ is supported on a single irreducible twisted character obtained by extension

from πψ. The proof begins under the assumption that ψ is an A-parameter studied by Adams and
Johnson ([AJ87]). Adams and Johnson defined A-packets for these parameters, and it is easily
shown that their packets are singletons for GLN . The anticipated equality of the Adams-Johnson
packets with the ABV-packets is proven in [Ara19]. The proof that ABV-packets are singletons for
arbitrary A-parameters ψ of GLN follows from a decomposition of ψ in terms of Adams-Johnson
A-parameters of smaller general linear groups, and an application of all standard endoscopic lifting
from the direct product of these smaller general linear groups (Proposition 6.3).

The purpose of Section 7 is the proof of Equation (15(c)). This equation gives a precise
relationship between the Whittaker and Atlas extensions of π(ξ) in terms of the integral lengths
lI(ξ) and lIϑ(ξ) ([ABV92]*(16.6), (60), (61)). This identity is peculiar in that a Whittaker extension
is inherently an analytic object, whereas an Atlas extension is inherently algebraic. When π(ξ) is
the Langlands quotient of a (standard) principal series representation, the differences between the
two extensions may be attributed to differences in the extensions of quasicharacters of the diagonal
subgroup H. This reduction for principal series furnishes an easy proof of (15(c)) (Lemma 7.1).

In some sense (see the proof of Proposition 7.3), π(ξ) is furthest from a Langlands quotient of
principal series when π(ξ) is generic, i.e. has a Whittaker model. The proof of (15(c)) for generic
representations is the key to the general proof, in that irreducible generic representations occur as
subrepresentations of all standard representations (Lemma 7.2), and determine the Whittaker
extensions of standard representations. If one knows the (signed) multiplicity with which an
irreducible twisted generic character π(ξ0)+ appears in the decomposition of a twisted standard
principal series representation M(ξ)+, then one can use the knowledge of (15(c)) for π(ξ) to prove
(15(c)) for π(ξ0). This desired multiplicity is computed in Proposition 7.3, and the proof of (15(c))
for generic π(ξ0) occurring in the standard principal representation M(ξ) is Proposition 7.4.

It is implicit in the previous paragraph that the parameters and representations are all ϑ-
stable. However not every ϑ-stable generic representation π(ξ0) is a subrepresentation of a ϑ-stable
principal series representation. Therefore, the strategy of the previous paragraph does not provide
an exhaustive proof of (15(c)). Most of Section 7 is dedicated to the description of a ϑ-stable
standard representation which plays the part of the principal series representation. In Lemma 7.6
we prove that every ϑ-stable generic representation π(ξ0) which has integral infinitesimal character
is a subrepresentation of a ϑ-stable standard representation satisfying (15(c)). We remove the
restriction of integrality on the infinitesimal character in Lemma 7.7. We then follow the strategy
of the previous paragraph using the ϑ-stable standard representation of Lemma 7.7 to prove (15(c))
in general. This is the last result needed to apply the twisted pairing (18) to the computation of
(17).
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The theorems comparing ηAr
ψG

with ηABV
ψG

are to be found in Sections 8 and 9. Section 8 is
presented under the assumption that the infinitesimal character ∨OG is regular in GLN . This reg-
ularity condition is removed in Section 9 by applying the Jantzen-Zuckerman translation principal
to the (twisted) characters and to the pairings. The main theorem, Theorem 9.3, states that

ηAr
ψG = ηABV

ψG and ΠAr
ψG = ΠABV

ψG (19)

when G is not isomorphic to SON for even N , and that

ηAr
ψG =

1

2

(
ηABV
ψG + ηABV

Int(w̃)◦ψG

)
and ΠAr

ψG = ΠABV
ψG ∪ ΠABV

Int(w̃)◦ψG (20)

when G ∼= SON with N even. In light of this theorem, we again look back to Problems B-E in
Section 10. In particular, we show that the solution to Problem C in [ABV92] solves Problem C
in Arthur’s definition.

An unsolved problem, related to Problems B and C, is to determined the dimensions of the
finite-dimensional representations τψG(π). This has been explored in [MR20], [MR18], [MgR19]
and in [Mœg11] for p-adic groups, where the dimensions have been shown to equal 1. Theorem 9.3
opens up the possibility of using techniques from microlocal geometry to settle this problem.

Our work also connects with the study of Adams-Johnson packets ([AJ87]). Adams-Johnson
packets have been proven to equal Arthur’s packets in [AMR18]. Moreover, Adams-Johnson packets
are particular cases of our ABV-packets ([Ara19]). They are the ABV-packets with regular and
integral infinitesimal character.

A natural question for future consideration is how the packets for quasisplit unitary groups,
established by Mok [Mok15], compare with the microlocal packets of [ABV92]. The methods devel-
oped here appear to be equally applicable to the setting of quasisplit unitary groups. Furthermore,
the context of pure inner forms in which we work, ought also to allow for easy comparison with
the related work of [KMSW14] and [Art13]*Chapter 9.

Another natural question is whether similar comparisons between p-adic Arthur-packets can
be made. In the p-adic context ηAr

ψG
is also defined in [Art13]. The beginnings of ηABV

ψG
in the

p-adic context are to be found in [Vog93] and [?]. Low rank comparisons between the two stable
distributions are made in [?]*Part 2.

The second and third authors would like to thank the developers of the Atlas of Lie groups
software. It was a pleasure to see our early conjectures borne out by low rank computations.

2 The local Langlands correspondence

This section begins with a review of the local Langlands correspondence as conceived in [ABV92].
An important feature of this version of the correspondence is the notion of strong real forms and
their representations. More recently, strong real forms have been supplanted by the equivalent
notion of strong involutions ([AdC09]). We have chosen to use the language of strong involutions
in our review.

Another difference in our review is in limiting ourselves to only pure strong involutions. In
doing so, we limit the scope of [ABV92] to fewer real forms of G. This limitation is compensated
for by not having to introduce covers of the dual group ∨G. We still capture all of the information
needed for the quasisplit form of G, while preserving a sense of how the theory applies to other
real forms.

The objects parameterizing irreducible representations in [ABV92] have also been supplanted
by newer parameters in [AdC09] and [AV15]. We call these newer parameters Atlas parameters.
The advantages to Atlas parameters are their amenability to Vogan duality and Hecke algebra com-
putations. These advantages are used in Section 4. Another advantage to using Atlas parameters is
in defining canonical extensions of representations of GLN (R) to representations of GLN (R)o 〈ϑ〉.
We call these canonical extensions Atlas extensions.

We conclude this section with a discussion of the Grothendieck groups of representations for con-
nected groups G and for the disconnected group GLNo〈ϑ〉. In the connected case the Grothendieck
group is isomorphic to the Z-span of distribution characters. In the disconnected case we construct
a quotient of the Grothendieck group which will be seen to be isomorphic to the Z-span of twisted
distribution characters.
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2.1 Extended groups and complete geometric parameters

In this section G can be an arbitrary connected reductive complex group. We give a version of
the local Langlands correspondence suitable to our application. We largely follow [ABV92], with
modifications from the more recent papers [AdC09], [AV15] and [AvLTV20].

Our starting point is the connected reductive complex group G, together with a pinning

(B,H, {Xα}) (21)

in which B is a Borel subgroup, H ⊂ B is a maximal torus and {Xα} is a set of simple root vectors
relative to the positive root system R+(G,H) = R(B,H) of R(G,H). Let ∨ρ = 1

2

∑
α∈R+(G,H)

∨α.
We fix an inner class of real forms for G. The inner class is determined by a unique algebraic

involution δ0 of G fixing the pinning ([AdC09]*Section 2). The involution defines the extended
group

GΓ = Go 〈δ0〉.

A strong involution of GΓ is an element δ ∈ GΓ −G such that δ2 is central in G and has finite
order ([AvLTV20]*Definition 12.3). Two strong involutions are equivalent if they are G-conjugate.
There is a surjective map from (equivalence classes) of strong involutions to (isomorphism classes
of) real forms. This map takes a strong involution δ to the real form G(R, δ) in the inner class
with Cartan involution

θδ = Int(δ).

This map is bijective if G is adjoint, but is not injective in general.
There is also a well-known bijection between real forms in the inner class and the cohomology

set H1(R, G/Z(G)) ([Spr98]*12.3.7). The domain of the quotient map

H1(R, G)→ H1(R, G/Z(G)) (22)

defines the set of pure inner forms ([Vog93]*Section 2). Let σ ∈ Γ be the nontrivial element of the
Galois group. For any 1-cocycle z ∈ Z1(R, G) one may define a strong involution by

z(σ) exp(πi ∨ρ)δ0 ∈ GΓ

(exp(πi ∨ρ)δ0 is the large involution in [AV15]*(11f)-(11h)). This sends classes in H1(R, G) to
G-conjugacy classes in GΓ − G. The (equivalence classes of) pure strong involutions are defined
as the image of this map. The quasisplit real form is pure in the sense that the fibre of the trivial
cocycle in (22) is a singleton. The pure strong involution corresponding to the quasisplit pure real
form is

δq = exp(πi ∨ρ)δ0.

Given a strong involution δ we set K to be the fixed-point subgroup Gθδ . The real form G(R, δ)
contains

K(R) = G(R, δ) ∩K (23)

as a maximal compact subgroup and is determined by K ([AV15]*(5f)-(5g)). By a representation
of G(R, δ) we usually mean an admissible (g,K)-module, although we will need admissible group
representations in Section 7. A representation of a strong involution is a pair (π, δ) in which δ is a
strong involution and π is an admissible (g,K)-module. There is a natural notion of equivalence of
strong involutions ([AdC09]*Definition 6.1), and we let Π(G(R, δ)) be the set of equivalence classes
of irreducible representations (π′, δ′) of strong involutions in which δ′ is equivalent to δ. Let

Π(G/R) =
∐
δ

Π(G(R, δ))

be the disjoint union over the (equivalence classes of) pure strong involutions δ.
Let ∨G be the Langlands dual group of G together with a pinning

(∨B, ∨H, {X∨α}) .
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The pinning and the involution δ0 fix an involution ∨δ0 of ∨G as prescribed in [AV15]*(12). Fol-
lowing this prescription, ∨δ0 is trivial if and only if δ0 defines the inner class of the split form of
G. The group

∨GΓ = ∨Go 〈∨δ0〉

is the L-group of our inner class.
Suppose λ is a semisimple element of the Lie algebra ∨g. After conjugating by ∨G we may

assume λ ∈ ∨h. Using the canonical isomorphism ∨h ' h∗ we identify λ with an element of h∗,
and hence via the Harish-Chandra homomorphism, with an infinitesimal character for G. This
construction only depends on the ∨G-orbit of λ. We refer to a semisimple element λ ∈ ∨g, or a
∨G-orbit ∨O ⊂ ∨g of semisimple elements, as an infinitesimal character for G. Let

Π(∨O, G/R) ⊂ Π(G/R)

be the representations (of pure strong involutions) with infinitesimal character ∨O.
Let P

(∨GΓ
)

be the set of quasiadmissible homomorphisms φ : WR → ∨GΓ ([ABV92]*Definition
5.2). Associated to φ ∈ P (∨GΓ) is an infinitesimal character ([ABV92]*Proposition 5.6). Let

P
(∨O, ∨GΓ

)
be the set of quasiadmissible homomorphisms with infinitesimal character ∨O. The group ∨G acts
on P

(∨O, ∨GΓ
)

by conjugation.

2.2 The space X(∨O, ∨GΓ)

We make frequent use of the complex varietyX
(∨O, ∨GΓ

)
of geometric parameters ([ABV92]*Definition

6.9, [Vog93]*Definition 6.9). Here we sketch a definition based on [ABV92]*Proposition 6.17 and
state its main properties.

Write the Weil group WR as C×
∐
jC×. Suppose φ ∈ P

(∨GΓ
)
. Define λ, γ ∈ ∨g by

φ(z) = zλzγ , z ∈ C×. (24)(a)

Let ∨n(λ) be the sum of the positive integer eigenspaces of ad(λ) on ∨g, and let ∨N(λ) be the
connected unipotent subgroup of ∨G with Lie algebra ∨n(λ). Set

∨G(λ) = Cent∨G(exp(2πiλ))
∨L(λ) = Cent∨G(λ) ⊂ ∨G(λ)

(24)(b)

and let
∨P (λ) = ∨L(λ)∨N(λ) (24)(c)

a parabolic subgroup of ∨G(λ). Finally, write

y = exp(πiλ)φ(j)
∨Ky = Cent∨G(y)

(24)(d)

and let ∨Ny(λ) be the group generated by

∨N(λ) ∩ Int(y)
(∨P (λ)

)
and ∨P (λ) ∩ Int(y)

(∨N(λ)
)
.

Define an equivalence relation on P (∨GΓ) by

φ(y, λ) ∼ φ′(y′, λ′) if y′ = y and λ′ = n · λ for some n ∈ ∨Ny(λ) ∩ ∨Ky

where the action is by the conjugation action of ∨G. This equivalence relation preserves each subset
P (∨O, ∨GΓ) ⊂ P (∨GΓ). We let X(∨O, ∨GΓ) be the set of equivalence classes

X
(∨O, ∨GΓ

)
= P

(∨O, ∨GΓ
)
/ ∼ (25)

with the quotient topology. The element y of (24)(d) is constant on equivalence classes, so for
p ∈ X

(∨O, ∨GΓ
)

we define y(p) accordingly.
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There are ∨G-equivariant maps

P
(∨O, ∨GΓ

)
→ X

(∨O, ∨GΓ
)
→ P

(∨O, ∨GΓ
)
/∨G (26)

which are bijections on the levels of ∨G-orbits ([ABV92]*Proposition 6.17). The more interesting
and useful space is X(∨O, ∨GΓ). It has finitely many ∨G-orbits. Here is some information about
its structure (see [ABV92]*Section 6).

Use the notation of (24)(a)-(24)(d), and suppose p ∈ X(∨O, ∨GΓ). Let y = y(p). Note that
∨Ky is the fixed-point subgroup of the involution Int(y) in ∨G(λ). There is an open and closed,
connected, smooth subvariety

Xy(∨O, ∨GΓ) ⊂ X(∨O, ∨GΓ)

such that the ∨G-orbits on Xy(∨O, ∨GΓ) are in bijection with the ∨Ky-orbits on the partial flag
variety ∨G(λ)/∨P (λ). Furthermore, this bijection respects the closure relations between ∨G and
∨Ky-orbits ([ABV92]*Proposition 6.16).

Now suppose S ⊂ X(∨O, ∨GΓ) is a ∨G-orbit. If p ∈ S let ∨Gp = Stab∨G(p). A pure complete
geometric parameter for X(∨O, ∨GΓ) is a pair (S, τS) where S is a ∨G-orbit on X(∨O, ∨GΓ) and
τS is (an equivalence class of) an irreducible representation of the component group ∨Gp/(

∨Gp)
0

([ABV92]*Definitions 7.1 and 7.6). We denote the set of pure complete geometric parameters for
X(∨O, ∨GΓ) by Ξ(∨O, ∨GΓ).

A special case of the local Langlands correspondence as stated in [ABV92]*Theorem 10.11 is a
bijection

Π (∨O, G/R)←→ Ξ
(∨O, ∨GΓ

)
(27)

between representations of pure strong involutions and pure complete geometric parameters. Recall
from the previous section that the left-hand side of (27) contains the subset Π(∨O, G(R, δq)).

2.3 Extended groups for G and ∨G

We specialize the results of the previous section to the groups GLN , SpN and SON , providing
further details.

For the group GLN we fix the usual pinning (21) in which B is the upper-triangular subgroup,
H is the diagonal subgroup, and Xα is a matrix with 1 in the entry corresponding to α and zeroes
elsewhere. We fix the split inner class for GLN . The split inner class consists of the split group
GLN (R), and, if N is even, also the quaternionic form GLN/2(H).

There are two algebraic involutions of GLN which fix the pinning: the identity, and ϑ (2). It is
a coincidence that the strong involution corresponding to the split inner class is ϑ. Indeed,

Gϑ =

{
ON , N odd

SpN , N even

which match the respective maximal compact subgroups of GLN (R) and GLN/2(H) ((23), [Kna96]*(1.123)).
Thus, we define

GLΓ
N = GLN o 〈δ0〉 (28)

where δ2
0 = 1 and δ0 acts (by chance!) as ϑ on GLN .

Lemma 2.1. 1. There is a unique conjugacy class of strong involutions in GLN o 〈δ0〉 which
maps to the (isomorphism class of the) split group GLN (R).

2. The strong involutions δ in this conjugacy class are characterized by

δ2 = (−1)N+1 = exp(2πi ∨ρ).

3. If N is odd this is the unique conjugacy class of strong involutions.

4. If N is even there is exactly one other class, whose elements square to 1. This other class
maps to the real form GLN/2(H).
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5. In both cases there is only only one class of pure strong involutions, and it corresponds to the
split form GLN (R) so that

Π (∨O,GLN/R) = Π (∨O,GLN (R)) . (29)

Proof. By [AdC09]*Proposition 12.19 (2) the conjugacy classes of strong involutions are parame-
terized by the H-conjugacy classes of the elements in{

tδ0 ∈ H o 〈δ0〉 : (tδ0)2 ∈ Z(G)
}

modulo the action of a Weyl group. For GLN it is straightforward to compute that up to conjugacy
the representatives in this set are δ0, with δ2

0 = 1, and, when N is even, δ = exp(πi∨ρ)δ0, with
δ2 = −1. The real forms associated to these strong involutions are as stated ([Ada08]*Examples
7.6 and 7.8). We leave the identity exp(2πi ∨ρ) = (−1)N+1 as an exercise. All that remains to be
proven is that when N is even, the real form GLN (H) is not pure. Looking back to (22), this follows
from the fact that H1(R,GLN ) = {1} corresponds to a single real form, which is (quasi)split.

If δ is a strong involution of any group G, we say δ has infinitesimal cocharacter g ∈ h if

δ2 = exp(2πig).

Lemma 2.1 tells us that the pure strong involutions of GLN are exactly those with infinitesimal
cocharacter ∨ρ. Let δq = δ0 when N is odd and δq = exp(πi ∨ρ)δ0 when N is even. According
to Lemma 2.1, the strong involutions δ in the GLN -conjugacy class of δq form the set of pure
involutions and these are the only strong involutions for which GL(R, δ) ∼= GLN (R).

Since GLN (R) is split, the L-group is

∨GLΓ
N = ∨GLN × 〈∨δ0〉 ' ∨GLN × Z/2Z. (30)

We write ∨GLN instead of GLN just to emphasize that the group is on the “dual side”.
We also need the extended group

GLN o 〈ϑ〉.
Although this is isomorphic to GLΓ

N = GLN o 〈δ0〉, it plays a very different role. The group GLΓ
N

plays a role in the ordinary (untwisted) Langlands correspondence by carrying strong involutions
and thereby information about real forms. By contrast, the group GL o 〈ϑ〉 is the central object
in the theory of twisted characters. We use this notation to distinguish the two roles. With this
in mind, we have the group

GLΓ
N o 〈ϑ〉 = 〈GLN , δ0, ϑ〉

in which ϑ and δ0 commute. Similarly, we define

∨GLΓ
N o 〈ϑ〉 = 〈∨GLN ,

∨δ0, ϑ〉 (31)

in which ϑ and ∨δ0 commute. See Section 5.2 for a discussion of the twisted endoscopic groups for
(∨GLΓ

N , ϑ).
Next we consider extended groups for SpN and SON . As in [Art13]*Section 1.2, we adopt the

convention of expressing these groups in such a way that their upper-triangular subgroups are Borel
subgroups. With this convention, their diagonal subgroups are maximal tori. When there is no
confusion with the setting of GLN , we will also denote these Borel subgroups by B and maximal
tori by H. In fact, we will abusively imitate the notation for GLN when the setting is clear. We
arbitrarily fix a set of simple root vectors {Xα} for each simple root in R(B,H).

Suppose first that G = Sp2n or G = SO2n+1. Each of these groups has one inner class, which
is the inner class of the split form. This allows us to choose δ0 to act trivially on these groups and
set

GΓ = G× 〈δ0〉
where δ2

0 = 1. Define δq = δ0, so that G(R, δq) is the split real form. The dual groups ∨G =
∨Sp2n = SO2n+1 and ∨G = ∨SO2n+1 = Sp2n have Borel subgroups and maximal tori as earlier.
The L-group of G corresponding to the split inner class is

∨GΓ = ∨G× 〈∨δ0〉 ∼= ∨G× Z/2Z.
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Finally, take G = SO2n. This group has two inner classes: one for the split form and the other
for the quasisplit form SO(n + 1, n − 1), which is not split. The following definitions follow from
[AV15]*(12c) and [Bou02]* Chapter VI §4.8 XI.

If the inner class contains the split form then ∨δ0 acts trivially and

∨SOΓ
2n = SO2n × 〈∨δ0〉.

If, in addition, n is even then δ0 acts trivially and SOΓ
2n = SO2n × 〈δ0〉. On the on the other hand

if n is odd then δ0 acts by conjugation by an element in O2n − SO2n which preserves the pinning.
In this case SOΓ

2n is a nontrivial semidirect product SO2n o 〈δ0〉.
If we fix the inner class to be that of SO(n+1, n−1) then the L-group is the semidirect product

∨SOΓ
2n = SO2n o 〈∨δ0〉

in which ∨δ0 acts by conjugation by an element in O2n − SO2n which preserves the pinning. If n
here is even then SOΓ

2n = SO2n o 〈δ0〉 where δ0 acts in the same way as ∨δ0. On the other hand,
if n is odd then SOΓ

2n = SO2n × 〈δ0〉.
For either of the two inner classes of SO2n the strong involution δq = exp(πi∨ρ)δ0 corresponds

to a quasisplit real form G(R, δq) [AV15]*(11f).

2.4 Atlas parameters for GLN

For our application we use a formulation of the local Langlands correspondence for GLN (R) which
is well suited to Vogan duality (see Section 4.1). The main references for this section are [AdC09]
and [AV15]*Section 3.

We start by working in the context of the extended group (28): GLΓ
N = GLN o 〈δ0〉. Let ∨ρ be

the half-sum of the positive coroots for GLN . Following [AV15]*Section 3 we set

X∨ρ =
{
δ ∈ NormGLNδ0(H) | δ2 = exp(2πi ∨ρ)

}
/H

where the quotient is by the conjugation action of H. This is a set of H-conjugacy classes of strong
involutions with infinitesimal cocharacter ∨ρ. By Lemma 2.1, these strong involutions are all pure
and correspond to the split form GLN (R).

Now we fix a ϑ-fixed, regular, integrally dominant element λ ∈ ∨h for GLN . This means

ϑ(λ) = λ

〈λ, ∨α〉 6= 0, α ∈ R(GLN , H)

〈λ, ∨α〉 /∈ {−1,−2,−3, . . .}, α ∈ R+(GLN , H).

(32)

This will be the infinitesimal character of our representations of GLN (R). The assumption of
integral dominance is harmless ([AV15]*Lemma 4.1). We shall remove the regularity assumption
at the beginning of Section 9.

The action of δ0 induces an action on the Weyl group W (GLN , H). Consider the set

{w ∈W (GLn, H) : w δ0(w) = 1} . (33)

If x ∈ X∨ρ then the action (by conjugation) of x on H is equal to wδ0 for some w in the set (33).
Define p(x) = w accordingly. The map p is surjective. Let Xw∨ρ be the fibre of p over w so that

Xw∨ρ =
{
x ∈ X∨ρ : xhx−1 = wδ0 · h, for all h ∈ H

}
. (34)

On the dual side we have an analogous set in which the infinitesimal cocharacter ∨ρ is replaced
by an infinitesimal character λ, namely

∨Xλ =
{∨δ ∈ Norm∨GLN ∨δ0(∨H) | ∨δ2 = exp(2πiλ)

}
/ ∨H.

Recall that GLN (R) is split, so ∨δ0 acts trivially on ∨GLN , and we can safely identify this set with{∨δ ∈ Norm∨GLN (∨H) | ∨δ2 = exp(2πiλ)
}
/ ∨H.
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Since ∨δ0 acts trivially, the analogue of (33) is{
w ∈W | w2 = 1

}
.

Let ∨Xwλ be the analogue of (34).
It is easily verified that

w δ0(w) = ww0ww
−1
0 = (ww0)2, w ∈W (GLN , H) (35)

where w0 ∈W (GLN , H) is the long Weyl group element. It follows that

w 7→ ww0

defines a bijection from (33) to {w ∈ W (GLN , H) : w2 = 1}. This map allows us to pair any set
Xw∨ρ with the set ∨Xww0

λ .
The next result follows from [AdC09], [ABV92] and [AV15]*Theorem 3.11. We give the proof,

which is much simpler in the case of GLN than for other reductive groups.

Lemma 2.2. There is a canonical bijection∐
{w:wδ0(w)=1}

Xw∨ρ × ∨X
ww0

λ ←→ Ξ
(∨O, ∨GLΓ

N

)
.

Proof. First of all |Xw∨ρ| = 1 for all w. This follows from [AdC09]*Proposition 12.19(5): the dual
inner class is the equal rank inner class, consisting of (products of) unitary groups U(p, q), and it
is well known that the Cartan subgroups of U(p, q) are all connected. This is equivalent to the fact
that all L-packets for GLN (R) are singletons.

So the lemma comes down to the statement that there is a bijection∐
wδ0(w)=1

∨Xww0

λ ←→ Ξ
(∨O, ∨GLΓ

N

)
.

Recall the right-hand side is the set of pure complete geometric parameters (S, τ) where S is a
∨GLN -orbit in X

(∨O, ∨GLΓ
N

)
and τ is an irreducible representation of the component group of

the centralizer of a point in X
(∨O, ∨GLΓ

N

)
. Since ∨δ0 acts trivially on ∨GLN , these centralizers

are products of general linear groups, and are hence connected. Therefore we are further reduced
to showing ∐

wδ0(w)=1

∨Xww0

λ ←→ X
(∨O, ∨GLΓ

N

)
/∨GLN .

Suppose y ∈ ∨Xww0

λ . This means that y ∈ Norm∨GLN (H) (we can ignore the extension), y

maps to w ∈W (GLN , H), and y2 = exp(2πiλ). Define φ : WR → ∨GLΓ
N by

φ(z) = zλzAd(y)(λ), z ∈ C×

φ(j) = exp(−πiλ)y

(compare (24)(a) and (d)). It is straightforward to see that φ is a quasiadmissible homomorphism
(see the end of Section 2.3), and only a little more work to show that it induces the bijection
indicated. See [AdC09]*Proposition 9.4.

Together with (27) this gives

Theorem 2.3. Let ∨O be the ∨GLN -orbit of λ. There are canonical bijections:∐
{w:wδ0(w)=1}

Xw∨ρ × ∨X
ww0

λ ←→ Ξ
(∨O, ∨GLΓ

N

)
←→ Π (∨O,GLN (R)) .
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As in [AV15]*Theorem 3.11 the bijection of Theorem 2.3 is written as

Xw∨ρ × ∨X
ww0

λ 3 (x, y) 7→ J(x, y, λ) (36)

We call the pair (x, y) on the left the Atlas parameter of the irreducible representation J(x, y, λ).
By Lemma 2.2, the Atlas parameter (x, y) is equivalent to a complete geometric parameter ξ ∈
Ξ(∨O,GLΓ

N ), and accordingly we define

π(ξ) = J(x, y, λ).

The representation π(ξ) is the Langlands quotient of a standard representation which we denote
by M(ξ) or M(x, y).

2.5 Twisted Atlas parameters for GLN

Our next task is to describe the generalization of Theorem 2.3 to the ϑ-twisted setting. This
involves certain irreducible representations of the extended group GLN (R)o 〈ϑ〉. We specialize the
results of [AV15]*Sections 3-5 to this case. We are fortunate that some of the more complicated
issues that arise in [AV15] do not occur for GLN .

We continue with the hypotheses of (32). Recall that both ∨ρ and λ are fixed by ϑ. By Clifford
theory, an irreducible representation of GLN (R)o 〈ϑ〉 restricted to GLN (R) is either an irreducible
ϑ-fixed representation, or the direct sum of two irreducible representations which are exchanged
by the action of ϑ. We only need representations of the first type.

It is a lengthy but straightforward task to show that the map (36) is ϑ-equivariant (cf. [CM18]*Theorem
4.1). Therefore J(x, y, λ) is ϑ-stable if and only if (x, y) ∈ Xw∨ρ × ∨X

ww0

λ is fixed by ϑ. Let

Π(∨O,GLN (R))ϑ ⊂ Π(∨O,GLN (R))

be the subset of ϑ-fixed irreducible representations and set

W (δ0, ϑ) = {w ∈ w | wδ0(w) = 1, w = ϑ(w)}

(cf. (33)). By the ϑ-equivariance, Theorem 2.3 restricts to these sets and we obtain

Corollary 2.4. Suppose λ satisfies the hypotheses of (32) and let ∨O be its ∨G-orbit. Then there
is a canonical bijection ∐

{w∈W (δ0,ϑ)}

Xw∨ρ × ∨X
ww0

λ ←→ Π (∨O,GLN (R))
ϑ

written (x, y) 7→ J(x, y, λ).

We now introduce the extended parameters of [AV15]*Sections 3-5, and summarize the facts
that we need. Fix w ∈W (δ0, ϑ). An extended parameter for w is a set

E = (λ, τ, `, t), λ, τ ∈ X∗(H), `, t ∈ X∗(H) (37)

satisfying certain conditions depending on w (see [AV15]*Definition 5.4).1 There is a surjective
map

E 7→ (x(E), y(E)) (38)

taking extended parameters for w to Xw∨ρ×∨X
ww0

λ . This map only depends on λ and `. In addition,

J(x(E), y(E), λ) ∈ Π(∨O,GLN (R))ϑ,

and every ϑ-fixed irreducible representation arises this way. The remaining parameters τ and t in
E define an irreducible representation J(E, λ) of GLN (R)o 〈ϑ〉 satisfying

J(E, λ)|GLN (R) = J(x(E), y(E), λ).

1Warning! The symbols λ and τ here are not to be confused with symbols λ and τ appearing elsewhere. Note
the slight difference in font. We have chosen to use λ and τ for ease of comparison with [AV15].
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The representation J(x(E), y(E), λ) is determined by a quasicharacter of a Cartan subgroup of
GLN (R). The representation J(E, λ) is determined by the semidirect product of this Cartan sub-
group with an element hϑ ∈ GLNoϑ ([AV15]*(24e)) and a choice of extension of the quasicharacter
to the semidirect product. The value of the extended quasicharacter on the element hϑ depends
on a choice of sign [AV15]*Definition 5.2, and the square root of this sign is given by

z(E) = i〈τ,(1+w)t〉(−1)〈λ,t〉. (39)

The preceding discussion is a specialization of a general framework to GLN (R)o 〈ϑ〉. One of the
special properties of GLN (R) is that the preimage of any (x, y) ∈ Xw∨ρ × ∨X

ww0

λ under (38) has a
preferred extended parameter of the form

(λ, τ, 0, 0).

This comes down to the fact that Xw
∨ρ is a singleton (see the proof of Lemma 2.2). By taking t = 0

we see z(λ, τ, 0, 0) = 1, and this amounts to taking the aforementioned semidirect product of the
Cartan subgroup with hϑ = ϑ, and setting the value of the extended quasicharacter at ϑ equal to
1. In this way, the preferred extended parameter defines a canonical extension

J(x, y, λ)+ = J((λ, τ, 0, 0), λ) (40)

of J(x, y, λ) to GLN (R)o 〈ϑ〉. We call this extension the Atlas extension of J(x, y, λ).
Going back to Theorem 2.3 and Corollary 2.4, we may formulate the result as follows.

Corollary 2.5. There is a natural bijection of ϑ-fixed sets∐
{w∈W (δ0,ϑ)}

Xw∨ρ × ∨X
ww0

λ ←→ Ξ(∨O, ∨GLΓ
N )ϑ ←→ Π(∨O,GLN (R))ϑ

Furthermore, if ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ is identified with (x, y) under the first bijection then there is a

canonical representation
π(ξ)+ = J(x, y, λ)+

extending π(ξ) to GLN (R)o 〈ϑ〉.

The irreducible representation π(ξ)+ is defined as the unique (Langlands) quotient of a repre-
sentation M(ξ)+ such that M(ξ)+

|GLN (R) = M(ξ). We call π(ξ)+ and M(ξ)+ the Atlas extensions

of π(ξ) and M(ξ) respectively.

2.6 Grothendieck groups of characters

The setting for studying characters of reductive groups is the Grothendieck group of representations
with a given central character. There is a corresponding notion in the twisted setting. In this section
we establish notation for the objects that we need.

Fix a semisimple orbit ∨O ⊂ ∨g, which we view as an infinitesimal character for G (cf. Section
2.1). Recall Π(∨O, G/R) is the set of equivalence classes of representations (π, δ) of pure strong
involutions. We define KΠ(∨O, G/R) to be the Grothendieck group of representations of pure
strong involutions with infinitesimal character ∨O (see [ABV92]*(15.5)-(15.6)). We identify this
with the Z-span of distribution characters of the irreducible representations in Π(∨O, G/R). We
refer to elements of this space as virtual characters.

When G is SpN or SON we only need the subspace of stable characters, and only for the
quasisplit form. So we define

KΠ(∨O, G(R, δq))st ⊂ KΠ(∨O, G(R, δq))

to be the subspace spanned by the (strongly) stable virtual characters. If we identify virtual char-
acters with functions on G(R, δ0) these are the virtual characters η which satisfy η(g) = η(g′) when-
ever strongly regular semisimple elements g, g′ ∈ G(R, δq) are G-conjugate. See [She79]*Section 5
or [ABV92]*Definition 18.2.
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2.7 Grothendieck groups of twisted characters

Here, we consider the split inner class of GLN , equipped with the involution ϑ. Recall in this case
Π(∨O,GLN/R) = Π(∨O,GLN (R)) (cf. (29)), and so

KΠ(GLN/R) = KΠ(GLN (R)).

We define
KΠ(∨O,GLN (R))ϑ ⊂ KΠ(∨O,GLN (R))

to be the submodule spanned by Π(∨O,GLN (R))ϑ. This is not the Grothendieck group of ϑ-
stable representations of GLN (R), but we retain the “K” to help align the object with its ambient
Grothendieck group. On the other hand we let

KΠ(∨O,GLN (R)o 〈ϑ〉) (41)

be the Grothendieck group of admissible representations of GLN (R)o 〈ϑ〉 with infinitesimal char-
acter ∨O.

We now discuss the Z-module of twisted characters of GLN (R). An irreducible character in
KΠ(∨O,GLN (R)o 〈ϑ〉) is a distribution

f 7→ Tr

∫
GLN (R)

f(x)π(x) dx+ Tr

∫
GLN (R)

f(xϑ)π(x)π(ϑ) dx,

where f ∈ C∞c (GLN (R) o 〈ϑ〉) and π is an irreducible representation of GLN (R) o 〈ϑ〉. The
restriction of such a distribution character to the non-identity component GLN (R) o ϑ has the
form

f 7→ Tr

∫
GLN (R)

f(xϑ))π(x)π(ϑ) dx, f ∈ C∞c (GLN (R)o ϑ). (42)

When the resulting restricted distribution is non-zero, we define it to be an irreducible twisted
character of GLN (R)o ϑ. We define

KΠ(∨O,GLN (R), ϑ)

to be the Z-module generated by the irreducible twisted characters of GLN (R)oϑ of infinitesimal
character ∨O.

As noted in Section 2.5, an irreducible representation of GLN (R) o 〈ϑ〉 restricts either to
an irreducible ϑ-fixed representation of GLN (R), or to a direct sum π ⊕ (π ◦ ϑ) of inequivalent
irreducible representations. In the second case the twisted character is 0, so we only need to consider
the first case. The first case describes the irreducible representations in KΠ(∨O,GLN (R))ϑ. If
π ∈ Π(∨O,GLN (R))ϑ then it has two extensions π± to GLN (R)o 〈ϑ〉, satisfying

π−(ϑ) = −π+(ϑ). (43)

Consequently the twisted characters of π± agree up to sign. If we set U2 = {±1} then it follows
that the homomorphism

KΠ(∨O,GLN (R))ϑ ⊗Z Z[U2]→ KΠ(∨O,GLN (R), ϑ),

which restricts the distribution character of π(ξ)+ to the non-identity component, is surjective. By
(43), the homomorphism passes to an isomorphism

KΠ(∨O,GLN (R), ϑ) ∼= KΠ(∨O,GLN (R))ϑ ⊗Z Z[U2]/〈(π ⊗ 1) + (π ⊗−1)〉 (44)(a)

where the quotient runs over π ∈ Π(∨O,GLN (R))ϑ. The map taking π(ξ) ∈ Π(∨O,GLN (R))ϑ to
the twisted character character

f 7→ Tr

∫
GLN (R)

f(xϑ)π(ξ)(x)π(ξ)+(ϑ) dx, f ∈ C∞c (GLN (R)o ϑ)

extends to an isomorphism

KΠ(∨O,GLN (R), ϑ) ' KΠ(∨O,GLN (R))ϑ. (44)(b)

We should once again remind the reader that the Z-modules appearing in (44) are not Grothendieck
groups in any natural fashion, notwithstanding the appearance of the “K”. Nevertheless it is helpful
to use this notation, to help remind the reader of the origins of these modules.
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3 Sheaves and Characteristic Cycles

Suppose ψG is an Arthur parameter for G as in (1). In this section we give more details on the
definition of the ABV-packet ΠABV

ψG
and its stable virtual character ηABV

ψG
(10). The results apply

in the more general context of complex connected reductive groups G ([ABV92]*Sections 19, 22).
However, for this section G will be SpN , SON or GLN , with the setup of Section 2. The definitions
depend on a pairing between characters and sheaves.

We also define a pairing between twisted characters and twisted sheaves for GLN [CM18]*Sections
5-6. The key properties of this twisted pairing are listed in this section and shall be proved in Sec-
tion 4.

3.1 The pairing and the ABV-packets in the non-twisted case

Let φψG be the Langlands parameter associated to ψG (9), ∨O be the infinitesimal character of
φψG , and SψG ⊂ X(∨O, ∨GΓ) (25) be the corresponding orbit ([ABV92]*Proposition 6.17, (26)).
Recall that Ξ(∨O, ∨GΓ) is the set of pure complete geometric parameters (see the end of Section
2.2). There is a bijection (27) between Ξ(∨O, ∨GΓ) and Π(∨O, G/R), the (equivalence classes of)
irreducible representations of pure strong involutions of G.

Let C(X(∨O, ∨GΓ)) be the category of ∨G-equivariant constructible sheaves of complex vector
spaces on X(∨O, ∨GΓ). This is an abelian category and its simple objects are parameterized by
the set of complete geometric parameters ξ = (S, τS) ∈ Ξ(∨O, ∨GΓ) as follows. Choose p ∈ S, let
∨Gp = Stab∨G(p), and choose a character τξ of the component group of ∨Gp so that (p, τξ) is a
representative of ξ. Then τξ pulled back to ∨Gp defines an algebraic vector bundle

∨G×∨Gp V → S. (45)

The sheaf of sections of this vector bundle is, by definition, a ∨G-equivariant local system on S
([ABV92]*Section 7, Lemma 7.3). Extend this local system to the closure S̄ by zero and then
take the direct image into X(∨O, ∨GΓ) to obtain an irreducible (i.e. simple) ∨G-equivariant con-
structible sheaf denoted by µ(ξ) ([ABV92]*(7.10)(c)).

Now let P(X(∨O, ∨GΓ)) be the abelian category of ∨G-equivariant perverse sheaves of complex
vector spaces on X(∨O, ∨GΓ) [BL94]*Section 5. The simple objects of P(X(∨O, ∨GΓ)) are defined
from ξ = (S, τS) ∈ Ξ(∨GΓ, ∨O) and the algebraic vector bundle (45) by taking the intermediate
extension [BBD82]*Section 2 to the closure S̄ instead of the extension by zero. This is denoted
P (ξ) ([ABV92]*(7.10)(d)). It is an irreducible ∨G-equivariant perverse sheaf on X(∨O, ∨GΓ).

The Grothendieck groups of the two categories C(X(∨O, ∨GΓ)) and P(X(∨O, ∨GΓ)) are canon-
ically isomorphic ([BBD82], [ABV92]*Lemma 7.8). We identify the two Grothendieck groups via
this isomorphism and denote them by KX(∨O, ∨GΓ). This Grothendieck group has two natural
bases

{µ(ξ) | ξ ∈ Ξ(∨O, ∨GΓ)} and {P (ξ) | ξ ∈ Ξ(∨O, ∨GΓ)}.

Suppose ξ = (S, τ) ∈ Ξ(∨O, ∨GΓ). We define two invariants associated to ξ. First, let d(ξ) be
the dimension of Sξ. Second, associated to ξ is the representation π(ξ) of a pure strong involution
of G (27). Let e(ξ) = ±1 be the Kottwitz invariant of the underlying real form of this strong
involution ([ABV92]*Definition 15.8).

As discussed in the introduction, we define a perfect pairing

〈 ·, ·〉 : KΠ(∨O, G/R)×KX(∨O, ∨GΓ)→ Z (46)

by
〈M(ξ), µ(ξ′)〉 = e(ξ) δξ,ξ′ .

The pairing also takes a simple form relative to the bases given by π(ξ) and P (ξ′) ([ABV92]*Theorem
1.24, Sections 15-17). We state it as a theorem.

Theorem 3.1. The pairing (46) satisfies

〈π(ξ), P (ξ′)〉 = (−1)d(ξ) e(ξ) δξ,ξ′ , ξ, ξ′ ∈ Ξ(∨O, ∨GΓ).
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This pairing allows us to regard elements ofKΠ(∨O, G/R) as Z-linear functionals ofKX(∨O, ∨GΓ).
The microlocal multiplicity maps χmic

S discussed in (8) are Z-linear functionals on KX(∨O, ∨GΓ).
Before making the obvious connection with the pairing (46), we review some facts needed to define
χmic
S . To begin, we consider the category of ∨G-equivariant coherent D-modules on X(∨O, ∨GΓ).

We denote this category by D(X(∨O, ∨GΓ)). Here, D is the sheaf of algebraic differential operators
on X(∨O, ∨GΓ) ([BGK+87]*VIII.14.4, [ABV92]*Section 7). Convenient references for equivariant
D-modules are [HTT08] and [ST00].

The equivariant Riemann-Hilbert correspondence ([BGK+87]* Theorem VIII.14.4) induces an
isomorphism

DR : KD(X(∨O, ∨GΓ))→ KX(∨O, ∨GΓ). (47)

For simplicity we write X = X(∨O, ∨GΓ), and DX = D(X(∨O, ∨GΓ)).
The sheaf D is filtered by the order of the differential operators, and the associated graded

ring is canonically isomorphic to OT∗(X), the coordinate ring of the cotangent bundle of X
([HTT08]*Section 1.1). Suppose M ∈ DX. Then M has a filtration such that the resulting
graded sheaf grM is a coherent OT∗(X)-module ([HTT08]*Section 2.1).

The support of grM is a closed subvariety of T ∗(X) ([ABV92]*Definition 19.7). Each minimal
∨G-invariant component of this closed subvariety is the closure of a conormal bundle T ∗S(X), where
S ⊂ X is a ∨G-orbit ([ABV92]*Proposition 19.12(c)). Therefore to each conormal bundle T ∗S(X)
we may attach a non-negative integer, denoted by χmic

S (M), which (when nonzero) is the length
of the module grM localized at T ∗S(X) [HTT08]*Section 2.2.

The characteristic cycle of M is defined as

Ch(M) =
∑

S∈X/∨G

χmic
S (M) T ∗S(X).

For a given ∨G-orbit S we may regard χmic
S as a function on D-modules which is additive for

short exact sequences ([ABV92]*Proposition 19.12(e)). It therefore defines a homomorphism
KD(X(∨O, ∨GΓ)) → Z, called the microlocal multiplicity along S. Using the isomorphism (47),
we interpret this as a homomorphism

χmic
S : KX(∨O, ∨GΓ)→ Z.

We now return to the pairing (46) and its relationship to χmic
S . This relationship defines

ηABV
ψG

. We first define ηmic
ψG
∈ KΠ(∨O, G/R) to be the element of KΠ(∨O, G/R) corresponding

via the pairing to the element χmic
S in the dual of KX(∨O, ∨GΓ). Explicitly working through the

identifications in the definition we see

ηmic
ψG =

∑
ξ∈Ξ(∨O,∨GΓ)

(−1)d(Sξ)−d(SψG ) χmic
SψG

(P (ξ))π(ξ). (48)

An important result of Kashiwara and Adams-Barbasch-Vogan is

Proposition 3.2 ([ABV92]*Theorem 1.31, Corollary 19.16). ηmic
ψG

is a stable virtual character.

The microlocal packet Πmic
ψG

of ψG is defined to be the irreducible representations in the support

of ηmic
ψG

. In other words

Πmic
ψG = {π(ξ) : ξ ∈ Ξ(∨O∨GΓ) | χmic

SψG
(P (ξ)) 6= 0}.

This is a set of irreducible representations of pure strong involutions of G. We are primarily
interested in the packet for the quasisplit strong involutions. We therefore define

ηABV
ψG = ηmic

ψG (δq) (49)

to be the restriction of ηmic
ψG

to the submodule of KΠ(∨O, G/R) generated by the representations

in Π(∨O, G(R, δq)). The ABV-packet ΠABV
ψG

is defined as the support of ηABV
ψG

, that is

ΠABV
ψG = {π(ξ) : ξ ∈ Ξ(∨O, ∨GΓ), χmic

SψG
(P (ξ)) 6= 0, π(ξ) ∈ Π(G(R, δq))}. (50)
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We conclude this section with a restatement of Theorem 3.1. Define the representation-theoretic
transition matrix mr by

M(ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

mr(ξ
′, ξ)π(ξ′). (51)

Define the geometric “transition matrix” cg by

P (ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

(−1)d(ξ) cg(ξ
′, ξ)µ(ξ′). (52)

(see [ABV92]*(7.11)(c)). Then [ABV92]*Corollary 15.13 says

Proposition 3.3. Theorem 3.1 is equivalent to the identity

mr(ξ
′, ξ) = (−1)d(ξ)−d(ξ′) cg(ξ, ξ

′). (53)

This equation relates the decomposition of characters with the decomposition of sheaves.

3.2 The pairing in the twisted case

As discussed in the previous section, the pairing (46) plays a fundamental role in the definition of
ABV-packets. We now discuss a twisted version of this pairing for GLN .

We replace KΠ(∨O,GLN (R)) with the Z-module KΠ(∨O,GLN (R), ϑ) of twisted characters
(44). Associated to ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ are an irreducible representation π(ξ) ∈ Π(∨O,GLN (R))ϑ

as well as a canonical extension π(ξ)+ to GLN (R)o 〈ϑ〉 (Corollary 2.5). The twisted character of
π(ξ)+ is an element of the space KΠ(∨O,GLN (R), ϑ) of twisted characters, and this gives a basis
of KΠ(∨O,GLN (R), ϑ) parameterized by Ξ(∨O, ∨GLΓ

N )ϑ. See (41) and the end of Section 2.5.
The twisted characters are to be paired with twisted sheaves which are elements in a Z-module

generalizing KX(∨O, ∨GΓ). The twisted objects for this pairing are given in [ABV92]*(25.7) (see
also [CM18]*Section 5.4). We provide a short summary.

Let s ∈ GLN be an element such that

σ = Int(s) ◦ ϑ (54)

is an automorphism of GLN of finite order. Then σ acts on X(∨O, ∨GLΓ
N ) in a manner which

is compatible with the ∨GLN -action ([ABV92]*(25.1)), and so also acts on its ∨GLN -equivariant
sheaves.

Let P(X(∨O, ∨GLΓ
N );σ) be the category of ∨GLN -equivariant perverse sheaves with a compat-

ible σ-action. An object in this category is a pair (P,σP ) in which P is an equivariant perverse
sheaf and σP is an automorphism of P which is compatible with σ ([CM18]*Section 5.4). Similarly,
we define C(X(∨O, ∨GLΓ

N );σ) to be the category of ∨GLN -equivariant constructible sheaves with
a compatible σ-action. An object in this category is a pair (µ,σµ) in which µ is an equivariant
constructible sheaf and σµ is an automorphism of µ which is compatible with σ.

The Grothendieck groups of these two categories are isomorphic [CM18]*(35). We identify
them and denote their Grothendieck groups by K(X(∨O, ∨GLΓ

N );σ). This is the sheaf-theoretic
analogue of KΠ(GLN (R)o 〈ϑ〉).

As with the representations (see (40)), we seek a canonical choice of extension of P (ξ), i.e. an
automorphism σP (ξ) of P (ξ).

Lemma 3.4. Let ∨G = ∨GLN , ξ = (S, τS) ∈ Ξ(∨O, ∨GLΓ
N )ϑ, p ∈ S, and (45) be the equivariant

vector bundle representing µ(ξ).

(a) Suppose p′ ∈ S and p′ = a · p for some a ∈ ∨GLN . Then the maps

(g, v) 7→ (ga−1, v) (55)

g · p 7→ (ga−1) · p′

define an isomorphism of equivariant vector bundles

∨G×∨Gp V → ∨G×∨Gp′ V. (56)

which is independent of the choice of a.
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(b) There exist canonical choices of pairs

µ(ξ)+ = (µ(ξ),σ+
µ(ξ)) ∈ C(X(∨O, ∨GLΓ

N );σ),

P (ξ)+ = (P (ξ),σ+
P (ξ)) ∈ P(X(∨O, ∨GLΓ

N );σ)

such that if p ∈ S is fixed by σ then σ+
µ(ξ) (and σ+

P (ξ)) acts trivially on the stalk of µ(ξ) (and

P (ξ) ∈ KX(∨O, ∨GLΓ
N )) at p.

Proof. Let (p, τ) and (p′, τ ′) be representatives of ξ. It is well-known that the component group
∨Gp/(

∨Gp)
0 is trivial for the general linear group ([ABV92]*Lemma 7.5), and so τ is its trivial

quasicharacter. For the same reason, τ ′ is the trivial quasicharacter of the trivial group. Both τ
and τ ′ lift to the trivial representations of ∨Gp and ∨Gp′ = a ∨Ga−1 respectively. By definition

(gh, v) = (g, τ(h)v) = (g, v), (g, v) ∈ ∨G×∨Gp V, h ∈ ∨Gp.

Applying (55) to the left-most element, we obtain

(gha−1, v) = (ga−1aha−1, v) = (ga−1, τ ′(aha−1)v) = (ga−1, v)

in ∨G ×∨Gp′ V . This proves that the map (55) is well-defined. The map is clearly a ∨GLN -
equivariant isomorphism. The element a ∈ ∨G is unique up to right-multiplication by an element
in a1 ∈ ∨Gp. Since

(g(aa1)−1, v) = (ga−1aa−1
1 a−1, v) = (ga−1, τ ′(aa−1

1 a−1)v) = (ga−1, v)

in ∨G ×∨Gp′ V , the isomorphism (55) is independent of the choice of a. This proves the first
assertion.

Suppose p′ = σ(p) = a · p ∈ S. Then σ induces a bundle isomorphism

∨G×∨Gp V → ∨G×∨Gp′ V,

which when composed with the inverse of (56) yields a canonical automorphism which we set equal
to σ+

µ(ξ). To be explicit

σ+
µ(ξ)(g, v) = (σ(g)a, v), (g, v) ∈ ∨G×∨Gp V (57)

We identify σ+
µ(ξ) with the unique automorphism of µ(ξ) which it determines.

This choice of σ+
µ(ξ) determines a canonical choice σ+

P (ξ) by virtue of the fact that µ(ξ) oc-

curs in the decomposition of P (ξ) in KX(∨O, ∨GLΓ
N ) with multiplicity one ((7.11)(b) [ABV92],

[CM18]*pp. 154-155).
Finally, suppose σ preserves p. Then g = a = 1 in (57) and the last assertion is proved.

We now imitate the definition of KΠ(∨O,GLN (R), ϑ) (44) for the sheaves appearing in Lemma
3.4. Attached to ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ are perverse sheaves P (ξ)±, where P (ξ)+ is defined in Lemma
3.4, and P (ξ)− is the unique other choice of extension. Furthermore, the microlocal traces of P (ξ)±

differ by sign ([ABV92]*(25.1)(j)). Similar comments apply to µ(ξ)±.
We are interested only in irreducible sheaves with non-vanishing microlocal trace. We conse-

quently follow the definition of (44) in defining the quotient

KX(∨O, ∨GLΓ
N ,σ) = K(X(∨O, ∨GLΓ

N ))σ ⊗ Z[U2]/〈(P (ξ)⊗ 1) + (P (ξ)⊗−1)〉 (58)

where the quotient runs over ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

This is the Z-module which we shall pair with

KΠ(∨O,GLN (R))ϑ ∼= KΠ(∨O,GLN (R), ϑ)
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in Section 4. We call the elements of this module twisted sheaves, and remind the reader that
these modules are not naturally Grothendieck groups, even though we have kept the “K” in the
notation.

For reasons that will only become clear in Section 7, the definition of our twisted pairing
involves some additional signs. The signs depend on the integral lengths of parameters, which may
be described as follows.

From now on we assume λ ∈ ∨O satisfies the regularity condition (32). Let ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Lemma 2.2 tells us that associated to ξ is an element x ∈ X∨ρ. Set θx = Int(x) ∈ NormG(H). Let

R(λ) = {α ∈ R(GLN , H) | 〈λ, ∨α〉 ∈ Z} (59)(a)

be the λ-integral roots, with positive λ-integral roots

R+(λ) = {α ∈ R(λ) | 〈λ, ∨α〉 > 0} . (59)(b)

Define the integral length, following [ABV92]*(16.16), as

lI(ξ) = −1

2

(
|{α ∈ R+(λ) : θx(α) ∈ R+(λ)}|+ dim(Hθx)

)
. (60)

The integral length takes values in the non-positive integers.
Furthermore define

R+
ϑ (λ) = {α ∈ R((GLϑN )0, (Hϑ)0) | 〈∨α, λ〉 ∈ Z>0}.

We define the ϑ-integral length by

lIϑ(ξ) = −1

2

(
|{α ∈ R+

ϑ (λ) | θx(α) ∈ R+
ϑ (λ)}|+ dim((Hϑ)θx)

)
. (61)

This is the integral length for (the identity component of) the group GLϑN .
Now we define a perfect pairing (under the assumption (32)):

〈·, ·〉 : KΠ(∨O,GLN (R), ϑ)×KX(∨O, ∨GLΓ
N ,σ)→ Z (62)

by setting

〈M(ξ)+, µ(ξ′)+〉 = (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′ (63)

for ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. The analogue of Theorem 3.1 is

Theorem 3.5. Suppose λ ∈ ∨O satisfies (32). Define the pairing (62) by (63). Then

〈π(ξ)+, P (ξ′)+〉 = (−1)d(ξ) (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

The proof of this theorem is the primary purpose of Section 4. Its proof is modelled on the
proof of Theorem 3.1 in [ABV92]*Sections 15-17.

The signs (−1)l
I(ξ)−lIϑ(ξ) appear in the pairing to account for the comparison of extensions

given in Section 7. Note that if ϑ were taken to be the identity automorphism then the signs would
disappear, and one would recover the ordinary pairing (46) for GLN .

We conclude this section by giving a twisted analogue of Proposition 3.3. This analogue will
only be needed in Sections 7 and 9, so the reader may wish to skip this discussion and return to it
later.

For ξ, ξ′ ∈ Ξ(∨O, ∨GΓ)ϑ, define mr(ξ
′
±, ξ+) to be the multiplicity of the representation π(ξ′)±

in M(ξ)+ in the Grothendieck group KΠ(∨O,GLN (R)o 〈ϑ〉) (Section 2.6). In other words

M(ξ)+ =
∑

ξ′∈Ξ(∨O,∨GΓ)ϑ

mr(ξ
′
+, ξ+)π(ξ′)+ +mr(ξ

′
−, ξ+)π(ξ′)− + · · ·
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where the omitted summands are irreducible representations of GLN (R)o 〈ϑ〉 of the second type
(Section 2.6). Define

mϑ
r (ξ′, ξ) = mr(ξ

′
+, ξ+)−mr(ξ

′
−, ξ+) (64)

for ξ, ξ′ ∈ Ξ(∨O, ∨GΓ)ϑ (cf. [AvLTV20]*(19.3d)). By construction, the image of M(ξ)+ in
KΠ(∨O,GLN (R), ϑ) (44) decomposes as

M(ξ)+ =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

mϑ
r (ξ′, ξ)π(ξ′)+. (65)

Lemma 3.6. The matrix given by

mϑ
r (ξ′, ξ), ξ, ξ′ ∈ Ξ(∨O, ∨GΓ)ϑ

(64) is invertible.

Proof. The invertibility of the matrix given by mr(ξ
′, ξ) in (51) follows since it is uni-upper-

triangular with respect to the Bruhat order ([AvLTV20]*Definition 18.4, [Vog81]*Lemma 6.6.6).
We show that mϑ

r (ξ′ξ) inherits the same two properties. By restricting to GLN (R) we see

mr(ξ
′, ξ) = mr(ξ

′
+, ξ+) +mr(ξ

′
−, ξ+)

(see the equation preceding [AvLTV20]*19.3c). Furthermore mr(ξ, ξ) = 1 implies mr(ξ+, ξ+) = 1
and mr(ξ−, ξ+) = 0 or mr(ξ+, ξ+) = 0 and mr(ξ−, ξ+) = 1. Therefore mϑ

r (ξ, ξ) = ±1 and by
(64) we conclude mϑ

r (ξ′, ξ) is upper-triangular with ±1 along the diagonal. In particular, it is
invertible.

In a parallel fashion, we define cg(ξ
′
±, ξ+) for ξ, ξ′ ∈ (∨O, ∨GΓ)ϑ by

P (ξ)+ =
∑

ξ′∈Ξ(∨O,∨GΓ)ϑ

(−1)d(ξ′) cg(ξ
′
+, ξ+)µ(ξ′)+ + (−1)d(ξ′) cg(ξ

′
−, ξ+)µ(ξ′)− + · · · (66)

in the Grothendieck group KX(∨O, ∨GLN ;σ) of Section 3.2. Setting

cϑg (ξ′, ξ) = cg(ξ
′
+, ξ+)− cg(ξ′−, ξ+). (67)

we see that the image of P (ξ)+ in KX(∨O, ∨GLN ,σ) is∑
ξ′∈Ξ(∨O,∨GΓ)ϑ

(−1)d(ξ′) cϑg (ξ′, ξ)µ(ξ′)+. (68)

Just as Theorem 3.1 is equivalent to Proposition 3.3. We have the following equivalence.

Proposition 3.7. Theorem 3.5 is equivalent to the identity

mϑ
r (ξ′, ξ) = (−1)l

I
ϑ(ξ)−lIϑ(ξ′) cϑg (ξ, ξ′) (69)

for all ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. Using Lemma 3.6 we compute

〈π(ξ1)+, P (ξ2)+〉 =
∑
ξ′1,ξ

′
2

(mϑ
r )−1(ξ′1, ξ1) cϑg (ξ′2, ξ2) (−1)d(ξ′2)〈M(ξ′1)+, µ(ξ′2)〉

=
∑
ξ′1

(mϑ
r )−1(ξ′1, ξ1) cϑg (ξ′1, ξ2) (−1)d(ξ′1) (−1)l

I(ξ′1)−lIϑ(ξ′1)

for ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ
N )ϑ. If Theorem 3.5 holds then this sum is equal to

(−1)d(ξ1) (−1)l
I(ξ1)−lIϑ(ξ1)δξ1,ξ2
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and so
mϑ
r (ξ′1, ξ1) = (−1)l

I(ξ1)−d(ξ1) (−1)l
I(ξ′1)−d(ξ′1)(−1)l

I
ϑ(ξ1)−lIϑ(ξ′1) cϑg (ξ1, ξ

′
1).

By [AMR17]*Proposition B.1,

(−1)l
I(ξ1)−d(ξ1) = (−1)l

I(ξ′1)−d(ξ′1)

is a constant independent of any parameters ξ1 and ξ′1. Thus,

mϑ
r (ξ′1, ξ1) = (−1)l

I
ϑ(ξ1)−lIϑ(ξ′1) cϑg (ξ, ξ′).

The process we have given may easily be reversed to prove the converse statement.

4 The proof of Theorem 3.5

4.1 The Beilinson-Bernstein correspondence in the proof of Theorem
3.5

Our proof of Theorem 3.5 will follow the same strategy as the proof of Theorem 3.1 in [ABV92]*Sections
15-17. We recall some of the theory of KLV-polynomials in the non-twisted context first.

The basic tool in this theory is the Hecke algebra for GLN (R) ([ABV92]*(16.10)). For Harish-
Chandra modules of GLN (R) of infinitesimal character ∨O, this is a free Z[q1/2, q−1/2]-algebra
H(∨O), which comes equipped with a representation on the Hecke module

KΠ(∨O,GLN (R)) = KΠ(∨O,GLN (R))⊗Z Z[q1/2, q−1/2].

This representation is actually transported from a Hecke algebra action on a module generated
by constructible sheaves ([Vog82]*Proposition 12.5, [LV83]), using the Riemann-Hilbert (47) and
Beilinson-Bernstein [BB81] correspondences.

It is the latter kind of Hecke algebra action which gives us a representation of H(∨O) on

KX(∨O, ∨GLΓ
N ) = KX(∨O, ∨GLΓ

N )⊗Z Z[q1/2, q−1/2]

[ABV92]*Proposition 16.13. In order to describe the details of the Hecke action in the twisted case
(Section 4.4), it is convenient to replace the space KX(∨O, ∨GLΓ

N ) with a space of characters of
representations of certain inner forms of ∨GLN . To be more specific, we define

∨Π(∨O,GLN (R))

to be the set of irreducible characters obtained by applying the Riemann-Hilbert and Beilinson-
Bernstein correspondences to the irreducible equivariant perverse sheaves on X(∨O, ∨GLΓ

N ).
Here is some detail about ∨Π(∨O,GLN (R)). Suppose ξ = (S, τS) ∈ Ξ(∨O, ∨GLΓ

N ) and write
φ for the Langlands parameter with orbit S ([ABV92]*Proposition 6.17, (26)). Define λ and y by
(24)(a), ∨GLN (λ) by (24)(b), and ∨Ky as in Equation (24)(d). It is easy to see that ∨GLN (λ) is
a product of groups GLni , and that the real group corresponding to ∨Ky is a product of indefinite
unitary groups U(pi, qi) with pi + qi = ni. Let ∨ρλ = 1

2

∑
α∈R+(λ)

∨α (see (59)). Then ∨ρ − ∨ρλ
defines a two-fold cover of ∨Ky which we denote by ∨K̃y ([AV92a]*Definition 8.11). The set
∨Π(∨O,GLN (R)) consists of (∨glN (λ), ∨K̃y)-modules.

To summarize:

Proposition 4.1 ([Vog83]*Proposition 1.2, [ABV92]*Theorem 8.5). The Riemann-Hilbert and
Beilinson-Bernstein correspondences define a bijection

Ξ(∨O, ∨GLΓ
N )←→ ∨Π(∨O,GLN (R)).

In this correspondence ξ ∈ Ξ(∨O, ∨GLΓ
N ) is sent to an irreducible (∨glN (λ), ∨K̃y)-module of in-

finitesimal character ∨ρ. This correspondence induces an isomorphism of Z-modules

KX
(∨O, ∨GLΓ

N

) ∼= K∨Π (∨O,GLN (R)) . (70)
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4.2 Vogan Duality for GLN

We want to understand the (∨glN (λ), ∨K̃y)-modules of Section 4.1 in terms of our parameters.

Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N ), and let (x, y) be the corresponding Atlas parameter in X∨ρ × ∨Xλ

given by Lemma 2.2. As we shall see, the reversed pair (y, x) then defines an Atlas parameter for
∨GLN (λ) ([AV15]*Section 6.1). In the case of integral infinitesimal character this is an example of
Vogan duality in the version of [AdC09]*Corollary 10.8.

Here are some details in our setting. Let σw ∈ GLN be the Tits representative of an element
w ∈ W (GLN , H) [AV15]*Section 12, and w0 ∈ W (GLN , H) and w′0 ∈ W (∨GLN (λ), ∨H) be the
long elements in their respective Weyl groups. Set

δ′0 = σw′0σ
−1
w0
δ0 ∈ GLN o 〈δ0〉

(see (28)).

Lemma 4.2. (a) (δ′0)2 = exp(2πi(∨ρ− ∨ρλ)) ∈ Z(GLN (λ)).

(b) GLN (λ) o 〈δ′0〉 is an E-group for ∨GLN (λ) in the sense of [ABV92]*Definition 4.6, with
second invariant exp(2πi(∨ρ− ∨ρλ)).

(c) The pair (y, x) ∈ ∨Xλ×X∨ρ is naturally an Atlas parameter for an irreducible (∨glN (λ), ∨K̃y)-
module.

Proof. For part (a) we compute

(δ′0)2 =
(
δ′0σw′0(δ′0)−1

) (
δ′0σ
−1
w0
δ0
)

= σδ′0(w0)

(
σw′0σ

−1
w′0
δ0σ
−1
w0
δ0

)
= σw′0

(
σw′0σ

−1
w0
σ−1
δ0(w0)

)
= σ2

w′0
σ−2
w0
.

using property [AV15]*(53g) twice. The final equality is a consequence of [AV15]*Proposition 12.1.
It is straightforward to show that conjugation by δ′0 preserves the pinning of GLN (λ) obtained

by restricting the usual pinning of GLN . This is all that needs to be verified for part (b), once the
definition of an E-group is recalled.

For part (c), suppose (x, y) ∈ Xw∨ρ × ∨X
ww0

λ (Lemma 2.2). We must prove that

(y, x) ∈ ∨Xww0

λ ×Xww0w
′
0

∨ρ

relative to the extended groups

∨GLN (λ)o 〈∨δ0〉 and GLN (λ)o 〈δ′0〉. (71)

It is a tautology that y ∈ ∨Xww0

λ . For the class x the corresponding statement follows from the
fact that x acts on H as

wδ0 = ww0w
′
0δ
′
0.

The pair (y, x) now determines a (∨h, ∨Hy)-module of infinitesimal character ∨ρλ [AV15]*Corollary

3.9. This is equivalent to a (∨h, ∨̃Hy)-module of infinitesimal character ∨ρ ([KV95]*p. 719). The

latter module then leads to a (∨glN (λ), ∨K̃y)-module following the prescription of [AV15]*(20).

Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N ) corresponds to (x, y) ∈ Xw∨ρ × ∨X

ww0

λ as in Lemma 2.2. We define

∨ξ = (y, x) ∈ ∨Xww0

λ ×Xww0w
′
0

∨ρ . (72)

By Lemma 4.2 (c), the Atlas parameter (y, x) defines an irreducible (∨glN (λ), ∨K̃y)-module, which

we denote by π(∨ξ). The (∨glN (λ), ∨K̃y)-module π(∨ξ) is the Langlands quotient of a standard

(∨glN (λ), ∨K̃y)-module ([AV15]*(20)), which we denote by M(∨ξ).
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Proposition 4.3. Under the bijection (70) we have:

(a) P (ξ) 7→ π(∨ξ)

(b) (−1)d(ξ)µ(ξ) 7→M(∨ξ)

Proof. This proposition holds in greater generality, but is simpler for GLN (R). Suppose ξ = (S, τS)

corresponds to (x, y) as in Lemma 2.2. The (∨glN (λ), ∨K̃y)-module corresponding to P (ξ) under
the Riemann-Hilbert and Beilinson-Bernstein correspondences is described by [ABV92]*Proposition

6.16 and [Vog83]*Corollary 2.2, Proposition 2.7. These results tell us that the (∨glN (λ), ∨K̃y)-

module is determined by an (∨h, ∨̃Hy)-module. The character of ∨̃Hy in this (∨h, ∨̃Hy)-module
is completely determined by ∨ρ and τS . In our case the matter is simplified in that τS is the
trivial representation of a trivial component group. This is also equivalent to the group ∨Hy being
connected, or to the fact that all Cartan subgroups of U(p, q) are connected. In consequence the

(∨h, ∨̃Hy)-module is determined entirely by the infinitesimal character ∨ρ specified on ∨h.
On the other hand, according to the proof of Lemma 4.2 (c), the Atlas parameter (y, x) de-

termines an irreducible (∨glN (λ), ∨K̃y)-module in terms of a (∨h, ∨̃Hy)-module with infinitesimal

character ∨ρ. Since ∨Hy is connected this (∨h, ∨̃Hy)-module is determined by ∨ρ alone, and is

equal to the (∨h, ∨̃Hy)-module obtained from P (ξ) above. This proves (a).
For (b) we recall (52) and apply [Vog83]*Theorem 1.6 to obtain

π(∨ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

cg(ξ
′, ξ)M(∨ξ′). (73)

(The absence of signs in (73) is due to the fact that the sheaf on the left-hand side of [Vog83]*1.5
is equal to (−1)d(δ)P (δ) according to the definitions of [Vog83]*5.13 and [ABV92]*(7.10)(e), see
also the proof of [ABV92]*Proposition 16.13). The matrix cg is invertible and so (73) implies

M(∨ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

c−1
g (ξ′, ξ)π(∨ξ′). (74)

Similarly, by inverting the matrix cg in (52), we obtain

(−1)d(ξ)µ(ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

c−1
g (ξ′, ξ)P (ξ′). (75)

By part (a) the Riemann-Hilbert and Beilinson-Bernstein correspondences carry the right-hand
side of (75) to the right-hand side of (74). Therefore the left-hand sides correspond, which gives
(b).

Corollary 4.4. The pairing

〈·, ·〉 : KΠ(∨O,GLN (R))×K∨Π(∨O,GLN (R))→ Z (76)

defined by

〈M(ξ),M(∨ξ′)〉 = (−1)l
I(ξ)δξ,ξ′

satisfies

〈π(ξ), π(∨ξ′)〉 = (−1)l
I(ξ)δξ,ξ′

Proof. By Proposition 4.3, Theorem 3.1 is equivalent to the assertion that if a pairing

〈 ·, ·〉′ : KΠ(∨O, G/R)×K∨Π(∨O, ∨GΓ)→ Z

is defined by
〈M(ξ),M(∨ξ′)〉′ = (−1)d(ξ)δξ,ξ′

then
〈π(ξ), π(∨ξ′)〉′ = (−1)d(ξ)δξ,ξ′ . (77)
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By [AMR17]*Proposition B.1

(−1)d(ξ)(−1)l
I(ξ) = (−1)d(ξ)+lI(ξ) = (−1)c (78)

does not depend on ξ. Therefore, the pairing in (76) satisfies

〈·, ·〉 = (−1)c 〈·, ·〉′.

The assertion of the corollary follows from Equation (77) and Equation (78).

4.3 Vogan Duality for twisted GLN

In the previous section we replaced the sheaf-theoretic module KX(∨O, ∨GLΓ
N ) with the isomorphic

representation-theoretic module K∨Π(∨O,GLN (R)). We now wish to replace the twisted sheaf-
theoretic module KX(∨O, ∨GLΓ

N ,σ) (58) with a space of twisted characters, and hence restate
Theorem 3.5 with a statement about twisted representations analogous to Corollary 4.4. The main
tool is Vogan duality for the disconnected group GLN (R)o 〈ϑ〉, as discussed in [AV15]*Section 6.1.

By analogy with (58) we define

K∨Π(∨O,GLN (R), ϑ) = K∨Π(∨O,GLN (R))ϑ ⊗ Z[U2]/〈π(∨ξ)⊗ 1) + (π(∨ξ)⊗−1)〉

where the complete geometric parameters ξ run over Ξ(∨O, ∨GLΓ
N )ϑ.

Using Propositions 4.1 and 4.3, we define a bijection

P (ξ)+ 7→ π(∨ξ)+, ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

The extended representation π(∨ξ)+ on the right is obtained by Vogan duality from π(ξ)+ as in
[AV15]*Corollary 6.4. The bijection yields an isomorphism

KX(∨O, ∨GLΓ
N ,σ) ∼= K∨Π(∨O,GLN (R), ϑ). (79)

Proposition 4.5. Under the isomorphism (79)

(−1)d(ξ)µ(ξ)+ 7→M(∨ξ)+, ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. Define a Z-linear map

B : KX(∨O, ∨GLΓ
N )ϑ ⊗ Z[U2]→ K∨Π(∨O,GLN (R))ϑ ⊗ Z[U2]

by setting
B(P (ξ)+) = π(∨ξ)+ and B(P (ξ)−) = π(∨ξ)−, ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ.

Recall Equation (66). The matrix cg given by this equation is invertible. We may therefore invert
Equation (66) by writing

(−1)d(ξ)µ(ξ)+ =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

c−1
g (ξ′+, ξ+)P (ξ′)+ + c−1

g (ξ′−, ξ+)P (ξ′)− + · · ·

The projection of this equation to KX(∨O, ∨GLΓ
N )ϑ ⊗ Z[U2] is∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

c−1
g (ξ′+, ξ+)P (ξ′)+ + c−1

g (ξ′−, ξ+)P (ξ′)−. (80)

Applying B to (80), we obtain

B((−1)d(ξ)µ(ξ)+)

= B

 ∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

c−1
g (ξ′+, ξ+)P (ξ′)+ + c−1

g (ξ′−, ξ+)P (ξ′)−


=

∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

c−1
g (ξ′+, ξ+)π(∨ξ′)+ + c−1

g (ξ′−, ξ+)π(∨ξ′)− (81)
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The sum on the right is a formal sum of extensions of (∨glN (λ), ∨K̃y)-modules (Lemma 4.2 (c)) to

(∨glN (λ), ∨K̃yo〈ϑ〉)-modules. Since both π(∨ξ)+ and π(∨ξ)− restrict to the same (∨glN (λ), ∨K̃y)-
module π(∨ξ), we write the restriction of this sum as

B((−1)d(ξ)µ(ξ)+)|K∨Π(∨O,GLN (R))ϑ =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

(c−1
g (ξ′+, ξ+) + c−1

g (ξ′−, ξ+))π(∨ξ′). (82)

In a similar manner we apply to equation (80) the forgetful functor which takes (∨GLN o 〈σ〉)-
equivariant sheaves to ∨GLN -equivariant sheaves. The result is

(−1)d(ξ)µ(ξ) =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

(c−1
g (ξ′+, ξ+) + c−1

g (ξ′−, ξ+))P (ξ′).

Comparing this equation with (75), we see that

c−1
g (ξ′+, ξ+) + c−1

g (ξ′−, ξ+) = c−1
g (ξ′, ξ).

Consequently, equation (82) takes the form

B((−1)d(ξ)µ(ξ)+)|K∨Π(∨O,GLN (R))ϑ =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

c−1
g (ξ′, ξ)π(∨ξ′),

and by (74)
B((−1)d(ξ)µ(ξ)+)|K∨Π(∨O,GLN (R))ϑ = M(∨ξ).

The standard module M(∨ξ) has exactly two extensions M(∨ξ)±. We need to show

B((−1)d(ξ)µ(ξ)+) = M(∨ξ)+

and for this it suffices to prove that π(∨ξ)+ occurs in M(∨ξ)+ as a (sub)quotient. Looking back to
(81), the latter is equivalent to proving that c−1

g (ξ+, ξ+) 6= 0. Looking a bit further back to (80)
we see that this amounts to P (ξ)+ appearing in the decomposition of µ(ξ)+, and this is true by
definition (see the proof of Lemma 3.4).

Using Proposition 4.5 we can restate Theorem 3.5.

Lemma 4.6. Theorem 3.5 is equivalent to the following assertion. The pairing

〈·, ·〉 : KΠ(∨O,GLN (R), ϑ)×K∨Π(∨O,GLN (R), ϑ)→ Z (83)

defined by

〈M(ξ)+,M(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) δξ,ξ′

satisfies

〈π(ξ)+, π(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. We just need to notice that by Proposition 4.5, Theorem 3.5 is equivalent to the assertion
that if a pairing

〈·, ·〉 : KΠ(∨O,GLN (R), ϑ)×K∨Π(∨O,GLN (R), ϑ)→ Z

is defined by

〈M(ξ)+,M(∨ξ′)+〉 = (−1)d(ξ)(−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′

then
〈π(ξ)+, π(∨ξ′)+〉′ = (−1)d(ξ)(−1)l

I(ξ)−lIϑ(ξ) δξ,ξ′ .

The proof then follows exactly like that of Corollary 4.4, we leave the details to the reader.
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4.4 Twisted Hecke modules

The proof of Theorem 3.5 relies on a Hecke algebra and Hecke modules as in the ordinary, non-
twisted setting of Sections 4.1-4.2. In the twisted setting, Lusztig and Vogan define a Hecke algebra
which we denote by H(λ) [LV14]*Section 3.1. This Hecke algebra acts on the Hecke modules

KΠ(∨O,GLN (R), ϑ) = KΠ(∨O,GLN (R), ϑ)⊗Z Z[q1/2, q−1/2]

and
K∨Π(∨O,GLN (R)) = K∨Π(∨O,GLN (R))⊗ Z[q1/2, q−1/2]

as in [LV14]*Section 7. We shall extend the pairing (83) to these Hecke modules. Once the Hecke
algebra action is supplemented with Verdier duality [LV14]*Section 2.4, we present special bases of
the Hecke modules, essentially eigenvectors of Verdier duality. Theorem 3.5 will be seen to follow
from a theorem expressing the values of the pairing on the special bases (Theorem 4.15).

We continue with a closer look at the Hecke algebra H(λ). Let κ be a ϑ-orbit on the set of
simple roots of R+(λ). The orbit κ is equal to one of the following:

one root {α = ϑ(α)} (type 1)

two roots {α, β = ϑ(α)}, 〈α, ∨β〉 = 0 (type 2) (84)

two roots {α, β = ϑ(α)}, 〈α, ∨β〉 = −1 (type 3).

Write W (λ) for the Weyl group of the integral roots R(λ), and let

W (λ)ϑ = {w ∈W (λ) : ϑ(w) = w}.

The group W (λ)ϑ is a Coxeter group ([LV14]*Section 4.3) with generators

wκ =

 sα κ type 1
sαsβ κ type 2
sαsβsα κ type 3.

(85)

The Hecke algebra H(λ) ([AV15]*Section 10, [LV14]*Section 4.7) is a free Z[q1/2, q−1/2]-algebra
with basis

{Tw : w ∈W (λ)ϑ}.

It is a consequence of [LV14]*Equation 4.7 (a) that H(λ) is generated by the operators Tκ := Twκ ,
where κ is a ϑ-orbit as in (84).

Before we move to a discussion of H(λ)-modules, we digress on how the ϑ-orbits κ are further
categorized relative to a fixed parameter ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ. The parameter ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ

is equivalent to an Atlas parameter (x, y) as in Lemma 2.2. The adjoint action of x acts as an
involution on R(λ). This action separates the ϑ-orbits of roots into various types, e.g. real,
imaginary, etc. Lusztig and Vogan combine this information with the types of (84) and also with
the types defined by Vogan in [Vog81]*Section 8.3. The interested reader must be vigilant in
distinguishing between these three kinds of types! The list of combined types may be found in
[LV14]*Section 7 or [AV15]*Table 1.

Not all of the types that appear in this list are relevant for GLN (R). For example the classifica-
tion of roots in [Vog81]*Section 8.3 labels the roots as either type I or type II, and it is well-known
that roots of GLN (R) are all of type II. Another well-known fact is that GLN (R) has no compact
roots relative to x in the sense of [Kna86]*Section VI.3. Using these two facts, it is tedious, but
simple, to verify that the only relevant types for GLN (R) in [AV15]*Table 1 are labelled as

1C+, 1C−, 1i2f, 1i2s, 1r2, 1rn, 2C+, 2C−, 2Ci, (86)

2Cr, 2i22, 2r22, 2rn, 3C+, 3C−, 3Ci, 3r, 3rn.

Any ϑ-orbit κ also has a type relative to the dual parameter ∨ξ (72). The dual parameter is
equivalent to the Atlas parameter (y, x) and the adjoint action of y is essentially the negative of
the adjoint action of x ([AV15]*Definition 3.10). In consequence it is easy to convert the types of
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(86) into types for the Vogan dual group ∨GLN (λ)o 〈∨δ0〉 ((71), [AV15]*Section 11 and Table 5).
They are

1C−, 1C+, 1r1f, 1r1s, 1i1, 1ic, 2C−, 2C+, 2Cr, (87)

2Ci, 2r11, 2i11, 2ic, 3C−, 3C+, 3Cr, 3i, 3ic.

Let us return to the subject of Hecke modules. In [LV14]*Section 4 and [AV15]*Section7 it is
explained how KΠ(∨O,GLN (R), ϑ) can be made into a Hecke module by defining the action of
the operators Tκ on the generating set {M(ξ)+ : ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ}. The actions are computed
explicitly in a geometric setting in [LV14]*Section 7, and are presented in terms of extended
Atlas parameters in [AV15]*Proposition 10.4. A case-by-case summary of the actions is given in
[AV15]*Table 5, according to the categorization of (86).

The construction defining the Hecke algebra H(λ) and the Hecke module structure for the
module KΠ(∨O,GLN (R), ϑ) in [LV14], also defines a Hecke algebra ∨H(λ) and a Hecke module
structure for K∨Π(∨O,GLN (R), ϑ). The Hecke module actions in this case are again given in
[AV15]*Table 5 in terms of (87). The Hecke algebra ∨H(λ) for the Vogan dual group (71) is
generated by Hecke operators T∨κ, where ∨κ runs over the simple coroots corresponding to κ. The
bijection between the two sets of operators

{Tκ : κ ∈ R+(λ) simple} ←→ {T∨κ : κ ∈ R+(λ) simple}

extends to an isomorphism H(λ) ∼= ∨H(λ). In this manner, we also regard K∨Π(∨O, ∨GLN (R), ϑ)
as an H(λ)-module.

There is a partial order on Ξ(∨O, ∨GLΓ
N )ϑ, the Bruhat order which is defined geometrically

([LV14]*Section 5.1, [ABV92]*(7.11)(f)). The Bruhat order for the dual parameters ∨Ξ(∨O, ∨GLΓ
N )ϑ

is defined by the inverse order

∨ξ ≥ ∨ξ′ ←→ ξ ≤ ξ′, ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. (88)

We now return to the pairing (83) and extend it to a Hecke module pairing

〈·, ·〉 : KΠ(∨O,GLN (R), ϑ)×K∨Π(∨O, ∨GLN (R), ϑ)→ Z[q1/2, q−1/2], (89)

by setting

〈M(ξ)+,M(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) q(l

I(ξ)+lI(∨ξ′))/2 δξ,ξ′

for all ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. In view of the Kronecker delta, the term q1/2(lI(ξ)+lI(∨ξ′)) in the

pairing could be replaced by q1/2(lI(ξ)+lI(∨ξ)) or q1/2(lI(ξ′)+lI(∨ξ′)). In fact, both of the latter terms
are independent of ξ or ξ′, as may be seen by the following lemma.

Lemma 4.7. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. Then

lI(ξ) + lI(∨ξ) = −1

2

(
|R+(λ)|+ dim(H)

)
Proof. For simplicity let us identify the dual group ∨GLN (λ) with GLN (λ). Similarly, we identify
∨H with H. Let (x, y) be the Atlas parameter of ξ as in (36). Then (y, x) is the Atlas parameter
for ∨ξ (72), where the adjoint action of y on h is the negative of the adjoint action of x on h
([AV15]*Definition 3.10). From definition (60) we compute that

lI(ξ) + lI(∨ξ)

= −1

2

(
|{α ∈ R+(λ) : x · α ∈ R+(λ)}|+ dim(Hx)

)
− 1

2

(
|{α ∈ R+(λ) : y · α ∈ R+(λ)}|+ dim(Hy)

)
= −1

2

(
|{α ∈ R+(λ) : x · α ∈ R+(λ)}|+ |{α ∈ R+(λ) : −(x · α) ∈ R+(λ)}|+ dim(Hx) + dim(H−x)

)
= −1

2

(
|R+(λ)|+ dim(H)

)
.
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4.5 The Hecke module isomorphism

The extended pairing (89) induces a Z-module isomorphism

KΠ(∨O,GLN (R), ϑ)→ K∨Π(∨O,GLN (R), ϑ)∗ (90)

M(ξ)+ 7→ 〈M(ξ)+, · 〉

We endow K∨Π(∨O,GLN (R), ϑ)∗ with the Hecke module structure given in [AV15]*Section 11.
The main goal of this section is

Proposition 4.8. The map (90) is an isomorphism of H(λ)-modules.

This is a generalization of [AV15]*Proposition 11.2, which is stated only in the case of integral
infinitesimal character. In the course of the proof we correct a sign in [AV15]*Proposition 11.2.

We first describe theH(λ)-action in more detail. SinceH(λ) is not commutative, one cannot de-
fine a Hecke action onK∨Π(∨O,GLN (R), ϑ)∗ merely by transposing the action onK∨Π(∨O,GLN (R), ϑ).
One must include an anti-automorphism of H(λ) defined by

Tw 7−→ (−1)lϑ(w)ql(w)T−1
w , w ∈W (λ)ϑ,

(cf. [AV15]*(50) (removing q on the left), [ABV92]*(17.15)(c)). Here, l(w) is the length of w with
respect to the simple reflections in W (GLN , H), and lϑ(w) is the length of w with respect to the
generators of (85). The H(λ)-action on K∨Π(∨O,GLN (R), ϑ)∗ is defined by

T ∗w : K∨Π(∨O,GLN (R), ϑ)∗ → K∨Π(∨O,GLN (R), ϑ)∗ (91)

T ∗w · µ = (−1)lϑ(w)ql(w)(T−1
w )t · µ,

where (T−1
w )t is the transpose of T−1

w . According to [LV14]*Equation 7.2(a), for any ϑ-orbit κ of
a simple root in R(λ) we have

(Twκ + 1)(Twκ − ql(wκ)) = 0. (92)

From this, the inverse of Twκ may be computed to be

T−1
wκ = q−l(wκ)Twκ + (q−l(wκ) − 1).

The Hecke action of (91) for a generator therefore takes the form

T ∗wκ · µ = −(Twκ)t · µ+ (ql(wκ) − 1)µ. (93)

The Hecke module structures of both the domain and codomain in the proposed isomorphism
(90) are now established, and both are presented in [AV15]*Table 5 in terms of cross actions and
Cayley transforms ([AV15]*Tables 2-4). Our next goal is to show that cross actions and Cayley
transforms commute with Vogan duality (72). In the following two propositions we distinguish in
notation between α ∈ R(λ) ⊂ R(GLN , H) and ∨α ∈ R(∨GLN (λ), ∨H) although the reader may
prefer to identify these two roots.

Proposition 4.9. Fix a complete geometric parameter ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ and wκ ∈W (λ)ϑ as in

(85). Then

(a) ∨(wκ ×M(ξ)) = w∨κ ×M(∨ξ)

(b) ∨(wκ ×M(ξ)+) = w∨κ ×M(∨ξ)+

Proof. We identify ξ with its equivalent Atlas parameter (x, y) of Lemma 2.2. The dual parameter
∨ξ is then identified with the Atlas parameter (y, x) (72). By the definition of cross action in
[AdC09]*(9.11 f),

wκ ×M(x, y) = M(ẇxẇ−1, ẇyẇ−1) (94)

where ẇ ∈ GLN (λ) is any representative for wκ. By (72)

∨(wκ ×M(x, y)) = ∨M(ẇxẇ−1, ẇyẇ−1) = M(ẇyẇ−1, ẇxẇ−1) = w∨κ ×M(y, x)
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This proves the first assertion of the proposition.
For part (b), we first claim that

wκ ×M(ξ)+ = (wκ ×M(ξ))+. (95)

In other words the cross action carries an Atlas extension to an Atlas extension (40). When the
ϑ-orbit κ of a simple root in R(λ) is also comprised of simple roots in R(GLN , H), this may be
seen by noting that an extended parameter (λ, τ, 0, 0) for M(ξ)+ (37) is carried to an extended
parameter of the form (λ′, τ′, 0, 0) under all instances of cross action in [AV15]*Tables 2-4. For
general κ this fact follows from [AV15]*Definition 10.4 and Tables 2-4. (This is a special property
of the group GLN o 〈δ0〉 which avoids “bad” roots such as those of type 2i12 in the tables.)

Taking the Vogan dual of (95), we obtain

∨(wκ ×M(ξ)+) = ∨((wκ ×M(ξ))+) = ( ∨(wκ ×M(ξ)))+ = (w∨κ ×M(∨ξ))+.

Here, the second equality follows from the definition of Vogan dual for an Atlas extension ([AV15]*Corollary
6.4), and the final equality follows from the first assertion of the proposition.

To complete the second assertion, we must prove

(w∨κ ×M(∨ξ))+ = w∨κ ×M(∨ξ)+,

which is analogous to (95). However, unlike (95) this identity is to be proved using [AV15]*Tables
2-4 for the dual group rather than for GLN o 〈δ0〉. Once again we turn to extended parameters.
If (λ, τ, 0, 0) (37) is an extended parameter corresponding to M(ξ)+ = M(x, y)+ then an extended
parameter corresponding to M(∨ξ)+ = M(y, x)+ may be chosen to have the form (0, 0, `′, t′).
Indeed, the zeros in the first two entries satisfy the requisite equations of [AV15]*Propositions 3.8

and 4.5 when regarding M(y, x) as a (glN (λ), ∨K̃yξ)-module of infinitesimal character ρλ (Section
4.1). As [AV15]*Tables 2-4 indicate, any cross action from (87) applied to (0, 0, `′, t′) yields an
extended parameter with zeros in the first two entries. This means that w∨κ ×M(∨ξ)+ has an
extended parameter with zero in its first entry. According to [AV15]*Lemma 5.3.1 this extended
parameter corresponds to the Atlas extension (w∨κ×M(∨ξ))+, and the proposition is complete.

Proposition 4.10. Fix a complete geometric parameter ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ and suppose that κ

as in (84) allows for a Cayley transform cκ ([AV15]*(42e))2. Then

(a) ∨ (cκ(M(ξ))) = c∨κ(M(∨ξ))

(b) ∨ (cκ(M(ξ)+)) = c∨κ(M(∨ξ)+)

Proof. We see no means for avoiding a case-by-case proof, the cases being according to the type
of κ as given in (86). We will prove an illustrative case in detail, leaving the others to the reader.
As in the previous proposition we identify ξ with its equivalent Atlas parameter (x, y) of (36), and
identify the dual parameter ∨ξ with (y, x).

Suppose κ = {α, β = ϑ · α} is of type 2r22, i.e. α, β ∈ R+(λ) are orthogonal roots which
are real with respect to a(ny) strong involution in the class x ([AV15]*Proposition 3.4. Suppose
further that α and β are simple in R+(GLN , H). Then cκ is defined as the composition of the
Cayley transforms cα of α, and cβ of β (cf. [LV14]*7.6 (h)). The Cayley transform cα is defined in
terms of Atlas parameters in [AdC09]*Definitions 14.1 and 14.8 as follows. Let Gα be the derived
group of the centralizer of ker(α) in G = GLN , and let Hα ⊂ Gα ∩ H be the one-parameter
subgroup corresponding to α. Then Gα is isomorphic to SL2 and Hα is a Cartan subgroup of Gα.
Let σα ∈ Gα be the Tits representative ([AV15]*(53)) of the non-trivial Weyl group element in
W (Gα, Hα) and write mα = σ2

α. The same formalism applies with G = ∨GLN and ∨α, so that we
have a Tits representative σ∨α and m∨α = (σ∨α)2. Let δ ∈ x and ∨δ ∈ y be representative strong
involutions. Then the Atlas parameters of the representations in the image of cα(M(x, y)) are the
classes of (σαδ, σ∨α

∨δ) and (mασαδ, σ∨α
∨δ). In this case the two classes coincide (cf. type 1r2

[AV15]*Table 1) and therefore cα(M(x, y)) is single-valued.

2Contrary to custom, we leave κ in subscript regardless of whether the Cayley transform is made relative to real,
complex or imaginary roots.
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The same reasoning applied to cβ leads to a single representation in the image of cκ(M(x, y)) =
cβ(cα(M(x, y))) and the Atlas parameter of this representation is the class of (σβσαδ, σ∨βσ∨α

∨δ).
The Vogan dual of this Atlas parameter (72) is the class of (σ∨βσ∨α

∨δ, σβσαδ). Following the path
delineated above, it is a straightforward exercise to compute that this is the Atlas parameter of
c∨κ(M(y, x)), where now ∨κ = {∨α, ∨β} is of type 2i11 with respect to the representative ∨δ of
y. This proves the first assertion of the proposition for the first example when α and β are simple
in R+(GLN , H).

When α and β are merely simple in R+(λ) and not necessarily simple in R+(GLN , H) then the
Cayley transform is defined by

cκ(M(x, y)) = w−1 × cwκ(w ×M(x, y)) (96)

where w ∈W (GLN , H)ϑ and wκ is comprised of simple roots in R+(GLN , H) ([AV15]*Proposition
10.4). In this case the Atlas parameter of cκ(M(x, y)) is the class of

(ẇ−1σwβσwαẇδẇ
−1ẇ, ẇ−1σw ∨βσw ∨αẇ

∨δẇ−1ẇ) (97)

= (ẇ−1σwβσwαẇδ, ẇ
−1σw ∨βσw ∨αẇ

∨δ),

where ẇ is any representative of w (cf. the proof of Proposition 4.9) and σwα etc. are the Tits
representatives in Gwα etc. These Tits representatives, as well as the Tits representatives of
σα ∈ Gα, etc. for the possibly non-simple roots, all have the form[

0 1
−1 0

]
regarded as elements in SL2. From this it is clear that one may choose ẇ so that ẇ−1σwαẇ = σα,
ẇ−1σwβẇ = σβ , and then (97) reduces to

(σβσαδ, σ∨βσ∨α
∨δ).

The class of this pair has the same form as the class in the case that κ is simple earlier on. Thus,
the first assertion of the proposition follows for non-simple κ as in the simple case.

For the second assertion of the proposition we choose an extended parameter (λ, τ, 0, 0) for
M(ξ)+ = M(x, y)+ and return to (96) in this extended setting. As noted in the proof of Proposition
4.9, w×M(ξ)+ has an extended parameter equivalent to (λ1, τ1, 0, 0). According to [AV15]*Table
3, cwκ(w × M(ξ)+) then also corresponds to an extended parameter of the form (λ2, τ2, 0, 0).
Finally applying a cross action by w−1 yields an extended parameter of the form (λ3, τ3, 0, 0) for
cκ(M(ξ)+). The zeroes appearing in the two finally entries of this extended parameter imply that
cκ(M(ξ)+) = (cκ(M(ξ))+ (cf. (40)). The sequence of equalities

∨ (cκ(M(ξ)+)
)

= ∨ ((cκ(M(ξ))+
)

= ( ∨(cκ(M(ξ)))
+

= (c∨κ(M(∨ξ)))+ = c∨κ(M(∨ξ)+)

follows using the same reasoning as given at the end of Proposition 4.9.

We are now ready to prove the main result of this section.

Proof of Proposition 4.8: Recalling the dual H(λ)-action (93), the proposition amounts to proving

〈TwκM(ξ1)+,M(∨ξ2)+〉 = 〈M(ξ1)+,−TwκM(∨ξ2)+ + (ql(wκ) − 1)M(∨ξ2)+〉 (98)

for all ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ
N )ϑ and wκ as in (85). Looking back to the definition of (89), the

left-hand side of (98) may be expressed as

〈TwκM(ξ1)+,M(∨ξ2)+〉 = (−1)l
I
ϑ(ξ2)q(lI(ξ2)+lI(∨ξ2))/2 · (the coefficient of M(ξ2)+ in TwκM(ξ1)+).

Similarly, the right-hand side of (98) may be expressed as the product of (−1)l
I
ϑ(ξ1)q(lI(ξ1)+lI(∨ξ1))/2

with
the coefficient of M(∨ξ1)+ in − TwκM(∨ξ2)+ + (ql(wκ) − 1)M(∨ξ2)+.
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By Lemma 4.7, Equation (98) is equivalent to proving that

(−1)l
I
ϑ(ξ2)−lIϑ(ξ1) · (the coefficient of M(ξ2)+ in TwκM(ξ1)+) (99)

= the coefficient of M(∨ξ1)+ in − TwκM(∨ξ2)+ + (ql(wκ) − 1)M(∨ξ2)+.

The proof of the proposition is a case-by-case verification of (99) according to the type of κ relative
to x for ξ1 = (x, y) ((36), (86)). We prove a typical case in detail here, leaving the remaining cases
to the reader.

Suppose that κ is a root of type 2i22 relative to ξ1. Then

cκ(M(ξ1)+) = {M(ξ)+,M(ξ′)+}

is double-valued [AV15]*Table 1. According to [AV15]*Table 5, the coefficient of M(ξ2)+ in
TwκM(ξ1)+ is 1 when ξ2 = ξ1, ξ, ξ

′ and 0 otherwise. As for the ϑ-integral lengths (61), we compute

lIϑ(ξ) = −1

2

(
|{α ∈ R+

ϑ (λ) : wκx · α ∈ R+
ϑ (λ)}|+ dim((Hϑ)wκx)

)
= −1

2

(
|{α ∈ R+

ϑ (λ) : x · α ∈ R+
ϑ (λ)}| − 2 + dim((Hϑ)x)

)
= lIϑ(ξ1) + 1

and so (−1)l
I
ϑ(ξ1)−lIϑ(ξ) = −1. Similarly (−1)l

I
ϑ(ξ1)−lIϑ(ξ′) = −1. The left-hand side of (99) is

therefore equal to 1 if ξ2 = ξ1, is equal to −1 if ξ2 = ξ, ξ′, and is equal to 0 otherwise.
Let us consider the right-hand side of (99), in which ∨κ is of type 2r11 relative to ∨ξ1. According

to [AV15]*Table 5, M(∨ξ1)+ occurs in TwκM(∨ξ2)+ only if one of the following holds

1. M(∨ξ1)+ = M(∨ξ2)+

2. M(∨ξ1)+ belongs to c∨κ(M(∨ξ2)+)

3. M(∨ξ1)+ = w∨κ ×M(∨ξ2)+.

The third possibility reduces to the first. Indeed, the third possibility holds if and only ifM(∨ξ2)+ =
w∨κ×M(∨ξ1)+, and for ∨κ of type 2r11 relative to ∨ξ1 one may compute that w∨κ×M(∨ξ1)+ =
M(∨ξ1)+ using (94). Hence, we need to compute the right-hand side of (99) only for the first two
possibilities.

When M(∨ξ1)+ = M(∨ξ2)+, i.e. ξ1 = ξ2, the right-hand side of (99) is

−(q2 − 2) + ql(wκ) − 1 = −(q2 − 2) + q2 − 1 = 1

[AV15]*Table 5, and this equals the left-hand side of (99).
In the second possibility, M(∨ξ1)+ is a Cayley transform of M(∨ξ2)+ and this is true if and

only if M(∨ξ2) is an inverse Cayley transform of M(∨ξ1)+. The latter condition is equivalent to
∨ξ2 being equal to either ∨ξ or ∨ξ′, and ∨κ is of type 2i11 relative to ∨ξ2. As [AV15]*Table 5
indicates, the right-hand side of (99) equals −1, which is also equal to the left-hand side of (99).

4.6 Verdier duality

In proving Theorem 3.5 we have extended (62) to the pairing (89) of Hecke modules and discussed
the related Hecke algebra actions. Ultimately, we must evaluate the pairing on special elements
which recover the basis elements π(ξ) and π(∨ξ) of Lemma 4.6. As already mentioned, the desired
elements are essentially eigenvectors of Verdier duality ([LV14]*Section 2.4). We introduce the key
properties of Verdier duality, define the “eigenvectors,” and finally show that the Hecke algebra
isomorphism of Proposition 4.8 is equivariant with respect to Verdier duality.

Verdier duality on KΠ(∨O,GLN (R), ϑ) is a Z-linear involution D satisfying

D(q1/2M(ξ)+) = q−1/2D((ξ)+)

D((Tκ + 1)M(ξ)+) = q−l(wκ)(Tκ + 1)D(M(ξ)+)
(100)

See [LV14]*4.8(f).
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Theorem 4.11 ([LV14]*Section 8.1). Define elements R(ξ′, ξ) ∈ Z[q1/2, q−1/2] by

D(M(ξ)+) = q−l
I(ξ)

∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)l
I(ξ)−lI(ξ′)R(ξ′, ξ)M(ξ′)+

in KΠ(∨O,GLN (R), ϑ). Then

(a) R(ξ′, ξ′) = 1,

(b) R(ξ′, ξ) 6= 0 only if ξ′ ≤ ξ.

In addition, if D′ is any Z-linear involution of KΠ(∨O,GLN (R), ϑ) which satisfies the properties
of this theorem and (100), then D = D′.

The constructions of [LV14] apply equally well to the dual module, yielding a Verdier Duality
∨D on K∨Π(∨O,GLN (R), ϑ). The Verdier duality ∨D satisfies the obvious analogue of Theorem
4.11.

We also a need a dual version of Verdier duality. Let ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ so that 〈M(ξ)+, ·〉

belongs to K∨Π(∨O,GLN (R), ϑ)∗. As in [ABV92]*(17.15)(f), we define

∨D∗ : K∨Π(∨O,GLN (R), ϑ)∗ → K∨Π(∨O,GLN (R), ϑ)∗

by
∨D∗〈M(ξ)+, ·〉 = 〈M(ξ)+, ∨D(·)〉,

where ∨D is the Verdier duality on K∨Π(∨O,GLN (R), ϑ) and

¯ : Z[q1/2, q−1/2]→ Z[q1/2, q−1/2]

is the unique automorphism sending q1/2 to q−1/2. Imitating the proof of [Vog82]*Lemma 13.4, it
is straightforward to verify that ∨D∗ satisfies the analogues of (100) and Theorem 4.11, so we are
justified in calling ∨D∗ a Verdier dual.

Proposition 4.12. The Hecke module isomorphism (90) is equivariant with respect to D and ∨D∗,
that is

〈DM(ξ1)+,M(∨ξ2)+〉 = 〈M(ξ1)+, ∨DM(∨ξ2)+〉,

for all ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. As already remarked, both D and ∨D∗ satisfy (analogues of) (100) and Theorem 4.11. The
resulting properties of D imply that the Z-linear involution

〈M(ξ1)+, ·〉 7→ 〈DM(ξ1)+, ·〉

on K∨Π(∨O,GLN (R), ϑ)∗ also satisfies the analogues of (100) and Theorem 4.11. The proposition
therefore follows from the uniqueness statement in the dual analogue of Theorem 4.11.

We now define the special basis elements alluded to at the beginning of this section. The special
bases are defined in terms of the twisted KLV-polynomials Pϑ(ξ′, ξ) ∈ Z[q1/2, q−1/2] defined in
[LV14]*Section 0.1.

Theorem 4.13 ([LV14]*Theorem 5.2). For every ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ, define

Cϑ(ξ) =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

(−1)l
I(ξ)−lI(ξ′) Pϑ(ξ′, ξ) M(ξ′)+, (101)

an element in KΠ(∨O,GLN (R), ϑ). Then

1. D(Cϑ(ξ)) = q−l
I(ξ) Cϑ(ξ)

2. Pϑ(ξ, ξ) = 1

3. Pϑ(ξ′, ξ) = 0 if ξ′ � ξ
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4. degPϑ(ξ′, ξ) ≤ (lI(ξ)− lI(ξ′)− 1)/2 if ξ′ ≤ ξ.

Conversely suppose {C(ξ′, ξ)} and {P (ξ′, ξ)} satisfy (101) and (a-d). Then P (ξ′, ξ) = Pϑ(ξ′, ξ)
and C(ξ′, ξ) = Cϑ(ξ′, ξ) for all ξ′, ξ ∈ Ξ(∨O∨GLΓ

N )ϑ.

Properties 2-3 of Theorem 4.13 ensure that

{Cϑ(ξ) : ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ}

is a basis for KΠ(∨O,GLN (R), ϑ).
[LV14]*Theorem 5.2 also applies to K∨Π(∨O,GLN (R), ϑ), so there is an obvious variant of

Theorem 4.13 characterizing the dual KLV-polynomials ∨Pϑ( ∨ξ′, ∨ξ) and the basis elements

Cϑ(∨ξ) =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

(−1)l
I(∨ξ)−lI(∨ξ′) ∨Pϑ( ∨ξ′, ∨ξ)M(∨ξ′)+. (102)

Proposition 4.14. By specializing to q = 1, we obtain

Cϑ(ξ)(1) = π(ξ)+,

Cϑ(∨ξ)(1) = π(∨ξ)+

for all ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. The assertions of the proposition are given in purely representation-theoretic terms. How-
ever, in the second equality the representations M(∨ξ′) occurring in (102) are representations of
possibly different strong involutions of ∨GLN (λ), which complicates matters. It is therefore clearer
if we transport the assertion back to the original context of constructible sheaves using (79). The
assertion equivalent to

Cϑ(∨ξ)(1) = π(∨ξ)+

in this context is that P (∨ξ)+ equals∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)d(ξ) ∨Pϑ(∨ξ′, ∨ξ)(1)µ(∨ξ′)+ (103)

(recall Proposition 4.5 and (78)). It follows from the definition of the KLV-polynomials ([LV14]*Section
0.1), (67) and (78) that

∨Pϑ( ∨ξ′, ∨ξ)(1) = (−1)d(ξ)−d(ξ′) cϑg (ξ′, ξ) = (−1)l
I(ξ)−lI(ξ′) cϑg (ξ′, ξ). (104)

(Note that the definition of P (ξ) in [LV14] differs from ours by a shift in degree d(ξ) cf. [ABV92]*(7.10)(d).)
This implies that (103), as an element in KX(∨O, ∨GLΓ

N ,σ), is equal to∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)d(ξ′)
(
cg(ξ

′
+, ξ+)− cg(ξ′−, ξ+)

)
µ(∨ξ′)+

=
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

cg(ξ
′
+, ξ+) (−1)d(ξ′)µ(∨ξ)+ − cg(ξ′−, ξ+) (−1)d(ξ′)µ(∨ξ′)+

=
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

cg(ξ
′
+, ξ+) (−1)d(ξ′)µ(∨ξ)+ + cg(ξ

′
−, ξ+) (−1)d(ξ′)µ(∨ξ′)−,

= P (ξ)+

where the final equation is (68). This proves the second assertion of the proposition. The first may
be proved in the same manner. However, a purely representation-theoretic proof is also possible
following [AvLTV20]*Theorem 19.4
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4.7 The proof of Theorem 3.5

The main theorem of this section is

Theorem 4.15. Pairing (89) satisfies

〈Cϑ(ξ), Cϑ(∨ξ′)〉 = (−1)l
I
ϑ(ξ) q(l

I(ξ)+lI(∨ξ′))/2 δξ,ξ′ . (105)

for all ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

To prove Theorem 4.15 we need the following lemma.

Lemma 4.16. There are unique elements Cϑ(ξ) ∈ KΠ(∨O,GLN (R), ϑ), ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ,

satisfying

〈Cϑ(ξ), Cϑ(∨ξ′)〉 = (−1)l
I
ϑ(ξ′) q(l

I(ξ)+lI(∨ξ′))/2 δξ,ξ′ .

More explicitly, let P (ξ′, ξ) ∈ Z[q1/2, q−1/2] be the entries of the matrix inverse and transpose to
the matrix formed by the polynomials ∨Pϑ( ∨ξ′, ∨ξ) given in (102), i.e.∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

P (ξ′, ξ) ∨Pϑ(∨ξ′, ∨ξ′′) = δξ,ξ′′ .

Then
Cϑ(ξ) =

∑
ξ′∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)l
I(ξ)−lI(ξ′)(−1)l

I
ϑ(ξ)−lIϑ(ξ′) P (ξ′, ξ) M(ξ′)+.

Proof. We just need to verify, for all ξ, ξ′′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ, the equality〈∑

ξ′

(−1)l
I(ξ)−lI(ξ′)(−1)l

I
ϑ(ξ)−lIϑ(ξ′) P (ξ′, ξ) M(ξ′)+, Cϑ(∨ξ′′)

〉
= (−1)l

I
ϑ(ξ) q(l

I(ξ)+lI(∨ξ′′))/2 δξ,ξ′′ .

Let k = − 1
2 (|R+(λ)|+ dim(H)) as in Lemma 4.7. Applying (89), we compute〈∑

ξ′

(−1)l
I(ξ)−lI(ξ′)(−1)l

I
ϑ(ξ)−lIϑ(ξ′) P (ξ′, ξ) M(ξ′)+, Cϑ(∨ξ′′)

〉

=

〈∑
ξ′

(−1)l
I(ξ)−lI(ξ′)(−1)l

I
ϑ(ξ)−lIϑ(ξ′) P (ξ′, ξ) M(ξ′)+,

∑
ξ1

(−1)l
I(∨ξ′′)−lI(∨ξ1) ∨Pϑ( ∨ξ1,

∨ξ′′)M(∨ξ1)+

〉
= (−1)l

I
ϑ(ξ) (−1)k(−1)l

I(ξ)+lI(∨ξ′′) qk/2
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

P (ξ′, ξ) ∨Pϑ( ∨ξ′, ∨ξ′′)

= (−1)l
I
ϑ(ξ) qk/2δξ,ξ′′

= (−1)l
I
ϑ(ξ)q(l

I(ξ)+lI(∨ξ′′))/2 δξ,ξ′′ .

Proof of Theorem 4.15. If one proves that the coefficient polynomials P (ξ′, ξ) of Cϑ(ξ) satisfy
properties 1-4 of Theorem 4.13, then the uniqueness statement of that theorem implies Cϑ(ξ) =
Cϑ(ξ) and the theorem follows from Lemma 4.16. To show properties 1-4 we follow the proof of
[Vog82]*Lemma 13.7. For the first property we apply Proposition 4.12

〈DCϑ(ξ), Cϑ(∨ξ′)〉 = 〈Cϑ(ξ), ∨DCϑ(∨ξ′)〉

= ql
I(∨ξ′) 〈Cϑ(ξ), Cϑ(∨ξ′)〉

= (−1)l
I
ϑ(ξ)ql

I(∨ξ′)q−1/2(lI(ξ)+lI(∨ξ′))δξ,ξ′

= 〈q−l
I(ξ) Cϑ(ξ), Cϑ(∨ξ′)〉.
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Since the elements Cϑ(∨ξ′) form a basis we conclude that

DCϑ(ξ) = q−l
I(ξ) Cϑ(ξ)

and the first property of Theorem 4.13 is proved.
The second and third properties of Theorem 4.13 follow for P (ξ′, ξ) since it is defined in terms

of the transpose and inverse of a unipotent matrix, and the map ξ 7→ ∨ξ (72) is order-reversing
(88).

The fourth property of Theorem 4.13 is proven by induction on the integral length of a param-
eter. This uses a straightforward reformulation of [Vog82]*(13.9) which is left to the reader.

The uniqueness statement in Theorem 4.13 now implies Pϑ(ξ, ξ′) = (−1)l
I
ϑ(ξ)−lIϑ(ξ′)Pϑ(ξ, ξ′)

and Cϑ(ξ) = Cϑ(ξ). Finally by Lemma 4.16, Equation (105) holds, completing the proof of the
theorem.

The proof of Theorem 3.5 is now immediate.

Proof of Theorem 3.5. It is enough to prove Lemma 4.6. Let 〈· , ·〉 be the pairing in (89). By
Theorem 4.15 we have

〈Cϑ(ξ), Cϑ(∨ξ′)〉 = (−1)l
I
ϑ(ξ) q(l

I(ξ)+lI(∨ξ′))/2 δξ,ξ′ .

Setting q = 1 and applying Proposition 4.14, we conclude

〈π(ξ)+, π(∨ξ′)+〉 = (−1)l
I
ϑ(ξ)δξ,ξ′

as required.

4.8 Twisted KLV-polynomials for the dual of GLN(R)

This section is thematically related to the others in Section 4, although it admittedly has noth-
ing to do with the pairings. The sole purpose of this section is to determine the polynomials
∨Pϑ( ∨ξ′, ∨ξ) ∈ Z[q1/2, q−1/2] appearing in the definition of Cϑ(∨ξ) (102) under certain circum-
stances. In our application ξ will be the parameter of a generic representation, and the value of
∨Pϑ( ∨ξ′, ∨ξ) will be used in Section 7 (Proposition 7.3 and Proposition 7.4) to compare the Atlas
extensions with the so-called Whittaker extensions.

A block of parameters is defined in [Vog82]*Definition 1.14. In particular P (ξ, ξ′) 6= 0 implies
ξ, ξ′ are in the same block.

Proposition 4.17. Suppose ∨ξ0 is the unique maximal element of a block ∨B with respect to the
Bruhat order (88). Then ∨Pϑ(∨ξ, ∨ξ0) = 1 for all ∨ξ ∈ ∨B.

The proof of the Proposition 4.17 is algorithmic in nature and relies on computations with
Hecke operators. A broad examination of the algorithms is presented in [Ada17] and [LV14]. We
assemble a few facts from these references here. The facts are centred upon the characterization
of eigenspaces of Hecke operators.

For each ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ, Lusztig and Vogan define what it means for (the Weyl group

element of) a ϑ-orbit κ of a simple root in R(λ) to be a descent for ∨ξ ([LV14]*Section 7.2). We
leave the definition (which is equivalent to (108)) to the interested reader, being content merely to
record the relevant properties. By definition, a ϑ-orbit κ is an ascent for ∨ξ if it is not a descent
for ∨ξ. To assist in indexing these ϑ-orbits we define τ (∨ξ) to be the set of ϑ-orbits of simple roots
which are descent for ∨ξ. Thus, κ is

� a descent for ∨ξ, if κ ∈ τ (∨ξ), and

� an ascent for ∨ξ, if κ /∈ τ (∨ξ).
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Recall that the H(λ)-module

K∨Π(∨O,GLN (R), ϑ) = K∨Π(∨O,GLN (R), ϑ)⊗ Z[q1/2, q−1/2]

((79), Section 4.4) has a basis {M(∨ξ)+ : ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ}. For each ϑ-orbit κ let

T̂κ = q−l(wκ)/2(Tκ + 1).

Suppose κ 6∈ τ (∨ξ), i.e. κ is an ascent for ∨ξ. Then we define

Bκ(∨ξ) ⊂ Ξ(∨O, ∨GLΓ
N )ϑ

to be the set of parameters which indexes the non-zero summands in T̂κM(∨ξ)+, that is

T̂κM(∨ξ)+ =
∑

ξ′∈Bκ(∨ξ)

a(∨ξ′)M(∨ξ′)+, 0 6= a(∨ξ′) ∈ Z[q1/2, q−1/2].

A case-by-case inspection of [AV15]*Table 5, or the formulas of [LV14]*7.5-7.7, confirm that ξ ∈
Bκ(∨ξ), and |Bκ(∨ξ)| ≤ 3. Let

Mκ(∨ξ) = Z[q1/2, q−1/2]-span of {M(∨ξ′)+ : ξ′ ∈ Bκ(∨ξ)}.

Keeping in mind that κ /∈ τ (∨ξ), we write

∨ξ′
κ→ ∨ξ

if κ ∈ τ (∨ξ′) and ξ′ ∈ Bκ(∨ξ). In this definition κ is an ascent for ∨ξ and a descent for ∨ξ′.
The quadratic relation (92) gives

T̂ 2
κ = (ql(wκ)/2 + q−l(wκ)/2)T̂κ.

An important consequence of this equation is that the image of T̂κ is contained in the (ql(wκ)/2 +

q−l(wκ)/2)-eigenspace of T̂κ ([LV14]*7.2 (c)).
From a case-by-case inspection of [AV15]*Table 5 or the formulas of [LV14]*7.5-7.7, it follows

that if κ 6∈ τ (∨ξ) then the space Mκ(∨ξ) is T̂κ-invariant, and the (ql(wκ)/2 + q−`(κ)/2)-eigenspace

of T̂κ on Mκ(∨ξ) is spanned by{
T̂κM(∨ξ′)+ : ∨ξ′

κ→ ∨ξ
}

=
{
T̂κM(∨ξ′)+ : ∨ξ′ ∈ Bκ(∨ξ) and κ ∈ τ (∨ξ′)

}
. (106)

Now suppose κ ∈ τ (∨ξ), i.e. is a descent for ∨ξ. Then [AV15]*Table 5 tells us that if κ is not
of type 1r2, 2r22 and 2r21 with respect to ∨ξ, then

T̂κM(∨ξ)+ = a(∨ξ)

M(∨ξ)+ +
∑

{ξ′:∨ξ κ→∨ξ′}

M(∨ξ′)+

 (107)

for some a(∨ξ) ∈ Z[q1/2, q−1/2]. A quick glance at (87) affirms that the types 1r2, 2r22 and 2r21

do not occur, so (107) holds for every κ which is a descent. Another fact we need for κ ∈ τ (∨ξ) is
that Cϑ(∨ξ) ∈ K∨Π(∨O,GLN (R), ϑ) defined in (102) satisfies

T̂κC
ϑ(∨ξ) = (ql(wκ)/2 + q−l(wκ)/2)Cϑ(∨ξ). (108)

This is stated in the last paragraph of [LV14]*Section 7.2, where Cϑ(∨ξ) is denoted as AL (see
[LV14]*Section 5).3

3There is a misprint in this paragraph of [LV14]. In our notation Cϑ(∨ξ) belongs to the ql(wκ)-eigenspace of Tκ
(not Tκ + 1), and Cϑ(∨ξ) is in the (ql(wκ)/2 + q−l(wκ)/2)-eigenspace of T̂κ.
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Finally, fix an arbitrary ϑ-orbit κ. If κ is a descent for ∨ξ′ and is not of type 1ic,2ic,3ic,
then [AV15]*Table 5 indicates that ξ′ ∈ Bκ(∨ξ), where κ is an ascent for some ∨ξ. From this it is
easy to see that

K∨Π(∨O,GLN (R), ϑ) =
∑

{∨ξ : κ6∈τ (∨ξ)}

Mκ(∨ξ) ⊕
⊕

κ 1ic, 2ic, 3ic
for ∨ξ′′

Z[q1/2, q−1/2]M(∨ξ′′).

This decomposition and (106) imply that the (ql(wκ)/2 + q−l(wκ)/2)-eigenspace of T̂κ is spanned by

{T̂κM(∨ξ′)+ : κ ∈ τ (∨ξ′)}. (109)

Lemma 4.18. Suppose κ is a ϑ-orbit of a simple root in R+(λ), and ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ satisfy

κ ∈ τ (∨ξ) and κ 6∈ τ (∨ξ′). Then

∨Pϑ(∨ξ′, ∨ξ) =
∑

{ξ′′:∨ξ′′ κ→∨ξ′}

∨Pϑ(∨ξ′′, ∨ξ).

Proof. Write Cϑ(∨ξ) as

Cϑ(∨ξ) =
∑

{ξ′′:κ∈τ (∨ξ′′)}

∨Pϑ(∨ξ′′, ∨ξ)M(∨ξ′′)+ +
∑

{ξ′:κ6∈τ (∨ξ′)}

∨Pϑ(∨ξ′, ∨ξ)M(∨ξ′)+ (110)

On the other hand by (108) and (109) we have

Cϑ(∨ξ) =
∑

{ξ′′:κ∈τ (∨ξ′′)}

b(∨ξ′′, ∨ξ) T̂κM(∨ξ′′)+

for some b(∨ξ′′, ∨ξ) ∈ Z[q1/2, q−1/2]. Inserting (107) into this equation yields

Cϑ(∨ξ) =
∑

{ξ′′:κ∈τ (∨ξ′′)}

b(∨ξ′′, ∨ξ)a(∨ξ′′)M(∨ξ′′)+ (111)

+
∑

{ξ′′:κ∈τ (∨ξ′′)}

b(∨ξ′′, ∨ξ)a(∨ξ′′)
∑

{ξ′:∨ξ′′ κ→∨ξ′}

M(∨ξ′)+

Since κ 6∈ τ (∨ξ′) for all ∨ξ′ appearing in the final sum, we may compare the coefficients of M(∨ξ′′)+

with κ ∈ τ (∨ξ′′) in (110) and (111) to conclude

b(∨ξ′′, ∨ξ)a(∨ξ′′) = ∨Pϑ(∨ξ′′, ∨ξ).

Therefore

Cϑ(∨ξ) =
∑

{ξ′′:κ∈τ (∨ξ′′)}

∨Pϑ(∨ξ′′, ∨ξ)M(∨ξ′′)+

+
∑

{ξ′′:κ∈τ (∨ξ′′)}

∨Pϑ(∨ξ′′, ∨ξ)
∑

{ξ′:∨ξ′′ κ→∨ξ′}

M(∨ξ′)+

Changing the order of summation in the second sum, it becomes∑
{ξ′:κ6∈τ (∨ξ′)}

∑
{ξ′′:∨ξ′′ κ→∨ξ′}

∨Pϑ(∨ξ′′, ∨ξ)M(∨ξ′)+

Comparing with the second sum in (110) gives

∨Pϑ(∨ξ′, ∨ξ) =
∑

{ξ′′:∨ξ′′ κ→∨ξ′}

∨Pϑ(∨ξ′′, ∨ξ).

This completes the proof.
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Lemma 4.18 simplifies even further in the present setting.

Corollary 4.19. Suppose κ is a ϑ-orbit of a simple root in R+(λ), and ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ

satisfy κ ∈ τ (∨ξ) and κ 6∈ τ (∨ξ′). Then there exists exactly one ξ′′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ such that

∨ξ′′
κ→ ∨ξ′. Furthermore,

∨Pϑ(∨ξ′, ∨ξ) = ∨Pϑ(∨ξ′′, ∨ξ).

Proof. Here are the formulas, derived from [LV14]*Section 7 or [AV15]*Table 5, for T̂κM(∨ξ′)+ for
the various types κ 6∈ τ (∨ξ′) which arise in (87).

Type T̂κM(∨ξ′)+

1C+ q−1/2 (M(∨ξ′)+ + wκ ×M(∨ξ′)+)

1i1 q−1/2 (M(∨ξ′)+ + wκ ×M(∨ξ′)+ + cκM(∨ξ′)+)
2C+ q−1 (M(∨ξ′)+ + wκ ×M(∨ξ′)+)
2Ci (q−1 + 1) (M(∨ξ′)+ + cκM(∨ξ′)+)
2i11 q−1 (M(∨ξ′)+ + wκ ×M(∨ξ′)+ + cκM(∨ξ′)+)

3C+ q−3/2 (M(∨ξ′)+ + wκ ×M(∨ξ′)+)

3Ci q−3/2(q + 1) (M(∨ξ′)+ + cκM(∨ξ′)+)

3i q−3/2(q + 1) (M(∨ξ′)+ + cκM(∨ξ′)+)

The “Cayley transforms” cκ appearing here follow the notation of the references. They may include
cross actions in their definition (see types 2ci and 3ci which are 7.6 (c′) and 7.7 (c′) in [LV14]). In
any event, the cκ appearing here are all single-valued. Once more a case-by-case inspection of the
types in [LV14]*7.5-7.7 shows that in each entry of the second column there is exactly one summand

whose parameter makes κ a descent. Consequently, the table indicates that {ξ′′ : ∨ξ′′
κ→ ∨ξ′} has

exactly one element. The corollary now follows from Lemma 4.18.

We are ready to provide the proof for Proposition 4.17

Proof. It follows from the maximality of ∨ξ0 that lI(∨ξ0) is maximal among all the integral lengths
appearing from the representations in the block ([Vog82]*Lemma 12.10). If κ is a ϑ-orbit of a simple
root in R+(λ) with κ /∈ τ (∨ξ0) then lI(∨ξ′′) > lI(∨ξ0) for some ξ′′ ∈ Bκ(∨ξ0) ([LV14]*7.5-7.7)–a
contradiction to the maximality of lI(∨ξ0). Therefore κ ∈ τ (∨ξ0) for all ϑ-orbits κ.

If ξ′ 6= ξ0 then by the uniqueness hypothesis ∨ξ′ is not maximal in the Bruhat order. By
[Vog82]*Theorem 8.8, M(∨ξ′)+ is equal to the cross action or Cayley transform of some represen-
tation in its block with higher integral length. Looking to the formulas in [LV14]*7.5-7.7, we see
that this implies the existence of some κ 6∈ τ (∨ξ′).

We now prove ∨Pϑ(∨ξ′, ∨ξ0) = 1 by induction on lI(∨ξ0)− lI(∨ξ′). If lI(∨ξ0) = lI(∨ξ′) then the
uniqueness hypothesis implies ∨ξ′ = ∨ξ0 and we are done by [LV14]*Theorem 5.2 (c). Otherwise,
lI(∨ξ0) > lI(∨ξ′) and we have shown above that the hypotheses of Corollary 4.19 are satisfied for

some κ. Corollary 4.19 tells us that ∨Pϑ(∨ξ′, ∨ξ0) = ∨Pϑ(∨ξ′′, ∨ξ0) for some ∨ξ′′
κ→ ∨ξ′. The

condition ∨ξ′′
κ→ ∨ξ′ necessitates lI(∨ξ′′) > lI(∨ξ′) and so

∨Pϑ(∨ξ′, ∨ξ0) = ∨Pϑ(∨ξ′′, ∨ξ0) = 1

by induction.

5 Endoscopic lifting for general linear groups following Adams-
Barbasch-Vogan

In this section we review standard endoscopy and twisted endoscopy from the perspective of
[ABV92], but restricted only to the particular case of the group GLN . We shall be using all of the
previously defined objects and work under the assumption of (32) for the infinitesimal character.
The references for this review are [ABV92]*Section 26 and [CM18]*Section 5.
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5.1 Standard endoscopy

Let ∨GLΓ
N = ∨GLN o 〈∨δ0〉 be as in (30). An endoscopic datum for ∨GLΓ

N is a pair

(s, ∨GΓ)

which satisfies

1. s ∈ ∨GLN is semisimple

2. ∨GΓ ⊂ ∨GLΓ
N is open in the centralizer of s in ∨GLΓ

N

3. ∨GΓ is an E-group for a group G ([ABV92]*Definition 4.6).

This is a specialization of [ABV92]*Definition 26.15 to ∨GLΓ
N . The groups ∨G and G here are

isomorphic to products of smaller general linear groups. Consequently, ∨G and ∨GLN share the
diagonal maximal torus ∨H, and G and GLN share the diagonal maximal torus H. We shall
abusively denote by δq the strong involution on both G and GLN which correspond to the split
real forms. The group G in this definition is called the endoscopic group.

We do not require the general concept of an E-group in this section. From now on we assume
that ∨GΓ = ∨G× 〈∨δ0〉 where ∨δ2

0 = 1. In other words, ∨GΓ is an L-group for G.
There is a notion of equivalence for endoscopic data, and using this equivalence we may assume

without loss of generality that s ∈ ∨H. We fix λ ∈ ∨h satisfying the hypotheses of (32) so that λ
is regular with respect to ∨GLN . Let ∨OG be the ∨G-orbit of λ and ∨O be the ∨GLN -orbit of λ.
The second property of the endoscopic datum above allows us to define the inclusion

ε : ∨GΓ ↪→ ∨GLΓ
N . (112)

This inclusion induces another map ([ABV92]*Corollary 6.21), which we abusively also denote as

ε : X
(∨OG, ∨GΓ

)
→ X

(∨O, ∨GLΓ
N

)
. (113)

It is easily verified that the ∨G-action on X(∨OG, ∨GΓ) is compatibly carried under ε to the ∨GLN -
action on X(∨O, ∨GLΓ

N ) ([ABV92]*(7.17)). As a result, the map(s) ε induces maps on the orbits
of the spaces X(∨OG, ∨GΓ) and X(∨O, ∨GLΓ

N ), and also induces a homomorphism

Aloc(ε) : ∨Gp/(
∨Gp)

0 → (∨GLN )ε(p)/((
∨GLN )ε(p))

0 (114)

on the component groups. As we have seen, the component groups for GLN , and therefore also for
G, are trivial.

The inverse image functor of ε on equivariant constructible sheaves induces a homomorphism

ε∗ : K(∨O, ∨GLΓ
N )→ K(∨OG, ∨GΓ) (115)

[ABV92]*Proposition 7.18. One may describe its values on irreducible constructible sheaves µ(ξ),
ξ = (S, τξ) ∈ Ξ(∨GLΓ

N ,
∨O) as follows. If the orbit S is not the image of an orbit of X(∨OG, ∨GΓ)

under ε then ε∗µ(ξ) = 0. Otherwise, S is the ∨GLN -orbit of ε(p) ∈ S for some p ∈ X(∨OG, ∨GΓ).
In this case µ(ξ) may be identified with (45) where τξ = 1 the trivial quasicharacter of the trivial
group (∨GLN )ε(p)/((

∨GLN )ε(p))
0. The stalk of the constructible sheaf ε∗µ(ξ) at p is then the stalk

V of (45). The representation on V is given by the quasicharacter τξ ◦ Aloc(ε), which is again the
trivial quasicharacter (on the trivial component group). In summary,

ε∗µ(ξ) = ε∗µ(S, 1) =
∑

{S1:∨GLN ·ε(S1)=S}

µ(S1, 1)

in which S1 is a ∨G-orbit in X(∨OG, ∨GΓ). This sum will be seen to reduce to a single term in
Proposition 5.1.

When ε∗ is combined with the pairings of Theorem 3.1, we obtain a map

ε∗ : KCΠ(∨OG, G/R)→ KCΠ(∨O,GLN (R))

43



defined on ηG ∈ KCΠ(∨OG, G/R) by

〈ε∗ηG, µ(ξ)〉 = 〈ηG, ε∗µ(ξ)〉G , ξ ∈ Ξ(∨GLΓ
N ,
∨O). (116)

Here, KC = C⊗ZK and we have placed a subscript G beside the pairing on the right to distinguish
it from the pairing for GLN on the left.

The endoscopic lifting map is a restriction of ε∗ to a subspace of KCΠ(∨OG, G/R) which is
perhaps best described in two steps. The first subspace is generated by the (equivalence classes
of) representations of the quasisplit strong involution δq (Section 2.1). We denote this subspace by
KCΠ(∨OG, G(R, δq)). Lemma 2.1 tells that

KCΠ(∨OG, G(R, δq)) = KCΠ(∨OG, G/R),

but this will not be true when we look at twisted endoscopic groups in Section 5.2. Inside of
KCΠ(∨OG, G(R, δq)) is the subspace generated by stable virtual characters of G(R, δq) (Section
2.6, [ABV92]*18.2). We denote this subspace by KCΠ(∨OG, G(R, δq))st. Again, since G is a
product of general linear groups, stability is not an issue and we have

KCΠ(∨OG, G(R, δq))st = KCΠ(∨OG, G/R). (117)

This equality will not hold for twisted endoscopic groups in Section 5.2. We define the endoscopic
lifting

Lift0 : KCΠ(∨OG, G(R, δq))st → KCΠ(∨O,GLN (R)) (118)

as the restriction of ε∗ to KCΠ(∨OG, G(R, δq))st.
An argument of Shelstad ([She79], [ABV92]*Lemma 18.11) provides a basis forKCΠ(∨OG, G(R, δq))st.

The basis elements are of the form

ηloc
S1

(δq) =
∑
τS1

M(S1, τS1
), (119)

where (S1, τS1
) ∈ Ξ(∨GΓ, ∨OG) runs over those complete geometric parameters which correspond

to the strong involution δq under the local Langlands correspondence. As mentioned earlier, τS1
is

trivial for G and so (119) reduces to

ηloc
S1

(δq) = M(S1, 1),

a single standard representation.

Proposition 5.1. In the setting of (32):

(a) Suppose S1, S2 ⊂ X(∨OG, ∨GΓ) are ∨G-orbits which are carried to the same ∨GLN -orbit S
under ε. Then S1 = S2.

(b) The endoscopic lifting map Lift0 (118) is injective and sends ηloc
S1

(δq) = M(S1, 1) to ηloc
S =

M(S, 1).

(c) The endoscopic lifting map Lift0 is equal to the parabolic induction functor ind
GLN (R)
G(R,δq) on

KCΠ(∨OG, G(R, δq))st.

Proof. By [ABV92]*Definition 6.9 and [ABV92]*(6.4), we may take ∨G-orbits

S1 = ∨G · (y1,F(λ)), S2 = ∨G · (y2,F(Ad(g1)λ)),

where g1 ∈ ∨G, y1, y2 ∈ ∨GΓ, and

F(λ) = Ad(P (λ))λ, F(Ad(g1)λ) = Ad(g1)(Ad(P (λ))λ)

for a solvable subgroup P (λ) ⊂ ∨G ([ABV92]*Lemma 6.3). By the hypothesis of the first assertion,
there exists g ∈ ∨GLN such that gy2g

−1 = y1 and

Ad(gg1)(Ad(P (λ))λ) = Ad(P (λ))λ.
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In particular, Ad(gg1)λ = Ad(g2)λ for some g2 ∈ P (λ). As λ ∈ ∨h is regular the resulting equation
Ad(g−1

2 gg1)λ = λ implies that g−1
2 gg1 ∈ ∨H ⊂ ∨G. Since g1, g2 ∈ ∨G, this also implies g ∈ ∨G

and the first assertion is proven.
The second part of the second assertion is equivalent to ε∗η

loc
S1

(δq) = ηloc
S and this is proved in

[ABV92]*Proposition 26.7. Finally, to prove the claim of injectivity, we observe that by the first
assertion Lift0 sends the basis{

ηloc
SG(δq) : SG a ∨G-orbit of X(∨OG, ∨GΓ)

}
of KCΠ(∨OG, G(R, δq))st bijectively onto the linearly independent subset{

ηloc
∨GLN ·SG : SG a ∨G-orbit of X(∨OG, ∨GΓ)

}
of KCΠ(∨O,GLN (R)).

We now prove the third assertion. Since the standard characters form a basis for (117) and Lift0

is additive, it suffices to prove Lift0 (M(S1, 1)) = ind
GLN (R)
G(R,δq)M(S1, 1). By the second assertion, this

is equivalent to proving

ind
GLN(R)
G(R,δq)M(S1, 1) = M(S, 1). (120)

Let us recall the definition of M(S1, 1) using the Langlands classification [Lan89]. The ∨G-orbit
S1 corresponds to a unique ∨G-orbit of an L-parameter φG for G ([ABV92]*Proposition 6.17).
The image of φG is contained in a Levi subgroup ∨G0 ⊂ ∨G minimally ([Bor79]*Section 11.3).
It follows that the L-parameter φG factors through an L-parameter φG0

for G0, and φG0
corre-

sponds to a unique ∨G0-orbit S0 of geometric parameters for G0. The standard characters are de-

fined so that M(S1, 1) = ind
G(R,δq)
G0(R,δq)M(S0, 1) and M(S, 1) = ind

GLN (R)
G0(R,δq)M(S0, 1) ([ABV92]*(11.2),

[AV92b]*(8.22)). Identity (120) is therefore a consequence of induction by stages.

The proof that Lift0

(
ηloc
S1

)
(δq) = ηloc

S in this proposition follows from an elementary computa-

tion of ε∗ηloc
S ([ABV92]*Proposition 23.7). It is much more difficult to compute the value of Lift0

on the stable virtual character ηmic
ψG

given in (48). Let ψ = ε◦ψG. According to [ABV92]*Theorem
26.25

Lift0

(
ηmic
ψG

)
=

∑
ξ∈Ξ(∨GLΓ

N ,
∨O)

(−1)d(Sξ)−d(Sψ) χmic
Sψ

(P (ξ))π(ξ) = ηmic
ψ . (121)

Recall from (50) that the ABV-packets ΠABV
ψG

and ΠABV
ψ are defined from ηmic

ψG
and ηmic

ψ respectively.
We shall see in Section 6 that these ABV-packets are singletons. Equation (121) implies that the
endoscopic lift of ΠABV

ψG
is ΠABV

ψ .

5.2 Twisted endoscopy

Following the path of the previous section, we define twisted endoscopic data, the twisted endo-
scopic version of Lift0 (118), compute twisted variants of Lift0(ηloc

S ) for S ∈ X(∨OG, ∨GΓ), and
compute twisted variants of Lift0(ηmic

ψG
).

An endoscopic datum for (∨GLΓ
N , ϑ) is a pair

(s, ∨GΓ)

which satisfies

1. s ∈ ∨GLN is ϑ-semisimple (see [KS99]*(2.1.3))

2. ∨GΓ ⊂ ∨GLΓ
N is open in the fixed-point set of σ = Int(s) ◦ ϑ in GLΓ

N o 〈ϑ〉 (31)

3. ∨GΓ is an E-group for a group G ([ABV92]*Definition 4.6).

This is a special case of [CM18]*Definition 5.1 to ∨GLΓ
N . There is a notion of equivalence for these

endoscopic data ([CM18]*Definition 5.6, [KS99]*(2.1.5)-(2.1.6)). Up to this equivalence the relevant
elements s ∈ ∨GLN in Arthur’s work are drawn from [Art13]*Section 1.2 (see [CM18]*Example
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5.2 for the details in the present setting). We shall restrict our attention to at most two elements
s from [Art13]*Section 1.2, namely the diagonal matrix

s =

0 1

. .
.

1 0

 J̃−1 =


1 0

−1
. . .

0 (−1)N−1

 , (122)

and, if N is even, the diagonal matrix

s =


0 −1

. .
.

−1
1

. .
.

1 0

 J̃−1. (123)

The resulting automorphisms σ = Int(s)◦ϑ are involutions, and the endoscopic groups G are simple
to describe. For s as in (122) and odd N , the endoscopic group is SpN−1. For s as in (122) and even
N , the endoscopic group is SON . For s as in (123), the endoscopic group is SON+1. In the first
and last cases, the embeddings of ∨GΓ in ∨GLΓ

N determine a real structure on G as a split group.
In the second case there are two distinct embeddings of ∨GΓ in ∨GLΓ

N which determine either a
split real structure on G = SON , or a non-split and quasisplit structure on SON ([Art13]*Section
1.2). We henceforth work only with s as in (122)-(123), the so-called simple endoscopic data. As
in the previous section, we will not require the concept of an E-group for these classical endoscopic
groups. From now on we assume that ∨GΓ is an L-group as in the end of Section 2.3.

Unlike the previous section, we must distinguish between maximal tori in ∨G and ∨GLN . We
let ∨H be the diagonal maximal torus in ∨GLN , and ∨HG be a maximal torus in ∨G. In this case
∨H is preserved by Int(s) as well as ϑ. We may and shall take

∨HG = (∨H)σ = (∨H)ϑ.

We fix λ ∈ ∨h satisfying (32) so that λ is regular with respect to ∨GLN . Let ∨OG be the
∨G-orbit of λ and ∨O be the ∨GLN -orbit of λ.

The ε maps of (112)-(113) have obvious analogues and are equally valid in the twisted setting.
The proof of the injectivity of ε on the level of ∨G-orbits is more delicate in the twisted setting.

Proposition 5.2. In the setting of (32), suppose S1, S2 ⊂ X(∨OG, ∨GΓ) are ∨G-orbits which are
carried to the same ∨GLN -orbit under ε. Then S1 = S2.

Proof. By [ABV92]*Proposition 6.17, the ∨G-orbits of X(∨OG, ∨GΓ) are in one-to-one correspon-
dence with ∨G-orbits of L-parameters with infinitesimal character in ∨OG. It is simpler to prove
the first assertion in the more familiar territory of L-parameters. To this end let φ1 : WR → ∨GΓ

and φ2 : WR → ∨GΓ be L-parameters with infinitesimal characters λ1 ∈ ∨OG and λ2 ∈ ∨OG
respectively. Suppose further that

φ1 = Int(g) ◦ φ2 (124)

for some g ∈ ∨GLN . We shall prove that there exists g′ ∈ ∨G such that φ1 = Int(g′) ◦ φ2.
Without loss of generality we may assume that λ1 = λ ∈ ∨h and λ2 = Ad(g1)λ ∈ ∨h for some
g1 ∈ ∨G normalizing ∨H. Moreover, we may assume that φ1(j) and φ2(j) normalize ∨H. As in
[ABV92]*Proposition 5.6,

φ1(z) = zλz̄Ad(φ1(j))λ, φ2(z) = zAd(g1)λz̄Ad(φ2(j)g1)λ, z ∈ C×.

By hypothesis

zAd(gg1)λz̄Ad(gφ2(j)g1)λ = Int(g) ◦ φ2(z) = φ1(z) = zλz̄Ad(φ1(j))λ.

It follows that Ad(gg1)λ = λ. Since λ is regular in ∨GLN , the element gg1 belongs to ∨H and
g = hg−1

1 for some h ∈ ∨H. Returning to the identity (124), we obtain

hg−1
1 φ2(j)g1h

−1 = φ1(j).
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Set n1 = φ1(j) and n2 = g−1
1 φ2(j)g1, so that the previous equation becomes

hn2h
−1 = n1.

As ε maps into the fixed-point set of σ = Int(s) ◦ ϑ, both n1, n2 are fixed by σ. Since n1 and n2

normalize ∨H, they represent involutive elements in the fixed-point subgroup W (∨GLN ,
∨H)sϑ =

W (∨GLN ,
∨H)ϑ. We seek an element h′ ∈ ∨Hϑ ⊂ ∨G such that

h′n2 (h′)−1 = hn2h
−1 = n1. (125)

With this element in hand we may set g′ = h′g−1
1 and the proposition is proved. Since ∨H =

∨Hϑ ∨H−ϑ, we may decompose h = h1h2, where h1 ∈ ∨Hϑ and h2 ∈ ∨H−ϑ. We compute that

(h1n2h
−1
1 n−1

2 )(h2n2h
−1
2 n−1

2 ) = h1(h2n2h
−1
2 n−1

2 )(n2h
−1
1 n−1

2 ) = n1n
−1
2 ∈ ∨Hsϑ = ∨Hϑ. (126)

In addition, since n1, n2 ∈W (∨GLN ,
∨H)ϑ, we have

ϑ(h2n2h
−1
2 n−1

2 ) = ϑ(h2)n2ϑ(h−1
2 )n−1

2 = h−1
2 n2h2n

−1
2 = (h2n2h

−1
2 n−1

2 )−1.

Therefore h2n2h
−1
2 n−1

2 ∈ ∨H−ϑ. Similarly, h1n2h
−1
1 n−1

2 ∈ ∨Hϑ. By (126) we have h2n2h
−1
2 n−1

2 ∈
∨H−ϑ ∩ ∨Hϑ. It is now an elementary exercise to show that there exists h′2 in the finite 2-group
∨H−ϑ ∩ ∨Hϑ such that

h′2n2(h′2)−1n−1
2 = h2n2h

−1
2 n−1

2 .

Indeed, conjugation by n2 is represented by a ϑ-invariant product of 2-cycles when W (∨GLN ,
∨H)ϑ

is regarded as a subgroup of the symmetric group, and the elements in ∨H−ϑ∩∨Hϑ are represented
by diagonal elements with ±1 as entries. Leaving the details of the exercise to the reader, we set
h′ = h1h

′
2 and (125) holds.

At this point the picture of twisted endoscopy is more or less the same as the picture of standard
endoscopy. The new idea in the twisted setting is to include the action of σ = Int(s) ◦ ϑ into the
objects pertinent to endoscopy. In particular we wish to extend the sheaf theory of [ABV92] for
∨GLN to the disconnected group ∨GLN o 〈σ〉, where we identify the automorphism σ of (54)
with the automorphism in the endoscopic datum. This mimics the extension of the representation
theory of GLN to the disconnected group GLN o 〈ϑ〉 in Section 2.5. Rather than viewing the
sheaves in C(∨O, ∨GLΓ

N ;σ) as ∨GLN -equivariant with compatible σ-action (Section 3.2), we view
them simply as (∨GLN o 〈σ〉)-equivariant sheaves and apply the theory of [ABV92] which is valid
in this generality [CM18]*Section 5.4.

Let ξ = (S, 1) ∈ Ξ(∨O, ∨GLΓ
N )ϑ and (p, 1) be a representative for the class ξ. Here, p ∈ S and

1 is the trivial representation of the trivial group ∨(GLN )p/(
∨(GLN )p)

0 with representation space
V ∼= C as in (45). We define 1+ on

∨(GLN )p/(
∨(GLN )p)

0 × 〈σ〉 (127)

by
1+(σ) = σµ(ξ)+ = 1 (128)

(cf. (57)). In this way, 1+ defines the local system underlying the irreducible (∨GLN o 〈σ〉)-
equivariant constructible sheaf µ(ξ)+ (Lemma 3.4, [ABV92]*p. 83).

In a similar, but completely vacuous, fashion we may include the trivial action of σ on µ(ξ1) ∈
C(∨OG, ∨G) with ξ1 = (S1, τ1) and p1 ∈ S1. In other words, we may regard µ(ξ1) as a (∨G× 〈σ〉)-
equivariant sheaf whose underlying local system is defined by a quasicharacter τ+

1 on

∨Gp1
/(∨Gp1

)0 × 〈σ〉 (129)

by τ+
1 (σ) = 1. This artifice allows us to define a homomorphism, as in (114), by

Aloc(ε) : ∨Gp1/(
∨Gp1)0 × 〈σ〉 → (∨GLN )ε(p1)/((

∨GLN )ε(p1))
0 × 〈σ〉.
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The inverse image functor (115) in the twisted setting is defined on (∨GLN o 〈σ〉)-equivariant
sheaves (Section 3.2)

ε∗ : KX(∨O, ∨GLΓ
N ,σ)→ KX(∨OG, ∨GΓ)

in the following manner. If the orbit S in ξ = (S, 1) ∈ Ξ(∨O, ∨GLΓ
N )ϑ is not the image of an orbit

of X(∨OG, ∨GΓ) under ε then ε∗µ(ξ) = 0. Otherwise S is the ∨GLN -orbit of ε(p1) ∈ S for some
p1 ∈ S1 ⊂ X(∨OG, ∨GΓ). By Proposition 5.2 the orbit S1 is unique. The stalk of the constructible
sheaf ε∗µ(ξ)+ at p1 is the stalk V ∼= C of (45) at p = ε(p1). The representation on V is given by
the quasicharacter 1+ ◦Aloc(ε), which is again the (abusively denoted) trivial quasicharacter 1+ on
the group (129). In summary,

ε∗µ(ξ)+ = ε∗µ(S, 1+) = µ(S1, 1
+). (130)

By contrast µ(ξ)− is characterized by the quasicharacter 1− of (127) with 1−(σ) = −1. With some
obvious substitutions we obtain

ε∗µ(ξ)− = ε∗µ(S, 1−) = µ(S1, 1
−).

As in standard endoscopy, we combine ε∗ with a pairing, namely the pairing of Theorem 3.5,
to define

ε∗ : KCΠ(∨OG, G/R)→ KCΠ(∨O,GLN (R), ϑ).

To be precise, the image of any η ∈ KCΠ(∨OG, G/R) under ε∗ is determined by〈
ε∗η, µ(ξ)+

〉
=
〈
η, ε∗µ(ξ)+

〉
G
, ξ ∈ Ξ(∨GLΓ

N ,
∨O)ϑ. (131)

(cf. (116)). The twisted endoscopic lifting map

Lift0 : KCΠ(∨OG, G(R, δq))st → KCΠ(∨O,GLN (R), ϑ) (132)

is the restriction of ε∗ to KCΠ(∨OG, G(R, δq))st, a proper subspace of KC(∨OG, G/R) (cf. (117)).
The pairing on the right-hand side of (131) is determined by pairing representations of G(R, δq)
with elements of the form µ(S1, τ

±
1 ). This is defined by〈

M(S1, τ1), µ(S1, τ
±
1 )
〉
G

= ±1, and
〈
M(S′1, τ

′
1), µ(S1, τ

±
1 )
〉
G

= 0

when τ ′1 6= τ1. (For a more conceptual explanation of these pairings see [CM18]* p. 151.)
Now, we wish to compute Lift0 on the basis elements (119) of KCΠ(∨OG, G(R, δq))st. To main-

tain ease of comparison with [ABV92] we compute them on the virtual representations ηloc
S1

(σ)(δq)
([ABV92]*p. 279). These virtual characters are defined by

ηloc
S1

(σ)(δq) =
∑
τ1

Tr(τ+
1 (σ))M(S1, τ1) =

∑
τ1

M(S1, τ1),

where τ1 runs over all quasicharacters of ∨Gp1
/(∨Gp1

)0 as in (129) which correspond to the strong
involution δq ([ABV92]*Definition 18.9). It is immediate from the definitions that

ηloc
S1

(σ)(δq) = ηloc
S1

(δq)

and so this virtual character is stable ([ABV92]*Lemma 18.10). (Although not needed for our
purposes, one could adhere to the framework of [ABV92] further by extending [ABV92]*Definitions
26.10 and 26.13 through taking products with 〈σ〉, and then speak of σ-stability.)

Proposition 5.3. Suppose S1 ⊂ X(∨OG, ∨GΓ) is a ∨G-orbit which is carried to a ∨GLN -orbit S

under ε. Then the endoscopic lifting map (132) sends ηloc
S1

(σ)(δq) to (−1)l
I(S,1)−lIϑ(S,1)M(S, 1)+.

Proof. We prove the proposition without the injectivity of orbits given in Proposition 5.2. Not
assuming injectivity, instead of equation (130), we see that

ε∗µ(S, 1)+ =
∑
S′1

µ(S′1, 1) = µ(S1, 1) +
∑
S′1 6=S1

µ(S′1, 1),
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where S′1 runs over the ∨G-orbits in X(∨OG, ∨GΓ) carried to S′ under ε (cf. [ABV92]*Proposition
23.7 (b)). Therefore, according to (63), when ξ = (S, 1)〈

Lift0

(
ηloc
S1

(σ)(δq)
)
, µ(ξ)+

〉
=
〈
ηloc
S1

(σ)(δq), ε
∗µ(S, 1)+

〉
G

=

〈∑
τ1

M(S1, τ1), µ(S1, 1)

〉
G

= 1

Now suppose ξ = (S′, 1) where S′ is a ∨GLN -orbit not equal to S. Then

ε∗µ(S′, 1)+ =
∑
S′1

µ(S′1, 1)

where S′1 6= S1. If the sum runs over the empty set then we interpret it to equal zero and compute
that 〈

Lift0

(
ηloc
S1

(σ)(δq)
)
, µ(ξ)+

〉
=
〈
ηloc
S1

(σ)(δq), ε
∗µ(ξ)+

〉
G

=
〈
ηloc
S1

(σ)(δq), 0
〉
G

= 0.

Otherwise the index of the sum is not empty and by (63)〈
Lift0

(
ηloc
S1

(σ)(δq)
)
, µ(ξ)+

〉
=
〈
ηloc
S1

(σ)(δq), ε
∗µ(ξ)+

〉
G

=

〈∑
τ1

M(S1, τ1),
∑
S′1

µ(S′1, 1)

〉
G

= 0

Looking back to the definition of the pairing (62), we see that we have proven the proposition.

Proposition 5.4. Under the hypothesis of (32), the twisted endoscopic lifting map (132) is injec-
tive.

Proof. The proof follows from Proposition 5.2 as in the proof of Proposition 5.1. We need only to
observe that according to Proposition 5.3, Lift0 sends the basis{

ηloc
SG(δq) : SG a ∨G-orbit of X(∨OG, ∨GΓ)

}
of KCΠ(∨OG, G(R, δq))st bijectively onto the linearly independent subset{

ηloc
∨GLN ·SG : SG a ∨G-orbit of X(∨OG, ∨GΓ)

}
of KCΠ(∨O,GLN (R)).

The next and final goal of this section is to provide the twisted analogue of the endoscopic
lifting of the virtual characters attached to A-parameters as in (121). As a guiding principle, it
helps to remember that in moving from ηloc

S to ηloc
S (σ)(δq) we extended the component groups by

〈σ〉 to obtain (129), and then extended the quasicharacters τ1 defined on the original component
groups. We shall follow the same process with ηmic

ψG
, doing our best to avoid the theory of microlocal

geometry.
The stable virtual character (48) for the endoscopic group G is

ηmic
ψG =

∑
ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG ) χmic
SψG

(P (ξ))π(ξ) ∈ KΠ(∨OG, G/R)st.

Here, SψG ⊂ X(∨OG, GΓ) is the ∨G-orbit determined by the L-parameter φψG , and ξ = (Sξ, τSξ).
For each such ξ, there is a representation τmic

SψG
(P (ξ)) of ∨GψG/(

∨GψG)0, the component group of

49



the centralizer in ∨G of the image of ψG, which satisfies the following properties

• τmic
SψG

(P (ξ)) represents a (possibly zero) ∨G-equivariant local system Qmic(P (ξ)) of (133)

complex vector spaces.

• The degree of τmic
SψG

(P (ξ)) is equal to χmic
SψG

(P (ξ)). (134)

• If ξ = (SψG , τSψG ) then τmic
SψG

(P (ξ)) = τSψG ◦ iSψG , where (135)

iSψG : ∨GψG/(
∨GψG)0 → ∨Gp/(

∨Gp)
0

is a surjective homomorphism for p ∈ SψG .

([ABV92]*Theorem 24.8, Corollary 24.9, Definition 24.15). By (134), we may rewrite ηmic
ψG

as

ηmic
ψG =

∑
ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG ) Tr
(
τmic
SψG

(P (ξ))(1)
)
π(ξ). (136)

Next, we extend ∨GψG/(
∨GψG)0 trivially to

∨GψG/(
∨GψG)0 × 〈σ〉, (137)

and extend τmic
SψG

(P (ξ)) trivially to (137) by defining τmic
SψG

(P (ξ))(σ) to be the identity map. We

define

ηmic
ψG (σ) =

∑
ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG ) Tr
(
τmic
SψG

(P (ξ))(σ)
)
π(ξ)

=
∑

ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG ) dim
(
τmic
SψG

(P (ξ))
)
π(ξ).

Clearly
ηmic
ψG (σ) = ηmic

ψG . (138)

Finally, define

ηmic
ψG (σ)(δq) =

∑
(Sξ,τSξ )

(−1)d(Sξ)−d(SψG ) Tr
(
τmic
SψG

(P (ξ))(σ)
)
π(ξ) (139)

=
∑

(Sξ,τSξ )

(−1)d(Sξ)−d(SψG ) dim
(
τmic
SψG

(P (ξ))
)
π(ξ)

in which the sum runs over only those ξ = (Sξ, τSξ) ∈ Ξ(∨OG, ∨GΓ) in which τSξ corresponds to
the strong involution δq. Therefore

ηmic
ψG (σ)(δq) = ηmic

SψG
(δq) = ηABV

SψG

(49). The virtual character ηmic
ψG

(σ)(δq) is a summand of the stable virtual character ηmic
ψG

and is

therefore also stable ([ABV92]*Theorem 18.7). Consequently, ηmic
ψG

(σ)(δq) lies in the domain of

Lift0. In addition, the ABV-packet ΠABV
ψG

consists of the irreducible characters in the support of

ηmic
ψG

(σ)(δq) (50).

What we have done for ηmic
ψG

we begin to do for ηmic+
ψ , which we define as

ηmic+
ψ =

∑
ξ∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(χmic
Sψ

(P (ξ))) (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+ (140)

for
ψ = ε ◦ ψG. (141)

The main difference now is that σ does not act trivially on ∨GLN and so the extensions require
more attention. Properties (133)-(135) hold for ψ and GLN as they do for ψG and G.
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The first step is writing

ηmic+
ψ =

∑
ξ∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(τmic
Sψ

(P (ξ))(1)) (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+.

This holds from (134) as (136) did for the endoscopic group G. What is new and simpler here is
that the component group (∨GLN )ψ/((

∨GLN )ψ)0 is trivial ([Art84]*Section 2.3). It follows that
τmic
Sψ

(P (ξ)) is either the trivial representation or zero.

Let us digress briefly to examine property (135) for ξ = (Sψ, τSψ ). Since the component group
(∨GLN )p/((

∨GLN )p)
0 is trivial, the quasicharacter τSψ = 1 is trivial. It follows that

τmic
Sψ

(P (Sψ, τSψ )) = τSψ ◦ iSψ = 1 ◦ iSψ = 1 6= 0. (142)

In particular, π(Sψ, 1) is in the support of ηmic
ψ and belongs to ΠABV

ψ . In the next section we will

prove that this is the only representation in ΠABV
ψ .

Returning to the matter of extensions, there is an obvious extension

(∨GLN )ψ/((
∨GLN )ψ)0 × 〈σ〉

of the trivial component group, as σ fixes the image of ψ. We wish to extend the representation
τmic
Sψ

(P (ξ)) to this group for ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. The action of σ on P (ξ) ∈ P(∨O, ∨GLΓ

N ;σ)

determines an action on the stalks of the local system Qmic(P (ξ)) as in (133) ([ABV92]*(25.1)).
[ABV92]*Proposition 26.23 (b) allows us to choose a stalk over a σ-fixed point p′ (related to Sψ)
in the topological space of Qmic(P (ξ)). This places us in the same setting as Lemma 3.4, with
τS replaced by τmic

Sψ
(P (ξ)) and S replaced by the ∨GLN -orbit of p′. As a result, σ determines a

canonical isomorphism of the stalk at p′ equal to 1. In short, we define

τmic
Sψ

(P (ξ)+)(σ) = 1 (143)

and extend τmic
Sψ

(P (ξ)) to a quasicharacter τmic
Sψ

(P (ξ)+). The quasicharacter τmic
Sψ

(P (ξ)+) represents

the (∨GLNo〈σ〉)-equivariant local system of the restriction ofQmic(P (ξ)) to the orbit of p′. We may
extend iSψ in (135) to include the products with 〈σ〉. Definitions (128) and (143) are compatible
in that

τmic
Sψ

(P (ξ))+ = 1+ ◦ iSψ .

Finally, we define

ηmic+
ψ (σ) =

∑
ξ∈Ξ(∨O,∨GLΓ

N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(τmic
Sψ

(P (ξ)+)(σ)) (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+. (144)

It is clear from definition (140) that ηmic+
ψ (σ) = ηmic+

ψ .

The obvious definition of the quasicharacter τmic
Sψ

(P (ξ)−) is to take τmic
Sψ

(P (ξ)−)(σ) = −1. With

this definition in place the following proposition is a consequence of [ABV92]*Corollary 24.9.

Proposition 5.5. The functor τmic
Sψ

(·), from (∨GLN o 〈σ〉)-equivariant perverse sheaves to repre-

sentations of ∨Gψ/(
∨Gψ)0×〈σ〉, induces a map from the Grothendieck group K(X(∨O, ∨GLΓ

N );σ)
to the space of virtual representations. Furthermore the microlocal trace map

Tr
(
τmic
Sψ

(·)(σ)
)

induces a homomorphism from K(X(∨O, ∨GLΓ
N ),σ) (as in (58)) to C.

A similar statement is true for τmic
SψG

and the (∨G× 〈σ〉)-equivariant sheaves defined earlier.

Theorem 5.6. (a) As a function on K(X(∨O, ∨GLΓ
N ),σ) we have〈

ηmic+
ψ (σ), ·

〉
= (−1)d(Sψ) Tr

(
τmic
Sψ

(·)(σ)
)
.
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(b) The stable virtual character ηmic+
ψ (σ) is equal to

(−1)d(Sψ)
∑

ξ∈Ξ(∨O,∨GLΓ
N )ϑ

Tr
(
τmic
Sψ

(µ(ξ)+)(σ)
)

(−1)l
I(ξ)−lIϑ(ξ)M(ξ)+.

(c) Lift0

(
ηmic
ψG

(σ)(δq)
)

= ηmic+
ψ (σ).

Proof. The first two assertions follow from Theorem 3.5 and the computation〈
ηmic+
ψ (σ)(δq), P (ξ)+

〉
= (−1)d(Sψ) Tr

(
τmic
Sψ

(P (ξ)+)(σ)
)

(cf. [ABV92]*Lemma 26.9).
For the final assertion, we compute〈

ε∗η
mic
ψG (σ)(δq), µ(ξ)+

〉
=
〈
ηmic
ψG (σ)(δq), ε

∗µ(ξ)+
〉
G

=
〈
ηmic
ψG (σ), ε∗µ(ξ)+

〉
G

= (−1)d(SψG ) Tr
(
τmic
SψG

(ε∗µ(ξ)+)(σ)
)

using (130) and [ABV92]*Lemma 26.9 for ηmic
ψG

(σ). By the deep result [ABV92]*Theorem 25.8,
and the first assertion of the theorem, we may continue with

= (−1)d(Sψ)Tr
(
τmic
Sψ

(µ(ξ)+)(σ)
)

=
〈
ηmic+
ψ (σ), µ(ξ)+

〉
and the theorem is proven.

6 ABV-packets for general linear groups

In this section we prove that any ABV-packet for GLN (R) consists of a single (equivalence class of
an) irreducible representation. This implies that such an ABV-packet is equal to its corresponding
L-packet ([ABV92]*Theorem 22.7 (a)). From the classification of the unitary dual of GLN (R) we
may deduce that the single representation in the packet is unitary.

In this section we let
ψ : WR × SL2 → GLΓ

N

be an arbitrary A-parameter for GLN (R). The description of the ABV-packet ΠABV
ψ will be

achieved in three steps. First, we treat the case of an irreducible A-parameter. Second, we compute
the ABV-packet for a Levi subgroup of GLN , whose dual group contains the image of ψ minimally.
The final result is obtained from the second step by considering the Levi subgroup as an endoscopic
group of GLN and applying the endoscopic lifting (121).

Following the description of [Art13]*Equation (1.4.1), all A-parameters ψ for GLN (R) may be
represented as formal direct sums of irreducible representations of WR × SL2

ψ = `1(µ1 � νn1
)� · · ·� `r(µr � νnr ). (145)

Here, νnj is the unique irreducible representation of SL2 of dimension nj , and µj is an irreducible
representation of WR with bounded image. The representations µj are of dimension one or two
[Kna94]*Section 3. The parameter ψ in (145) is said to be irreducible if r = 1 and `1 = 1.

Proposition 6.1. Suppose ψ is an irreducible A-parameter of GLN . Then ΠABV
ψ consists of a

single unitary representation.
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Proof. We begin with the case of ψ = µ � νN , in which µ is a one-dimensional representation of
WR. Since νN is irreducible, the image of SL2 under ψ contains a principally unipotent (i.e. regular
and unipotent) element of GLN . [Ara19]*Theorem 4.11 (d) (a generalization of [ABV92]*Theorem
27.18) therefore implies that ΠABV

ψ consists of a single unitary character.
Let us now suppose that ψ = µ � νn is an A-parameter in which µ is a two-dimensional

irreducible representation of WR (i.e. N = 2n). The restriction of ψ to C× may be taken to have
the form

ψ(z) = zλ1 z̄λ2 , z ∈ C× (146)

where λ1, λ2 ∈ ∨h are semisimple elements with exp(2πi(λ1 − λ2)) = 1 (cf. [ABV92]*Proposition
5.6). Let L be the centralizer of ψ(C×) in ∨GLN . Following [Ta7]*4.2.2, it is straightforward to
verify the following technical conditions

AJ1. The identity component of the centre of the centralizer of ψ(j) in L is contained in the centre
of GLN .

AJ2. ψ(SL2) contains a principally unipotent element of L.

AJ3. 〈λ1 + ∨ρL, α〉 6= 0 for all roots α ∈ R (∨GLN ,
∨H).

These three conditions place ψ among the family of A-parameters studied by Adams and Johnson
in [AJ87] [Art89]*Section 5. According to [Ara19]*Corollary 4.18,

ΠABV
ψ = ΠAJ

ψ ,

where ΠAJ
ψ denotes the packet of cohomologically induced representations introduced in [AJ87]*Definition

2.11. The set ΠAJ
ψ is in bijection with a set of parabolic subgroups ([AMR18]*Section 8.2),

which in this case reduces to a single parabolic subgroup (with Levi subgroup isomorphic to
ResC/RGLN ).

Let us go back to the case of a general A-parameter ψ as in Equation (145). Let

ψ = �ri=1`iψi, ψi = µi � νni ,

be its decomposition into irreducible A-parameters ψi. Let Ni be the dimension of ψi and define

∨G =

r∏
i=1

(∨Gi)
`i ∼=

r∏
i=1

(GLNi)
`i (147)

to be the obvious Levi subgroup of ∨GLN containing the image of ψ. Let ∨GΓ = ∨G × Γ, a
subgroup of ∨GLΓ

N . It is immediate that ψ factors through an A-parameter

ψ : WR × SL2
ψG−−→ ∨GΓ ↪→ ∨GLΓ

N , (148)

where ψG = ×ri=1`iψG,i and each ψG,i is an irreducible A-parameter of ∨GΓ
i = ∨Gi × Γ. The

description of the ABV-packet corresponding to ψG is a fairly straightforward consequence of
Proposition 6.1. We must only remind ourselves that the direct product of (147) translates into
a tensor product of ABV-packets as it passes through the process defining the packets in Section
3.1.

Corollary 6.2. The ABV-packet ΠABV
ψG

consists of a single unitary representation π(SψG , 1).

Proof. Let ∨OG ⊂ ∨g be the ∨G-orbit of the infinitesimal character determined by the L-parameter
φψG . This orbit has an obvious decomposition ∨O =

∏r
i=1(∨Oi)`i into ∨Gi-orbits, and the variety

X(∨OG, ∨GΓ) of geometric parameters decomposes as

X
(∨OG, ∨GΓ

)
=

r∏
i=1

(
X
(∨Oi, ∨GΓ

i

))`i
.
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As a consequence, all complete geometric parameters ξ = (S, τS) = (S, 1) in Ξ
(∨OG, ∨GΓ

)
decom-

pose as

ξ =

(
r∏
i=1

(Si)
`i ,

r⊗
i=1

τ⊗`ii

)
,

for ∨Gi-orbits Si ⊂ X
(∨Oi, ∨GΓ

i

)
, and trivial quasicharacters τi = 1. Furthermore, the algebra of

differential operators DX(∨OG,∨GΓ), its graded sheaf, and the conormal bundle T ∗∨H(X
(∨OG, ∨GΓ

)
)

all decompose as direct products. Irreducible DX(∨OG,∨GΓ)-modules D(ξ) ([ABV92]*(7.10)(e),
(47)) are therefore tensor products

D(ξ) =

r⊗
i=1

D(ξi)
⊗`i , ξi = (Si, τi) ,

of irreducible DX(∨Oi,∨GΓ
i )-modules, and the same can be said about their corresponding irre-

ducible graded modules. Consequently, the singular support SS(D(ξ)) of the graded sheaf grD(ξ)
([ABV92]*Definition 19.7) decomposes as

SS(D(ξ)) =

r∏
i=1

(SS(D(ξi)))
`i ,

and in particular
T ∗SψG

(
X
(∨OG, ∨GΓ

))
⊂ SS(D(ξ))

if and only if
T ∗SψG,i

(
X
(∨Oi, ∨GΓ

i

))
⊂ SS(D(ξi))

for all 1 ≤ i ≤ r. This is equivalent to saying

χmic
SψG

(P (ξ)) 6= 0 ⇐⇒ χmic
SψG,i

(P (ξi)) 6= 0, ∀ 1 ≤ i ≤ r.

In other words, π(ξ) ∈ ΠABV
ψG

if and only if π(ξi) ∈ ΠABV
ψG,i

for all 1 ≤ i ≤ r (50). By Proposition 6.1,

each ABV-packet ΠABV
ψG,i

consists of a single unitary representation. It is a consequence of (142)

that each such unitary representation is of the form π(SψG,i , 1). A look back to the definition of
ABV-packets reveals that

ΠABV
ψG = {⊗ri=1π(SψG,i , 1)} = {π(SψG , 1)}.

We are ready for the final step of describing the ABV-packets for GLN (R).

Proposition 6.3. Let ψ be an A-parameter for GLN as in (145). Then the ABV-packet ΠABV
ψ

consists of a single unitary representation π(Sψ, 1).

Proof. Define ∨G as in (147). Take s ∈ Z(∨G) ⊂ ∨GLN to be as regular as possible so that its
centralizer in ∨GLN is equal to ∨G. Set ∨GΓ = ∨G× Γ, so that (s, ∨GΓ) is an endoscopic datum
(Section 5.1). Write ψG : WR × SL2 → ∨GΓ for the A-parameter for G, satisfying ψ = ε ◦ ψG
((112), (148)). According to (121), Corollary 6.2, and Proposition 5.1 (c)

ηmic
ψ = Lift0

(
ηmic
ψG

)
= Lift0 (π(SψG , 1)) = ind

GLN (R)
G(R,δq) π(SψG , 1).

The proposition now follows from the fact that parabolic induction for general linear groups takes
irreducible unitary representations to irreducible unitary representations ([Tad09]*Proposition 2.1,
Sections 4-5).

Corollary 6.4. The stable virtual character ηmic+
ψ (σ) defined in (144) is equal to (−1)l

I(ξ)−lIϑ(ξ)π(ξ)+,
where ξ = (Sψ, 1). In particular,

Lift0

(
ηmic
ψG (σ)(δq)

)
= (−1)l

I(ξ)−lIϑ(ξ)π(ξ)+

Proof. By Proposition 6.3, τmic
Sψ

(P (ξ)) is non-zero only for ξ = (Sψ, 1). By definition (143),

τmic
Sψ

(P (ξ)+)(σ) = 1 when ξ = (Sψ, 1) and is zero otherwise. The first assertion follows. The
second assertion is a consequence of the first and Theorem 5.6.
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7 Whittaker extensions and their relationship to Atlas ex-
tensions

Thus far we have been working with preferred extensions of irreducible representations, from
GLN (R) to GLN (R)o 〈ϑ〉. These are the Atlas extensions of (40). Arthur uses a different choice
of canonical extension in [Art13], which we call the Whittaker extension. After reviewing the
definition of Whittaker extensions, we will compute the sign giving the difference from the Atlas
extensions. We conclude by rewriting the pairing of Theorem 3.5 using Whittaker extensions.
Written in this manner, the pairing becomes simpler (Corollary 7.9).

The review of Whittaker extensions which we are about to give may be found in [Art13]*Section
2.2. We fix a unitary character χ on the upper-triangular unipotent subgroup U(R) ⊂ B(R) which
satisfies χ ◦ ϑ = ϑ. In this manner (U, χ) is a ϑ-fixed Whittaker datum. We work under the
hypothesis of (32) on an infinitesimal character λ ∈ ∨h and set ∨O to be its ∨GLN -orbit. Let ξ ∈
Ξ(∨O, ∨GLΓ

N )ϑ so that π(ξ) is (an infinitesimal equivalence class of) an irreducible representation
of GLN (R). Here, and whenever we define Whittaker extensions, we must work with a bona fide
admissible group representation in this equivalence class which we also denote (π(ξ), V ). If π(ξ) is
tempered then up to a scalar there is a unique Whittaker functional ω : V → C satisfying

ω(π(ξ)(u)v) = χ(u)ω(v), u ∈ U(R), (149)

for all smooth vectors v ∈ V . It follows that there is a unique operator I∼ which intertwines
π(ξ) ◦ ϑ with π(ξ) and also satisfies ω ◦ I∼ = ω. We extend π(ξ) to a representation π(ξ)∼ of
(GLN (R) o 〈ϑ〉 by setting π(ξ)∼(ϑ) = I∼. We call this extension π(ξ)∼ the Whittaker extension
of π(ξ).

If π(ξ) is not tempered then we express it as the Langlands quotient of a representation induced
from an essentially tempered representation of a Levi subgroup. The ϑ-stability of π(ξ) and
the uniqueness statement in the Langlands classification together imply the ϑ-stability of the
essentially tempered representation. The earlier argument for tempered representations has an
obvious analogue for the essentially tempered representation of the Levi subgroup. We may argue
as above to extend the essentially tempered representation to the semi-direct product of the Levi
subgroup with 〈ϑ〉. One then induces this extended representation to GLN (R)o 〈ϑ〉. The unique
irreducible quotient of this representation is the canonical extension of π(ξ), namely the Whittaker
extension π(ξ)∼ of π(ξ). If one omits the Langlands quotient in this argument then we obtain the
Whittaker extension M(ξ)∼ of the standard representation M(ξ).

We now turn to the question of how π(ξ)∼ differs from π(ξ)+. The operators π(ξ)∼(ϑ) and
π(ξ)+(ϑ) are involutive, and both intertwine π(ξ) ◦ ϑ with π(ξ). Therefore they differ by a sign,
i.e.

π(ξ)∼(ϑ) = ±π(ξ)+(ϑ). (150)

Lemma 7.1. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ and M(ξ) is a ϑ-stable principal series representation

of GLN (R). Then the Whittaker and Atlas extensions of M(ξ) are equal, i.e. M(ξ)∼ = M(ξ)+.

Proof. We abusively identify the equivalence class M(ξ) with one of its representatives M(ξ) =

ind
GLN (R)
B(R) π0. Define an operator I on functions f in the space of M(ξ) by

If(g) = f(ϑ(g)), g ∈ GLN (R).

It is easily verified that I intertwines (ind
GLN (R)
B(R) π0) ◦ ϑ with ind

GLN (R)
B(R) (π0 ◦ ϑ). By the ϑ-stability

of M(ξ) we have

ind
GLN (R)
B(R) π0

∼= (ind
GLN (R)
B(R) π0) ◦ ϑ ∼= ind

GLN (R)
B(R) (π0 ◦ ϑ).

The uniqueness statement in the Langlands quotient theorem may be applied to the equivalence
above to conclude that π0 = π0 ◦ ϑ. Therefore I intertwines M(ξ) ◦ ϑ with M(ξ). We will prove
the lemma by showing that M(ξ)∼(ϑ) = I = M(ξ)+(ϑ).

Given a(ny) Whittaker functional ω satisfying (149), M(ξ)∼(ϑ) is defined by ω◦M(ξ)∼(ϑ) = ω.
A convenient Whittaker functional to work with is

ω(f) =

∫
U(R)

f(ẇ0u)χ(u) du (151)
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[Sha80]*Section 2. Here f is a smooth function in the space of M(ξ) and ẇ0 = J̃ is a representative
of the long Weyl group element in W (GLN , H). We compute

ω ◦ I(f) =

∫
U(R)

If(ẇ0u)χ(u) du

=

∫
U(R)

f(ϑ(ẇ0u))χ(u) du

=

∫
U(R)

f(ẇ0u)χ(ϑ(u)) du

=

∫
U(R)

f(ẇ0u)χ(u) du

= ω(f).

This proves ω ◦ I = ω so that M(ξ)∼(ϑ) = I.
To prove M(ξ)+(ϑ) = I we recall the definition of M(ξ)+ as in (40). The complete geometric

parameter ξ corresponds to an Atlas parameter (x, y) (Lemma 2.2), where x is the equivalence
class of a strong involution

δ = exp(πi∨ρ)ẇ0δ0 = exp(πi∨ρ)J̃δ0

as in [AV15]*Proposition 3.2 (see the proof of Lemma 7.6). This strong involution negates every pos-
itive root inR(B,H). It follows that the underlying (glN ,K)-module ofM(ξ)+ is the representation

[AV15]*(20), in which the Borel subalgebra b is real. This implies that M(ξ)+ = ind
GL(N,R)o〈ϑ〉
B(R)o〈ϑ〉 π+

0 ,

where π+
0 (ϑ) = 1, since the value of the function z given in (39) is one. Suppose f is a function in

the space of ind
GL(N,R)o〈ϑ〉
B(R)o〈ϑ〉 π+

0 . We compute(
M(ξ)+(ϑ)f

)
(g) = f(gϑ)

= f(ϑϑ(g))

= π+
0 (ϑ) f(ϑ(g))

= f(ϑ(g))

= (If) (g).

This proves that M(ξ)+(ϑ) = I.

Our next goal is to make a link between the signs in (150) and the twisted multiplicity polynomi-
als mϑ

r (ξ′, ξ) appearing in (65). By Proposition 3.7 and (104), we have the alternative formulations

mϑ
r (ξ′, ξ) = (−1)l

I
ϑ(ξ′)−lIϑ(ξ)cϑg (ξ, ξ′)

= (−1)l
I(ξ′)−lIϑ(ξ′)+lI(ξ)−lIϑ(ξ) ∨Pϑ(∨ξ, ∨ξ′)(1).

(152)

If π(ξ′) is a subquotient of M(ξ) occurring with multiplicity one then it is easily verified that
mϑ
r (ξ′, ξ) = 1 if and only if π(ξ′)+ is a subquotient of M(ξ)+. Similarly, mϑ

r (ξ′, ξ) = −1 if and only
if π(ξ′)− is a subquotient of M(ξ)+. In this sense mϑ

r (ξ′, ξ) is a signed multiplicity.
There is a special irreducible subquotient of M(ξ) which is generic, i.e. admits a non-zero

Whittaker functional as in (149).

Lemma 7.2. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. Then

(a) (up to infinitesimal equivalence) there is a unique irreducible ϑ-stable generic representation
π(ξ0) = M(ξ0) which occurs in M(ξ) as a subquotient with multiplicity one;

(b) (any representative in the class of) π(ξ0) embeds as a subrepresentation of (any representative
in the class of) M(ξ);

(c) (any representative in the class of) π(ξ0)∼ embeds as a subrepresentation of (any represen-
tative in the class of) M(ξ)∼.
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Proof. A result due to Vogan and Kostant states that every standard representation M(ξ) contains
a unique generic irreducible subquotient occurring with multiplicity one ([Kos78]*Theorems E and
L, [Vog78]*Corollary 6.7). In the rest of the proof we write π(ξ0) for the actual generic represen-
tation (not the equivalence class) for some ξ0 ∈ Ξ(∨O, ∨GLΓ

N ). It is straightforward to verify that
π(ξ0) ◦ ϑ satisfies (149), just as π(ξ0) does. Therefore π(ξ0) ◦ ϑ is the unique irreducible generic
subquotient of M(ξ) ◦ ϑ ∼= M(ξ). By uniqueness, π(ξ0) ◦ ϑ ∼= π(ξ0) and so ξ0 ∈ Ξ(∨O, ∨GLΓ

N )ϑ.
The statements about π(ξ0) occurring as a subrepresentation of M(ξ) and π(ξ0) = M(ξ0) may

be found in [Vog78]*Theorem 6.2 and [CS98]*Theorem 6.2.
For part (c) we consider the standard representation M(ξ), which has a Whittaker functional ω

([Sha80]*Proposition 3.2). The functional ω restricts to a non-zero Whittaker functional on π(ξ0).
By definition, M(ξ)∼(ϑ) is the intertwining operator which satisfies ω ◦M(ξ)∼(ϑ) = ω. Restricting
this equation to the subrepresentation π(ξ0) yields in turn that

π(ξ0)∼(ϑ) = M(ξ)∼(ϑ)|π(ξ0) and π(ξ0)∼ ↪→M(ξ)∼. (153)

Lemma 7.2 tells us that the multiplicity of π(ξ0)∼ in M(ξ)∼ is one. On the other hand mϑ
r (ξ0, ξ)

tells us about the “signed multiplicity” of π(ξ0)+ in M(ξ)+. We investigate mϑ
r (ξ0, ξ) further before

comparing the two multiplicities.

Proposition 7.3. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ and π(ξ0) is the generic subrepresentation of M(ξ)

(Lemma 7.2). Then

mϑ
r (ξ0, ξ) = (−1)l

I(ξ)−lIϑ(ξ)+lI(ξ0)−lIϑ(ξ0). (154)

Proof. We see from (152) that the proposition is equivalent to

∨Pϑ( ∨ξ, ∨ξ0)(1) = 1.

This equation follows from Proposition 4.17 once we establish that ∨ξ0 is the unique maximal
parameter in the block of π(∨ξ) in the (dual) Bruhat order. This is equivalent to establishing that
ξ0 is the unique minimal parameter in the block of π(ξ0) ((88), [Vog82]*Theorem 1.15). We use
[ABV92]*Proposition 1.11 to convert the Bruhat order for the representations of GLN (R) into a
closure relation between ∨GLN -orbits of X(∨O, ∨GLΓ

N ). Moreover, this proposition implies that
the minimality of ξ0 = (S0, 1) is equivalent to the ∨GLN -orbit S0 ⊂ X(∨O, ∨GLΓ

N ) being maximal
and therefore open. The uniqueness of the generic parameter follows from the fact that there is a
unique open orbit in each component of X(∨O, ∨GLΓ

N ) (cf. [ABV92]*p. 19).

The signed multiplicities mϑ
r (ξ′, ξ) of Atlas extensions may be compared to the multiplicities

of Whittaker extensions when there is a representation in the block for which the two extensions
agree. This is the case when the block contains a ϑ-fixed principal series (Lemma 7.1). Under
these circumstances, we obtain a formula for the signs in (150).

Proposition 7.4. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ and π(ξ0) is the generic representations of Lemma

7.2. If π(ξ0)+ occurs in the decomposition of a principal series representation M(ξp)
+ ∈ KΠ(∨O,GLN (R), ϑ)

then
M(ξ)∼(ϑ) = (−1)l

I(ξ)−lIϑ(ξ) M(ξ)+(ϑ)

and
π(ξ)∼(ϑ) = (−1)l

I(ξ)−lIϑ(ξ) π(ξ)+(ϑ).

Proof. Suppose that ξp ∈ Ξ(∨O, ∨GΓ)ϑ is the complete geometric parameter of a ϑ-stable principal
series representation M(ξp)

+ as in the hypothesis. It is straightforward to show lI(ξp) = lIϑ(ξp) = 0.
By Lemma 7.1, (65) and (154)

M(ξp)
∼ = mϑ

r (ξ0, ξp)π(ξ0)+ +
∑
ξ′ 6=ξ0

mϑ
r (ξ′, ξp)π(ξ′)+

= (−1)l
I(ξ0)−lIϑ(ξ0) π(ξ0)+ +

∑
ξ′ 6=ξ0

mϑ
r (ξ′, ξp)π(ξ′)+.
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According to (153), with ξ = ξp, and the observations immediately preceding Lemma 7.2, this
equation implies

(−1)l
I(ξ0)−lIϑ(ξ0)π(ξ0)+(ϑ) = π(ξ0)∼(ϑ). (155)

Thus, the proposition holds for ξ = ξ0.
It remains to prove that the proposition holds when ξ 6= ξ0. We compute, using (154) and

(155), that

M(ξ)+ =
∑
ξ′ 6=ξ0

mϑ
r (ξ′, ξ)π(ξ′)+ +mϑ

r (ξ0, ξ)π(ξ0)+

=
∑
ξ′ 6=ξ0

mϑ
r (ξ′, ξ)π(ξ′)+ + (−1)l

I(ξ)−lIϑ(ξ)+lI(ξ0)−lIϑ(ξ0) π(ξ0)+

=
∑
ξ′ 6=ξ0

mϑ
r (ξ′, ξ)π(ξ′)+ + (−1)l

I(ξ)−lIϑ(ξ)π(ξ0)∼.

This equation and the observations before Lemma 7.2 imply

(−1)l
I(ξ)−lIϑ(ξ)π(ξ0)∼(ϑ) = M(ξ)+(ϑ)|π(ξ0).

Combining this equation with (153), we see in turn that

(−1)l
I(ξ)−lIϑ(ξ)M(ξ)+(ϑ)|π(ξ0) = π(ξ0)∼(ϑ) = M(ξ)∼(ϑ)|π(ξ0)

and (−1)l
I(ξ)−lIϑ(ξ)M(ξ)+(ϑ) = M(ξ)∼(ϑ). By taking Langlands quotients of the last equation we

obtain (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+(ϑ) = π(ξ)∼(ϑ).

Proposition 7.4 describes the sign appearing in (150) explicitly. Unfortunately, the hypotheses
of the Proposition do not always hold. It is not true that every generic representation π(ξ0)+

appears in the decomposition of a ϑ-stable principal series representation. This may already be
seen for GL2. It is instructive to examine and remedy this special case.

For every positive integer m let ind
GL2(R)
B(R) πm be the principal series representation with

πm =

{
| · |(m−1)/2 ⊗ | · |(−m−1)/2, m even
| · |(m−1)/2 ⊗ sgn(·)| · |−(m−1)/2, m odd

(156)

LetDm be the relative (limit of) discrete series representation which is the unique subrepresentation

of ind
GL2(R)
B(R) πm.

For even m both Dm and ind
GL2(R)
B(R) πm are ϑ-stable. This may be seen by computing that the

linear map on the space of ind
GL2(R)
B(R) πm defined by

f(x) 7→ f(ϑ(x)), x ∈ O(2), (157)

intertwines (ind
GL2(R)
B(R) πm) ◦ ϑ with ind

GL2(R)
B(R) πm. Thus, for even m we have an obvious embedding

of Dm into a ϑ-stable principal series representation exhibited by an explicit intertwining operator.

For odd m the map (157) intertwines (ind
GL2(R)
B(R) πm) ◦ ϑ with ind

GL2(R)
B(R) (πm ◦ ϑ), where

πm ◦ ϑ = sgn(·)| · |(m−1)/2 ⊗ | · |−(m−1)/2.

Unfortunately, for odd m > 1 the representation ind
GL2(R)
B(R) (πm◦ϑ) is not equivalent to ind

GL2(R)
B(R) πm.

This may be deduced from the uniqueness statement in the Langlands Classification. Consequently,
instead of embedding Dm into a ϑ-stable principal series representation, we must seek another
means of finding an operator which intertwines Dm ◦ ϑ with Dm. For this we look to facts about
the discrete series of SL2(R).

Lemma 7.5. Suppose m is a positive integer. Then Dm is ϑ-stable and D∼
m
∼= D+

m.
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Proof. It is well-known that the restriction of Dm to SL2(R) decomposes as a direct sum Dm+ ⊕
Dm− of irreducible (limits of) discrete series representations ([Kna86]*pp. 471-472). In this de-
composition Dm+ is the unique representation which is generic with respect to (U∩SL2(R), χ). Let
ω+ be its Whittaker functional. The representation Dm is equivalent to the tensor product of the

trivial central character 1Z(GL2(R)) with ind
SL±2 (R)

SL2(R) Dm+. The direct sum Dm+ ⊕Dm− also occurs

as the unique subrepresentation of the principal series representation ind
SL2(R)
B∩SL2(R)

(
(πm)|H∩SL2(R)

)
([Kna86]*(2.19)). It is easily verified that this principal series representation is ϑ-stable. Lemma
7.1 and Proposition 7.4 apply equally well for representations of SL2(R) and so we conclude that
Dm+ is ϑ-stable with D∼

m+
∼= D+

m+. Let ω be the linear functional on the space of Dm obtained
by composing ω+ with the orthogonal projection P+ onto the space of Dm+. We compute that for
all u ∈ U(R) and f = (1− P+)f + P+f in the space of Dm

ω(Dm(u)f) = ω+(P+(Dm−(u)(1− P+)f +Dm+(u)P+f))

= ω+(Dm+(u)P+f)

= χ(u)ω+(P+f)

= χ(u)ω(f).

This proves that ω is a Whittaker functional for Dm and implies

D∼
m
∼= 1Z(GL2(R)) ⊗ ind

SL±2 (R)

SL2(R) D
∼
m+.

The lemma now follows from

D∼
m
∼= 1Z(GL2(R)) ⊗ ind

SL±2 (R)

SL2(R) D
∼
m+

∼= 1Z(GL2(R)) ⊗ ind
SL±2 (R)

SL2(R) D
+
m+

∼= D+
m

in which we appeal to [AV15]*(20) for the construction of D+
m and use [KV95]*Proposition 2.77

for the induction of finite index.

In the following two lemmas we see that although a ϑ-stable irreducible generic representation
need not be a subrepresentation of a ϑ-stable principal series representation, it is at worst a
subrepresentation of a ϑ-stable standard representation which is essentially induced from Dm. We
deal with the tempered representations first.

Lemma 7.6. Suppose πgen is a ϑ-stable irreducible tempered representation of GLN (R) with inte-
gral infinitesimal character λ ∈ ∨h chosen as in (32) i.e.

ϑ(λ) = λ and 〈λ, ∨α〉 ∈ {1, 2, · · · }, α ∈ R+(GLN , H).

(a) Relative to the standard basis of the diagonal Lie algebra h, λ has coordinates of the form

(λ1, . . . , λN/2,−λN/2, . . . ,−λ1)

when N is even, and of the form

(λ1, . . . , λ(N−1)/2, 0,−λ(N−1)/2, . . . ,−λ1)

when N is odd. The coordinates appear in strictly decreasing order.

(b) Suppose N is odd. Then the coordinates λj are all integers, and πgen embeds into a ϑ-stable
principal series representation.

(c) Suppose N is even. Then the coordinates λj are either all integers or all half-integers (el-
ements in Z + 1

2). In the latter case, πgen embeds into a ϑ-stable principal series represen-
tation. In the former case, πgen embeds into a ϑ-stable principal series representation when

59



N is divisible by 4. When N is not divisible by 4 in the former case, πgen embeds into the
representation π which is parabolically induced from the representation

| · |λ1 ⊗ · · · ⊗ | · |λN2 −1 ⊗D2λN/2+1 ⊗ | · |
−λN

2
−1 ⊗ · · · ⊗ | · |−λ1 . (158)

The representation π is ϑ-stable and π∼ = π+.

Proof. The first assertion is an immediate consequence of

λ = ϑ(λ) = −Ad(J̃)(λ).

Let α1, . . . , αN−1 be the simple roots of GLN relative to the Borel subgroup B.
Suppose first that N is odd. Then

〈λ, ∨α(N−1)/2〉 = λ(N−1)/2 − 0

is a positive integer by the integrality hypothesis. The remaining λj for j < (N − 1)/2 are then
seen to be positive integers by applying the integrality hypothesis to 〈λ, ∨αj〉 successively.

Our strategy in showing that πgen embeds into a ϑ-stable principal series representation is to
express πgen in terms of its Atlas parameter (Corollary 2.4) and to apply Cayley transforms and
cross actions to its Atlas parameter [AV15]*Section 7. The resulting parameters correspond to
ϑ-stable standard representations in the block of πgen ([Vog82]*Definition 1.14, [Vog82]*Theorem
8.8, [AV15]*Section 7). For GLN (R), πgen is the unique irreducible generic representation in its
block (Lemma 7.2). Furthermore, every standard representation in the block contains the irre-
ducible generic representation πgen, as its unique irreducible subrepresentation ([Vog78]*Theorem
6.2, [Vog78]*Corollary 6.7, [CS98]*Theorem 6.2). In consequence, it suffices to find Cayley trans-
forms and cross actions which carry the Atlas parameter of πgen to a ϑ-stable principal series
representation.

By Corollary 2.4, the representation πgen corresponds to an element w ∈W (GLN , H) satisfying
wδ0(w) = (ww0)2 = 1 ((33), (35)). Such Weyl group elements are called δ0-twisted involutions
[AV15]*Section 3. We begin by determining the δ0-twisted involution w ∈ W (GLN , H) attached
to πgen. The δ0-twisted involution w ∈ W (GLN , H) determines an involutive automorphism wδ0
on H ([AV15]*(14e)). This automorphism also acts on ∨h, and the integral length (60) of πgen is
equal to

−1

2

(
|{α ∈ R+(GLN , H) : wδ0 · α ∈ R+(GLn, H)}|+ dim(Hwδ0)

)
. (159)

By [Vog82]*Lemma 12.10 and the arguments of the proof of Proposition 7.3, the length of πgen is
minimal among the lengths of all representations in its block. It is not difficult to see that (159)
is minimized at w = 1. Moreover, there exists a representation in the block of πgen corresponding
to w = 1 ([Vog82]*Theorem 8.8 and [AdC09]*Section 14). It follows that πgen is in fact this
representation and that the δ0-twisted involution w for πgen is trivial.

According to [Car72]*Lemma 5, there are orthogonal positive roots, β1, . . . βm such that

sβ1
· · · sβm = ww0 = w0.

From this we compute β1 = α1 + · · · + αN−1, β2 = α2 + · · · + αN−2, . . . , β(N−1)/2 = α(N−1)/2 +

α(N+1)/2 and m = (N − 1)/2. By Corollary 2.4 there is an element y ∈ ∨X sβ1
···sβm

λ = ∨Xw0

λ and
an element x ∈ X 1

ρ∨ such that J(x, y, λ) = πgen.
Before listing Cayley transforms and cross actions to apply to the parameter (x, y), it is worth-

while to describe the δ0-twisted involution w′ ∈ W (GLN , H) attached to a principal series repre-
sentation. A principal series representation is parabolically induced from a real Borel subgroup. In
the Atlas parameterization this is equivalent to the automorphism w′δ0 carrying all positive roots
of R(GLN , H) to negative roots, making B a real Borel subgroup ([KV95]*Proposition 4.76). Since
δ0 preserves the set of positive roots, this forces w′ = w0, the long Weyl group element.

We wish to apply Cayley transforms and cross actions to the parameter (x, y) ∈ X 1
ρ∨ × ∨X

w0

λ

in order to arrive at a parameter (x′, y′) ∈ Xw0

ρ∨ × ∨X 1
λ and a ϑ-stable representation π(x′, y′) =

J(x′, y′, λ) (Corollary 2.4). Recall from Section 4.5 that Cayley transforms and cross actions are

60



made relative to ϑ-orbits of simple roots κ (84). A Cayley transform cκ applied to a parameter
in Xwρ∨ × ∨X

ww0

λ produces parameters in Xwκwρ∨ × ∨Xwκww0

λ ([AdC09]*Definition 14.1), where wκ
is prescribed in (85). A cross action κ× applied to a parameter in Xwρ∨ × ∨X

ww0

λ results in a

parameter in Xwκww
−1
κ

ρ∨ ×∨Xwκww
−1
κ w0

λ ([AdC09]*(9.11f)). In short, Cayley transforms left-multiply
a δ0-twisted involution w by wκ, and cross actions conjugate w by wκ. We wish to move from the
δ0-twisted involution 1 to the ξ0-twisted involution w0 = sβ1 · · · sβ(N−1)/2

using these operations.
We first describe how to move from 1 to sβ1 . We define the symbol  to mean “takes a

parameter in the set on the left to parameters in the set on the right”. Let κj be the ϑ-orbit of
αj . It is straightforward to verify (using the Atlas of Lie Groups and Representations software)

X 1
ρ∨ × ∨X

w0

λ

cκ(N−1)/2
 X sβmρ∨ × ∨X sβmw0

λ

κ(N−3)/2×
 X

sβm−1

ρ∨ × ∨X
sβm−1

w0

λ

κ(N−5)/2×
 X

sβm−2

ρ∨ × ∨X
sβm−2

w0

λ

...

κ1× X sβ1

ρ∨ ×
∨X sβ1

w0

λ .

(160)

To move from sβ1
to sβ1

sβ2
we repeat this procedure, but terminating with

κ2× . Repeating this
procedure in the obvious fashion, we arrive to w0 = sβ1 · · · sβ(N−1)/2

, as desired. This proves part
(b).

We now continue under the assumption that N is even. By the integrality hypothesis

〈λ, ∨αN/2〉 = λN/2 − (−λN/2) = 2λN/2

is a positive integer. Therefore λN/2 ∈ 1
2Z. If λN/2 ∈ Z+ 1

2 then the integrality of 〈λ, ∨α(N/2)−1〉 =

λ(N/2)−1 − λN/2 implies λ(N/2)−1 ∈ Z+ 1
2 . Similar computations with the remaining simple roots

α(N/2)−1, . . . , α1 then imply that all λj are half-integers. If λN/2 is an integer then the same
argument proves that all λj are integers.

The approach to embedding πgen into standard representations for even N is the same as in
the odd case. In particular, πgen = J(x, y, λ) where (x, y) ∈ X 1

ρ∨ ×∨X
w0

λ . We wish to apply Cayley
transforms and cross actions to (x, y) in order to arrive to standard representations of the desired
form. There are three cases to consider.

In the case that all coordinates of λ are half-integers the Cayley transform cκN/2 = cαN/2 may
be used to replace cκ(N−1)/2

in (160) in order to obtain the same conclusion.
However, in the case that all coefficients of λ are integers the Cayley transform cαN/2 does not

yield parameters which are ϑ-stable and must therefore be ignored (αN/2 is a root of type 1i2s in
[AV15]*Tables 1-2). In the special case of GL4(R) one may circumvent this obstacle as follows

X 1
ρ∨ × ∨X

w0

λ

cκ1 X sα1sα3

ρ∨ × ∨X sα1sα3w0

λ

κ2× X sα2
sα1

sα3
sα2

ρ∨ × ∨X sα2
sα1

sα3
sα2

w0

λ

cκ1 X sα1
sα3

sα2
sα1

sα3
sα2

ρ∨ × ∨X sα1
sα3

sα2
sα1

sα3
sα2

w0

λ

= X sβ1
sβ2

ρ∨ × ∨X 1
λ .

(161)

More generally, if N is divisible by four one may replace the first step of (160) with the appropriate
analogue of (161) and then continue by performing cross actions as in (160) to arrive at a parameter
in X sβ1

sβ2

ρ∨ × ∨X sβ1
sβ2

w0

λ . Iterating this process, one arrives at a parameter in Xw0

ρ∨ × ∨X 1
λ which

corresponds to a ϑ-stable principal series representation.
In the last case where the coordinates of λ are integers and N has remainder two when di-

vided by four one may only iterate the process just described to arrive at a parameter (x′, y′) ∈
X
sβ1
···sβ(N/2)−1

ρ∨ × ∨X sβN/2λ . The involution corresponding to this parameter acts on roots by

sβ1 · · · sβ(N/2)−1
δ0 = −sαN/2 . (162)
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In the Atlas parameterization this implies that αN/2 is an imaginary root and all simple roots
orthogonal to αN/2 are real. Let us again identify the ϑ-stable representation

π = π(x′, y′) = J(x′, y′, λ)

with its underlying (glN ,K)-module ([AV15]*(20)). In the language of [KV95]*Section 11 this
module is the unique irreducible quotient of

M(x′, y′) = uRglN ,K
b,H∩KZ(b).

Here, b = h⊕ n is the upper-triangular Borel subalgebra, K = Kδ,

δ = exp(πi∨ρ)σα1+···+αN−1
· · ·σαN

2
−1

+αN
2

+1
δ0

([AV15]*Proposition 3.2), and Z(b) = C(y′, λ) ⊗ ∧top(n) as in [AV15]*(20). By [KV95]*Corollary
11.86, we may write

uRglN ,K
b,H∩KZ(b) = uRglN ,K

p,M∩K
uRm,K∩M

b∩m,H∩KZ(b) = uRglN ,K
p,M∩KπM (163)

where p = m⊕u ⊃ b is the parabolic subalgebra corresponding to αN/2, and πM = uRm,K∩M
b∩m,H∩KZ(b).

The induction functor uRglN ,K
p,M∩K on the right may be identified with parabolic induction ([KV95]*Proposition

11.57) and πM is the underlying module of (158) ([KV95]*Theorem 11.178).
It remains to prove that the Whittaker extension of π equals its Atlas extension. Using the

formula for the Whittaker functional of a parabolically induced representation ([Sha81]*Proposition
3.2), we have

(uRglN ,K
b,H∩KZ(b))∼ = (uRglN ,K

p,(M∩K)πM )∼ = uRglN ,Ko〈ϑ〉
p,(M∩K)o〈ϑ〉π

∼
M .

By definition of the Atlas extension (40)

(uRglN ,K
b,H∩KZ(b))+ = uRglN ,K

b,H∩K(Z(b)+)

and so using induction by stages as in (163) we have

(uRglN ,K
b,H∩KZ(b))+ = uRglN ,Ko〈ϑ〉

p,(M∩K)o〈ϑ〉
uRm,(K∩M)o〈ϑ〉

b∩m,(H∩K)o〈ϑ〉Z(b)+ = uRglN ,Ko〈ϑ〉
p,(M∩K)o〈ϑ〉π

+
M . (164)

Therefore, if π+
M = π∼

M then it follows that

(uRglN ,K
b,H∩KZ(b))+ = (uRglN ,K

b,H∩KZ(b))∼,

i.e. the Atlas extension and Whittaker extensions are equal.
For the proof of π+

M = π∼
M we may assume without loss of generality that M = GL2 and

πM = Dm, and appeal to Lemma 7.5.

The next lemma is a generalization of the previous one to include generic representations with
non-integral infinitesimal characters.

Lemma 7.7. Suppose πgen is a ϑ-stable irreducible generic representation of GLN (R) with in-
finitesimal character satisfying (32). Then πgen embeds into a ϑ-stable standard representation

M(ξp), ξp ∈ Ξ(∨O, ∨GLΓ
N )ϑ such that M(ξp)

∼ = M(ξp)
+.

Proof. According to [Vog78]*Theorem 6.2, πgen is infinitesimally equivalent to a parabolically in-

duced representation ind
GLN (R)
P (R) (π′ ⊗ eν). Here, P (R) is a cuspidal standard parabolic subgroup

whose Levi subgroup M(R) has Langlands decomposition M(R) = M1A ([Kna86]*Section V.5),
π′ is a (limit of) discrete series representation of M1, and ν lies in the complex Lie algebra a of A.
Since P (R) is standard and cuspidal the Levi subgroup M(R) decomposes diagonally into blocks

M(R) = M1(R)× · · · ×M`(R)
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in which each block Mj(R) is isomorphic to either GL2(R) or GL1(R). Accordingly,

M1 = M1
1 × · · · ×M1

` , (165)

where M ′j is isomorphic to SL±2 (R) or {±1}; and

π′ = π′1 ⊗ · · · ⊗ π′`,

where π′j is equivalent to D′mj := (Dmj )|SL±2 (R) (cf. (156)) when M ′j
∼= SL±2 (R), and is equivalent

to 1 or sgn when M1
j
∼= {±1}. In addition,

a = a1 ⊕ · · · ⊕ a` (166)

and ν = ν1 + · · ·+ ν`. One should expect that the ϑ-stability of πgen
∼= ind

GLN (R)
P (R) (π′ ⊗ eν) would

put constraints on the constituent representations π′j ⊗ eνj of Mj(R). This is indeed so, and we
now prove that the ϑ-stability yields a partition of the set

{π1 ⊗ eν1 , . . . , π` ⊗ eν`} (167)

into either pairs of the form {D′mj⊗e
νj , D′mj⊗e

−νj} or singletons of the form {D′mj⊗e
0} = {Dmj}.

The ϑ-stability implies that the distribution character of πgen is equal to the distribution char-
acter of

πgen ◦ ϑ ∼=
(

ind
GLN (R)
P (R) (π′ ⊗ eν)

)
◦ ϑ ∼= ind

GLN (R)
ϑ(P (R))

(
π′ ◦ ϑ⊗ eϑ·ν

)
.

By the Langlands Disjointness Theorem ([Lan89]*pp. 149-150, cf. [Kna86]*Theorem 14.90), there
exists g ∈ O(N) such that

Int(g) ◦ ϑ(M1) = M1 , Int(g) ◦ ϑ(A) = A, (168)

π′ ◦ ϑ ◦ Int(g−1) ∼= π′ , and ϑ · (Ad(g−1)ν) = ν.

Recall that ϑ is the composition of Int(J̃) and inverse-transpose. The inverse-transpose automor-
phism stabilizes M1 and A. Since inverse-transpose acts on SL2(R) as the inner automorphism
Int
([

0 1
−1 0

])
, and acts trivially on {±1}, it is easy to see that inverse-transpose stabilizes π′. The

value of the differential of inverse-transpose at ν is −ν. Taking these facts into consideration, we
may read (168) as

Int(g1)(M1) = M1 , Int(g1)(A) = A,

π′ ◦ Int(g−1
1 ) ∼= π′ , and Ad(g−1

1 )ν = −ν,

where g1 = gJ̃ ∈ O(N). After possibly multiplying by an element in M1 ∩O(N), we may assume
that Int(g1) fixes a representative λ′ ∈ ∨m of the infinitesimal character of π′. The infinitesimal
character of π′ decomposes as

λ′ = λ′1 + · · ·+ λ′`,

where λ′j ∈ ∨mj . If Mj = GL2 then λ′j determines π′j = D′mj up to equivalence. Since g1 normalizes

M1 and fixes λ′, Int(g1)(M1
j ) = M1

k for some 1 ≤ k ≤ `, and Ad(g1)(λ′j) = λ′k. In particular, if
Mj
∼= GL2 then π′j

∼= π′k
∼= D′mj . If Mj

∼= GL1 then Int(g)|M1
j

is the unique isomorphism of

M1
j
∼= {±1} onto M1

k
∼= {±1} and so π′j = π′k. If k = j in either of these two cases then

−νj = Ad(g−1
1 )(νj) = νj and νj = 0. In this manner, the element g1 specifies the singletons for the

partition of (167). The pairs in the partition of (167) become evident once we establish that g1 acts
involutively on the factors of (165) and (166). For this, we observe that Ad(g2

1) fixes both λ′ and
ν and so fixes a representative of the infinitesimal character of πgen ([Kna86]*Proposition 8.22).
As we are assuming that the infinitesimal character is regular, g2

1 belongs to the Cartan subgroup
determined by λ′ and ν, which is a subgroup of M(R). Thus, Int(g2

1)(M1
j ) = M1

j , Ad(g2
1)aj = aj ,

which proves the desired involutive action of g1.
The distribution character, and therefore the infinitesimal equivalence class, of the irreducible

representation ind
GLN (R)
P (R) (π′⊗eν) is independent of the choice of parabolic subgroup and is invariant

under conjugation by elements in GLN (R). This allows us to permute the factors of M , π′ and
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ν. In view of our partition of (167) into pairs and singletons, we may choose a permutation such
that, without loss of generality,

π′ ⊗ eν =($′1 ⊗ eν
′
1)⊗ · · · ⊗ ($′k ⊗ eν

′
k)

⊗ ($′k+1 ⊗ e0)⊗ · · · ⊗ ($′h ⊗ e0)

⊗ ($′h+1 ⊗ e0)⊗ · · · ⊗ ($′i ⊗ e0)

⊗ ($′k ⊗ e−ν
′
k)⊗ · · · ⊗ ($′1 ⊗ e−ν

′
1).

(169)

The factors $′j here have the same form as the π′j . What is different in this decomposition of
π′ ⊗ eν is that we are separating the factors into three groups. The first group is comprised of the
first and fourth lines of (169). This group corresponds to the pairs in the partition of (167). The
second and third groups encompass the singletons, which are essentially (limits of) discrete series.
The group in the second line is taken to be those singletons in the partition whose infinitesimal
characters in ∨h all have half-integral entries (elements in Z + 1

2 ). The group in the third line is
comprised of the singletons whose infinitesimal characters all have integral entries.

It is not difficult to realize representations in the first and second groups as subquotients of a
principal series representation. For example, letting B1 be the upper-triangular Borel subgroup in
GL2, the representation

(D′m ⊗ eν
′
1)⊗ (D′m ⊗ e−ν

′
1)

embeds into

ind
GL2(R)×GL2(R)
B1(R)×B1(R)

(
(| · |(m−1)/2 ⊗ sgn(·)| · |−(m−1)/2)⊗ eν

′
1

)
⊗
(

(sgn(·)| · |(m−1)/2 ⊗ | · |−(m−1)/2)⊗ e−ν
′
1

)
(170)

if m is odd, and embeds into

ind
GL2(R)×GL2(R)
B1(R)×B1(R)

(
(| · |(m−1)/2 ⊗ | · |−(m−1)/2)⊗ eν

′
1

)
⊗
(
| · |(m−1)/2 ⊗ | · |−(m−1)/2)⊗ e−ν

′
1

)
(171)

if m is even (cf. (156)). More generally, one may parabolically induce(
($′1 ⊗ eν

′
1)⊗ · · · ⊗ ($′k ⊗ eν

′
k)
)
⊗
(

($′k ⊗ e−ν
′
k)⊗ · · · ⊗ ($′1 ⊗ e−ν

′
1)
)

to a representation πI of GLn1
(R)×GLn1

(R), where n1 is the sum of the block sizes of the first k
blocks. By induction in stages, one may show that πI embeds into a principal series representation
of GLn1

(R)×GLn1
(R).

The representation
($′k+1 ⊗ e0)⊗ · · · ⊗ ($′h ⊗ e0)

in the second group of (169) is equal to

(D′nk+1
⊗ e0)⊗ · · · ⊗ (D′nh ⊗ e

0)

where nk+1, . . . , nh are all even integers, and without loss of generality, nk+1 ≥ nk+2 ≥ · · · ≥ nh.
This places us in the context of Lemma 7.6 ([Kna86]*Theorem 14.91), but it is easy to write things
out explicitly here again. By (156), each factor embeds into a principal series representation of
GL2(R). One may parabolically induce ($′k+1 ⊗ e0) ⊗ · · · ⊗ ($′h ⊗ e0) to a representation πII of
GLn2(R), where n2 = 2(h− (k+ 1)) is the sum of the block sizes from k+ 1 to h. Using induction
in stages, one may show that πII embeds into a principal series representation of GLn2(R). After
conjugating by an element in GLn2

(R), the principal series representation may be taken to be
induced from the upper-triangular Borel subgroup with the quasicharacter

| · |(nk+1−1)/2 ⊗ | · |(nk+2−1)/2 ⊗ · · · ⊗ | · |(nh−1)/2

⊗ | · |−(nh−1)/2 ⊗ · · · ⊗ | · |−(nk+2−1)/2 ⊗ | · |−(nk+1−1)/2.
(172)

This brings us to the representation ($′h+1 ⊗ e0)⊗ · · · ⊗ ($′i ⊗ e0) in the third group of (169).
It too may be parabolically induced to a representation πIII of GLn3

(R) where n3 is the sum of
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the block sizes from h+ 1 to i. This induced representation must be irreducible, as otherwise, by

induction in stages, ind
GLN (R)
P (R) (π′⊗eν) ∼= πgen would be reducible. It follows from [Kna86]*Theorem

14.91 that πIII is tempered. In addition, the ϑ-stability of ind
GLN (R)
P (R) (π′ ⊗ eν) combined with the

Langlands Disjointness Theorem imply that πIII is a ϑ-stable representation of GLn3
(R). By

Lemma 7.6, πIII appears as a subquotient of either a ϑ-stable principal series representation of
GLn3

(R) or of a representation parabolically induced from a representation of the form (158).
Taking the tensor product of πI , πII and πIII , we obtain a representation of a block-diagonal

Levi subgroup L of GLN (R) such that

L(R) ∼= GLn1
(R)×GLn2

(R)×GLn3
(R)×GLn1

(R).

By construction

πI ⊗ πII ⊗ πIII = ind
L(R)
(P∩L)(R)(π

′ ⊗ eν),

and appears as a subquotient of either a principal series representation of L(R), or a representation
described by (158) which is nearly in the principal series.

Suppose first that πI ⊗ πII ⊗ πIII is a subquotient of a principal series representation of L(R)
and let Q be a parabolic subgroup of GLN with L as its Levi subgroup. Then

πgen
∼= ind

GLN (R)
P (R) (π′ ⊗ eν) ∼= ind

GLN (R)
Q(R) ind

L(R)
(P∩L)(R)(π

′ ⊗ eν) ∼= ind
GLN (R)
Q(R) (πI ⊗ πII ⊗ πIII)

appears as a subquotient of a principal series representation ind
GLN (R)
B(R) π0 of GLN (R). We are free

to conjugate this principal series representation by an element of GLN (R) in order to permute the
GL1(R) factors of π0. The factors of π0 are given by (170), (171) and (172) (cf. Lemma 7.6 for
the factors coming from πII and πIII). Clearly, the factors of π0 are paired off so that the tensor
product of some permutation of them is fixed under ϑ. Taking π0 to be this ϑ-fixed tensor product
allows us to conclude that πgen is infinitesimally equivalent to a subquotient of a ϑ-stable principal

series representation ind
GLN (R)
B(R) π0. The principal series ind

GLN (R)
B(R) π0 is represented by M(ξp) where

ξp ∈ Ξ(∨O, ∨GLΓ
N )ϑ is as in Lemma 7.1 and so M(ξp)

∼ = M(ξp)
+

Finally, suppose that πI⊗πII⊗πIII is infinitesimally equivalent to a subquotient of an induced
representation which is described by (158). Then we may argue as in the previous paragraph,
except that now exactly one of the factors of π0, stemming from πIII , is a relative discrete series
representation D2j+1 of GL2(R) for a positive integer j. After possibly permuting the factors of π0,
the factor D2j+1 may be assumed to occupy the middle block of GLN (N is even by Lemma 7.6).
The remaining factors of π0 are quasicharacters of GL1(R) which are paired off as before, so that we
may assume that π0 is ϑ-stable (Lemma 7.5). The representation of GLN (R) which is parabolically
induced from π0 using a standard parabolic subgroup, is then ϑ-stable. This representation may
be represented by M(ξp) for some ξp ∈ Ξ(∨O, ∨GLΓ

N )ϑ or as M(x, y) for the equivalent Atlas
parameter (Lemma 2.2). The representation M(x, y) has the same form as (163), with x = x′,
π0 replacing πM , y replacing y′, and the infinitesimal character of π0 replacing λ. The arguments
following (163) apply equally well to M(x, y) and so we conclude that

M(ξp)
∼ = M(x, y)∼ = M(x, y)+ = M(ξp)

+.

Proposition 7.8. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. Then

M(ξ)∼(ϑ) = (−1)l
I(ξ)−lIϑ(ξ) M(ξ)+(ϑ)

and
π(ξ)∼(ϑ) = (−1)l

I(ξ)−lIϑ(ξ) π(ξ)+(ϑ).

Proof. Let πgen = π(ξ0) be the generic representation of Lemma 7.2 and let ξp be as in Lemma 7.7.
Then the proof follows the proof of Proposition 7.4 exactly, although it is not as straightforward
to show that lI(ξp) = lIϑ(ξp) when M(ξp) is not a principal series representation. Let (x, y) be the
Atlas parameter equivalent to ξp. When M(ξp) is not a principal series representation it was noted
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in the proof of Lemma 7.7 that N is even and that the Cartan involution corresponding to x = x′

acts on roots as −sαN/2 (see (162)). From (60), (61) and the fact that αN/2 is also simple root of
type 1 in Rϑ(GLN , H) (see (84)), we compute

lI(ξp) = −1

2

(∣∣{α ∈ R+(λ) : −sαN/2(α) ∈ R+(λ)
}∣∣+ dim

(
H
−sαN/2

))
= −1

2
(1 + 1)

= −1

2

(∣∣{α ∈ R+
ϑ (λ) : −sαN/2(α) ∈ R+

ϑ (λ)
}∣∣+ dim

((
Hϑ
)−sαN/2))

= lIϑ(ξp).

It is worth observing that Theorem 3.5 now has the following simple form, reminiscent of
Theorem 3.1.

Corollary 7.9. The pairing (62), defined by (63), satisfies

〈M(ξ)∼, µ(ξ′)+〉 = δξ,ξ′

and
〈π(ξ)∼, P (ξ′)+〉 = (−1)d(ξ) δξ,ξ′

for ξ, ξ′ ∈ Ξ(∨O∨GLΓ
N )ϑ. Equivalently,

m∼
r (ξ′, ξ) = (−1)d(ξ)−d(ξ′)cϑg (ξ, ξ′), (173)

where m∼
r (ξ′, ξ) is defined by the decomposition

M(ξ)∼ =
∑

ξ′∈(Ξ(O,∨GLΓ
N )1)ϑ

m∼
r (ξ′, ξ)π(ξ′)∼. (174)

in KΠ(O,GLN (R), ϑ).

Proof. The first assertion is an immediate consequence of Proposition 7.8. For the second assertion,
we return to decomposition (65). Substituting the Whittaker extensions of Proposition 7.8 into
this decomposition and comparing with (174), we deduce that

mϑ
r (ξ′, ξ) = (−1)l

I(ξ′)−lIϑ(ξ′)−(lI(ξ)−lIϑ(ξ))m∼
r (ξ′, ξ).

Substituting this expression into the identity of Proposition 3.7 we see that the first assertion is
equivalent to

m∼
r (ξ′, ξ) = (−1)l

I(ξ)−lI(ξ′) cϑg (ξ, ξ′).

This identity is equivalent to (173), as

lI(ξ)− d(ξ) = lI(ξ′)− d(ξ′)

is a constant independent of ξ, ξ′ ∈ Ξ(O, ∨GLΓ
N )ϑ (Proposition B.1 [AMR17]).

Another consequence of Proposition 7.8 is that the endoscopic lifting map Lift0 (132) is equal
to the endoscopic transfer map TransGLNoϑ

G used in Arthur’s definition (5) of ηAr
ψG

. This is a crucial

step in the comparison of ηAr
ψG

and ηABV
ψG

.

Corollary 7.10. Suppose G is a simple twisted endoscopic group as in Section 5.2. Suppose further
that SG ⊂ X(∨OG, ∨GΓ) is a ∨G-orbit and let ε(SG) ⊂ X(∨O, ∨GLΓ

N ) be the ∨GLN -orbit of the
image of SG under ε (113). Then

(a)
Lift0(ηloc

SG(σ)(δq)) = M(ε(SG), 1)∼,
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(b)
Lift0 = TransGLNoϑ

G

on KCΠ(∨OG, G(R, δq))st.

Proof. The first assertion is an immediate consequence of Propositions 5.3 and 7.8. The second
assertion follows from the identity

TransGLNoϑ
G (ηloc

SG(δq)) = M(ε(SG), 1)∼

([AMR18]*(1.0.3), [Mez16]) and the fact that the stable virtual characters ηloc
SG

(δq) form a basis for

KCΠ(∨OG, G(R, δq))st as SG runs over the ∨G-orbits in X(∨OG, ∨GΓ).

8 The comparison of ΠψG and ΠABV
ψG

for regular infinitesimal
character

In this section we prove the main results comparing ηAr
ψG

with ηABV
ψG

((19), (20)). We shall work
under the assumptions of Section 5.2. In particular, ψG and ψ = ε ◦ ψG are A-parameters with
respective infinitesimal characters ∨OG and ∨O. The assumption on the infinitesimal characters is
that they are regular with respect to GLN . This assumption shall be removed in the next section.

The definition of ηAr
ψG

was outlined in (5). Let us provide a few more details from [Art13]. The
key lemma is

Lemma 8.1. Let Sψ ⊂ X(∨O, ∨GLΓ
N ) be the ∨GLN -orbit corresponding to φψ ([ABV92]*Proposition

6.17, (26)).

(a) There exist integers nS such that

π(Sψ, 1)∼ =
∑

(S,1)∈Ξ(∨O,∨GLN )ϑ

nSM(S, 1)∼ (175)

in KΠ(∨O,GLN (R), ϑ).

(b) Moreover, for every S such that nS 6= 0 in (175) there exists a unique ∨G-orbit SG ⊂
X(∨OG, ∨GΓ) which is carried to S under ε.

(c) Writing
S = ε(SG)

for the orbits in part (b), we have

π(Sψ, 1)∼ = TransGLNoϑ
G

(∑
SG

nε(SG) η
loc
SG(δq)

)

= Lift0

(∑
SG

nε(SG) η
loc
SG(δq)

)
.

(176)

Proof. By virtue of Proposition 7.8, (175) is equivalent to a decomposition

π(Sψ, 1)+ =
∑

(S,1)∈Ξ(∨O,∨GLN )ϑ

n′SM(S, 1)+

of Atlas extensions. The latter decomposition follows from (65) and Lemma 3.6. The existence
of the orbit SG in part (b) is established on the first page of the proof of [Art13]*Lemma 2.2.2.
The uniqueness of the orbit follows from Proposition 5.2. Part (c) is a consequence of Corollary
7.10.
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Arthur’s definition of ηAr
ψG

is easiest to state when the endoscopic group G is not equal to SON

for even N . In this case, the group G has no outer automorphisms and the defining equation (5)
is the same as (176). It follows that

ηAr
ψG =

∑
SG

nε(SG) η
loc
SG(δq) ∈ KCΠ(∨OG, G(R, δq))st (177)

(cf. [Art13]*(2.2.12)). By definition, the A-packet ΠAr
ψG

consists of those irreducible characters
in Π(∨OG, G(R, δq)) which occur with non-zero multiplicity when (177) is expressed as a linear
combination in the basis of irreducible characters.

In the case that N is even and G = SON , the stable virtual character ηAr
ψG

is defined to
be invariant under the action of the outer automorphisms induced by the orthogonal group ON

([Art13]*pp. 12, 41). Fix
w̃ ∈ ON − SON . (178)

The orthogonal group acts on geometric parameters in X(∨OG, ∨GΓ) in a straightforward manner,
sending them to geometric parameters in X(w̃ · ∨OG, ∨GΓ). The stable virtual character

1

2
(ηloc
SG(δq) + ηloc

w̃·SG(δq)) ∈ KCΠ(∨OG, G(R, δq))st ⊕KCΠ(w̃ · ∨OG, G(R, δq))st

is ON -invariant by design. Extending the domain of TransGLNoϑ
G to the space on the right, equa-

tions (5) and (176) imply

ηAr
ψG =

∑
SG

nε(SG)

2
(ηloc
SG(δq) + ηloc

w̃·SG(δq)).

This is a virtual character in KCΠ(∨OG, G(R, δq))st ⊕KCΠ(w̃ · ∨OG, G(R, δq))st and the A-packet
ΠψG consists of the irreducible characters in its support.

Theorem 8.2. (a) If G is not isomorphic to SON for even N then

ηAr
ψG = ηmic

ψG (δq) = ηABV
ψG and ΠAr

ψG = ΠABV
ψG .

(b) If N is even and G ∼= SON then

ηψG =
1

2

(
ηmic
ψG (δq) + ηmic

Int(w̃)◦ψG(δq)
)

=
1

2

(
ηABV
ψG + ηABV

Int(w̃)◦ψG

)
and

ΠAr
ψG = ΠABV

ψG ∪ ΠABV
Int(w̃)◦ψG

where the union is disjoint.

Proof. This just involves putting together the pieces. Let ξ = (Sψ, 1) as in Corollary 6.4.

Lift0 (ηmic
ψG (δq)) = Lift0 (ηmic

ψG (σ)(δq)) (by (138))

= (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+ (Corollary 6.4)

= π(ξ)∼ (Proposition 7.8)

= π(Sψ, 1)∼

= TransGLNoϑ
G

(∑
SG

nε(SG) η
loc
SG(δq)

)
(Lemma 8.1)

= Lift0

(
ηAr
ψG

)
(Corollary 7.10(b)).

The equality of the stable virtual characters follows from the injectivity of Lift0 (Proposition 5.4).
The equality of packets follows immediately.
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For part (b), identical reasoning leads to the identity

Lift0(ηmic
ψG (δq)) = TransGLNoϑ

G

(∑
SG

nε(SG)(η
loc
SG(δq) + ηloc

w̃·SG(δq))

)
= Lift0(ηAr

ψG).

The first assertion of part (b) follows from the injectivity of Lift0 as before. The irreducible charac-
ters in the support of

∑
SG
nε(SG)η

loc
SG

(δq) are those in the packet ΠABV
ψG

. These irreducible characters

lie in Π(∨OG, G(R, δq)). Similarly the irreducible characters in the support of
∑
SG
nε(SG)η

loc
w̃·SG(δq)

are those in ΠABV
Int(w̃)◦ψG . These irreducible characters lie in Π(w̃ · ∨OG, G(R, δq)). The regularity

of the infinitesimal character ∨OG implies ∨OG ∩ (w̃ · ∨OG) = ∅, otherwise there exists g ∈ ∨SON

and λ ∈ ∨OG ∩ ∨hϑ such that Ad(w̃g)λ = λ. This would imply w̃g ∈ ∨Hϑ ⊂ ∨SON , contradicting
the definition of w̃. In consequence,

Π(∨OG, G(R, δq)) ∩Π(w̃ · ∨OG, G(R, δq)) = ∅

and
ΠABV
ψG ∩ ΠABV

Int(w̃)◦·ψG = ∅.

This proves the final assertion.

9 The comparison of ΠψG and ΠABV
ψG

for singular infinitesimal
character

To conclude our comparison of stable virtual characters, we retain the setup of the previous section,
but without the hypothesis of regularity on the infinitesimal character. In other words, the orbits
∨O and ∨OG are now allowed to be orbits of singular infinitesimal characters and the reader
should think of them as such. In order to prove something like Theorem 8.2 for singular ∨O,
we must extend the pairing of Theorem 3.5 and extend the twisted endoscopic lifting (132) to
include representations with singular infinitesimal character. The main tool for this extension is
the Jantzen-Zuckerman translation principle, which we refer to simply as translation. In essence
the Jantzen-Zuckerman translation principle allows one to transfer results for regular infinitesimal
character to results for singular infinitesimal character. Applying this principle to the results of the
previous section will allow us to compare ΠψG with ΠABV

ψG
with no restriction on the infinitesimal

character.
The reader is assumed to have some familiarity with then Jantzen-Zuckerman translation prin-

ciple, which for us begins with the existence of a regular orbit ∨O′ ⊂ ∨glN and a translation datum
T from ∨O to ∨O′ ([ABV92]*Definition 8.6, Lemma 8.7). A key feature of the translation datum
is that if ∨O is the ∨GLN -orbit of λ ∈ ∨h then ∨O′ is the ∨GLN -orbit of

λ′ = λ+ λ1 ∈ ∨h (179)

where λ1 ∈ X∗(H) is regular and dominant with respect to the positive system of R+(GLN , H).
We may and shall take λ1 to be the sum of the positive roots. In this way, each of λ, λ1 and λ′

are fixed by ϑ. The translation datum T induces a ∨GLN -equivariant morphism

fT : X(∨O′, ∨GLΓ
N )→ X(∨O, ∨GLΓ

N ) (180)

of geometric parameters ([ABV92]*Proposition 8.8). The morphism has connected fibres of fixed
dimension, a fact we shall use when comparing orbit dimensions. The ∨GLN -equivariance of (180)
is tantamount to a coset map commuting with left-multiplication by ∨GLN ([ABV92]*(6.10)(b)).
Since both λ and λ′ are fixed by ϑ, it is just as easy to see that the action of ϑ commutes with the
same coset map. We leave this exercise to the reader, taking for granted the resulting (∨GLNo〈ϑ〉)-
equivariance of (180).

According to [ABV92]*Proposition 7.15, the morphism fT induces an inclusion

f∗T : Ξ(∨O, ∨GLΓ
N ) ↪→ Ξ(∨O′, ∨GLΓ

N ) (181)
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of complete geometric parameters. The ϑ-equivariance of (180) implies that this inclusion restricts
to an inclusion (denoted by the same symbol)

f∗T : Ξ(∨O, ∨GLΓ
N )ϑ ↪→ Ξ(∨O′, ∨GLΓ

N )ϑ.

The (Jantzen-Zuckerman) translation functor ([AvLTV20]*(17.8j))

Tλλ′ = Tλλ+λ1

is an exact functor on a category of Harish-Chandra modules, which we shall often regard as a
homomorphism

Tλλ+λ1
: KΠ(∨O′,GLN (R)o 〈ϑ〉)→ KΠ(∨O,GLN (R)o 〈ϑ〉) (182)

of Grothendieck groups. It is surjective ([AvLTV20]*Corollary 17.9.8). This translation functor is
an extended version of the usual translation functor ([AvLTV20]*(16.8f)), which we also denote
by

Tλλ+λ1
: KΠ(∨O′,GLN (R))→ KΠ(∨O,GLN (R)). (183)

Let us take a moment to make (182) more precise. The sum of the positive roots λ1 is the
infinitesimal character of a finite-dimensional representation of GLN (R). Therefore, λ1 is the
differential of a ϑ-fixed quasicharacter Λ1 of the split real diagonal torus H(R), which matches
the weight of this finite-dimensional representation. The quasicharacter Λ1 may be extended to a
quasicharacter Λ+

1 of the semi-direct product H(R)o 〈ϑ〉 by setting

Λ+
1 (ϑ) = 1. (184)

We define translation in the extended setting of (182) using this representation of the extended
group. Since the extension is evident here we continue to write Tλλ+λ1

instead of Tλ
λ+Λ+

1

.

In the ordinary setting of (183) we have

π(ξ) = Tλλ+λ1
(π(f∗T (ξ))) ,

M(ξ) = Tλλ+λ1
(M(f∗T (ξ))) , ξ ∈ Ξ(∨O, ∨GLΓ

N )

([AvLTV20]*Corollary 16.9.4, 16.9.7 and 16.9.8, or [ABV92]* Theorem 16.4 and Proposition 16.6).
We define the Atlas extensions of π(ξ) and M(ξ), with ξ ∈ Ξ(∨O, ∨GLΓ

N )ϑ, by

π(ξ)+ = Tλλ+λ1
(π(f∗T (ξ))+)

M(ξ)+ = Tλλ+λ1
(M(f∗T (ξ))+).

(To be careful, one should verify that this definition does not conflict with Section 2.5 when ∨O
is regular. This amounts to the observation that the translate of the (h, (H ∩Kδ) o 〈ϑ〉)-module
underlying an Atlas extension remains trivial on ϑ. Justification for this observation is given in
proof of Proposition 9.1).

With the definition of Atlas extensions in place, the discussion of Section 2.7 is valid, and
we see that Tλλ+λ1

factors to a homomorphism of KΠ(∨O,GLN (R), ϑ) (see (44)). We use the

same notation Tλλ+λ1
to denote the functor of Harish-Chandra modules, and either of the earlier

homomorphisms. The reader will be reminded of the context when it is important.
The definition of a Whittaker extension does not depend on the regularity of the infinitesi-

mal character. The following proposition shows that translation sends Whittaker extensions to
Whittaker extensions.

Proposition 9.1. Suppose ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ. Then (as Harish-Chandra modules)

Tλλ+λ1
(M(f∗T (ξ))∼) = M(ξ)∼,

and
Tλλ+λ1

(π(f∗T (ξ))∼) = π(ξ)∼.
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Proof. Lemma 7.2 does not require ∨O to be regular, and so we may choose ξ0 ∈ Ξ(∨O, ∨GLΓ
N )ϑ

to be the unique parameter such that π(ξ0) is generic and embeds as a subrepresentation of M(ξ).
(Here, we are implicitly assuming that we are working with actual admissible representations (or
Harish-Chandra modules) rather than equivalence classes.) Since the orbit Sξ0 ⊂ X(∨O, ∨GLΓ

N )
of ξ0 is open (see the proof of Proposition 7.3), it is an immediate consequence of the definition of
f∗T ([ABV92]*(7.16)(b)) that f∗T (Sξ0) is open and therefore that π(f∗T (ξ0)) is generic.

According to Lemma 7.7, π(f∗T (ξ0)) embeds into a standard representation M(ξ′p) for some ξ′p ∈
Ξ(∨O′, ∨GLΓ

N )ϑ, which satisfies M(ξ′p)
∼ = M(ξ′p)

+. Furthermore, π(f∗T (ξ0)) occurs as a subrep-
resentation with multiplicity one, and π(f∗T (ξ0))∼ is a subrepresentation of M(ξ′p)

∼ (Lemma 7.2).

Applying the exact functor Tλλ+λ1
(of Harish-Chandra modules), we see that Tλλ+λ1

(π(f∗T (ξ0))∼)

is a subrepresentation of Tλλ+λ1

(
M(ξ′p)

∼).
Suppose first that M(ξ′p) is a principal series representation. By [AvLTV20]*Corollary 17.9.7

Tλλ+λ1

(
M(ξ′p)

∼) is an extension of a principal series representation. Indeed, M(ξ′p)
∼ = M(ξ′p)

+

(Lemma 7.1) and is parabolically induced from a quasicharacter of a split Cartan subgroup extended
by 〈ϑ〉–the value of this quasicharacter on ϑ being one (Section 2.5). [AvLTV20]*Corollary 17.9.7
tells us that Tλλ+λ1

(
M(ξ′p)

∼) is parabolically induced from the tensor product of the aforementioned

quasicharacter with the inverse of Λ+
1 as in (184) ([AvLTV20]*Theorem 17.7.5). This justifies

Tλλ+λ1

(
M(ξ′p)

∼) being an extended principal series representation, but more can be said. In view

of (184), translation by (Λ+
1 )−1 does not affect the value of the quasicharacter on ϑ. Consequently

its value on ϑ is still one. The arguments of Lemma 7.1 therefore apply to Tλλ+λ1

(
M(ξ′p)

∼) as they
do for M(ξp)

∼ and we deduce

ω = ω ◦ Tλλ+λ1

(
M(ξ′p)

∼) (ϑ) (185)

for the Whittaker functional ω defined by (151).
If M(ξ′p) is not a principal series representation then it is of the form (164), which is a parabol-

ically induced representation, essentially from a relative discrete series representation on GL2(R).
Such a representation may still be regarded as being induced, albeit not parabolically induced, from
a quasicharacter of a non-split Cartan subgroup. The earlier arguments from [AvLTV20]* Corol-
lary 17.9.7 apply. We leave it to the reader, to verify that (185) holds in any case. In consequence
of (185) and the exactness of Tλλ+λ1

,

ω ◦ Tλλ+λ1
(π(f∗T (ξ0))∼) (ϑ) = ω ◦ Tλλ+λ1

(
M(ξ′p)

∼) (ϑ)|π(ξ0) = ω.

This proves that Tλλ+λ1
(π(f∗T (ξ0))∼) is the Whittaker extension of

Tλλ+λ1
(π(f∗T (ξ0)) = π(ξ0),

that is
Tλλ+λ1

(π(f∗T (ξ0))∼) = π(ξ0)∼. (186)

To complete the proposition we embed π(f∗T (ξ0))∼ as a subrepresentation of M(f∗T (ξ))∼ using
Lemma 7.2. Applying the exact functor Tλλ+λ1

(of Harish-Chandra modules), we see that (186) is

a subrepresentation of Tλλ+λ1
(M(f∗T (ξ))∼). Since a Whittaker functional ω of Tλλ+λ1

(M(f∗T (ξ))) =
M(ξ) restricts to a non-zero Whittaker functional ω|π(ξ0) on π(ξ0) and

c ω = ω ◦ Tλλ+λ1
(M(f∗T (ξ))∼) (ϑ)

for c = ±1, we deduce in succession that

c ω|π(ξ0) = ω ◦ Tλλ+λ1
(M(f∗T (ξ))∼) (ϑ)|π(ξ0) = ω ◦ π(ξ0)∼(ϑ) = ω|π(ξ0),

c = 1 and
ω = ω ◦ Tλλ+λ1

(M(f∗T (ξ))∼) (ϑ).

The final equation implies
Tλλ+λ1

(M(f∗T (ξ))∼) = M(ξ)∼.

Since π(f∗T (ξ))∼ and π(ξ)∼ are the unique irreducible quotients of M(f∗T (ξ))∼ and M(ξ)∼ respec-
tively, and Tλλ+λ1

is exact (on Harish-Chandra modules), the proposition follows.
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Our translation datum T for GLN is defined by (179), in which both λ and λ′ are fixed by the
endoscopic datum Int(s) ◦ ϑ. For this reason (179) also determines a translation datum TG from
∨G-orbits ∨OG to ∨O′G for the twisted endoscopic group G ([ABV92]*Definition 8.6 (e)). Just as
for GLN , we have maps

fTG : X(∨O′, ∨GΓ)→ X(∨O, ∨GΓ)

f∗TG : Ξ(∨O, ∨GΓ) ↪→ Ξ(∨O′, ∨GΓ)

and the translation functor Tλλ+λ1
which satisfies

π(ξ) = Tλλ+λ1

(
π(f∗TG(ξ))

)
, ξ ∈ Ξ(∨OG, ∨GΓ)

([ABV92]*Proposition 16.6, [AvLTV20]*Section 16).
The translation data T and TG allow us to transport properties of our pairings at regular

infinitesimal character (Proposition 7.9) to the same properties for pairings at singular infinitesimal
character.

Proposition 9.2. Define the pairing

〈·, ·〉 : KΠ(∨O,GLN (R), ϑ)×KX(∨O, ∨GLΓ
N ,σ)→ Z (187)

by
〈M(ξ)∼, µ(ξ′)+〉 = δξ,ξ′ .

Then
〈π(ξ)∼, P (ξ′)+〉 = (−1)d(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨GLΓ
N )ϑ.

Proof. We first sketch the proof for the ordinary pairing of Theorem 3.1 in [ABV92], which does
not involve twisting by ϑ. This will allow us to point out the portions of the proof that must be
modified in the twisted setting. In the ordinary case there are no Whittaker or Atlas extensions,
and the identity to be proven is (53)

mr(ξ1, ξ2) = (−1)d(ξ1)−d(ξ2) cg(ξ2, ξ1), ξ1, ξ2 ∈ Ξ(∨O, ∨GΓ)

for the possibly singular orbit ∨O. The idea of the proof is to show that both sides of (53) are
invariant under translation. Starting with the right-hand side of (53), we use [ABV92]*Proposition
8.8 (b), which provides an exact functor from P(X(∨O, ∨GΓ)) to P(X(∨O′, ∨GΓ)) satisfying

P (ξ) 7→ P (f∗TG(ξ))

and
cg(f

∗
TG(ξ1), f∗TG(ξ2)) = cg(ξ1, ξ2), ξ1, ξ2 ∈ Ξ(∨O, ∨GΓ). (188)

The invariance of the left-hand side of (53)

mr(f
∗
TG(ξ1), f∗TG(ξ2)) = mr(ξ1, ξ2), ξ1, ξ2 ∈ Ξ(∨O, ∨GΓ),

is given by [ABV92]*Proposition 16.6 and (16.5)(d), which rely on the translation functor ([ABV92]*(16.3)).
All that is now needed to prove (53) for the possibly singular orbit ∨O is to line up the equations

mr(ξ1, ξ2) = mr(f
∗
TG(ξ1), f∗TG(ξ2))

= (−1)d(f∗TG
(ξ1))−d(f∗TG

(ξ2)) cg(f
∗
TG(ξ2), f∗TG(ξ1))

= (−1)(d(ξ1)−d)−(d(ξ2)−d) cg(ξ2, ξ1)

= (−1)d(ξ1)−d(ξ2) cg(ξ2, ξ1).

(189)

In the third equation, we have used [ABV92]* (7.16)(b) and the dimension d of the connected fibres
of f∗TG to describe the orbit dimensions.
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Let us repeat the preceding proof in the twisted setting. The desired analogue of (188) is

cg(f
∗
T (ξ1)±, f

∗
T (ξ2)±) = cg(ξ1±, ξ2±), ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ

N )ϑ (190)

(see (66)). As before, [ABV92]*Proposition 8.8 (b) ensures this as long as

P (ξ)+ 7→ P (f∗T (ξ))+, ξ ∈ Ξ(∨O, ∨GLΓ
N )ϑ (191)

([ABV92]*Proposition 7.15 (b)). This may be seen as follows. The complete geometric parameter
f∗T (ξ) determines a (∨GLNo〈ϑ〉)-equivariant local system, and the perverse sheaf P (ξ)+ is mapped
to the intermediate extension of this local system (to its ∨GLN -orbit closure) ([ABV92]*(7.10)(d),
[BBD82]*p. 110). Let us call the resulting perverse sheaf P+. We would like P+ = P (f∗T (ξ))+

and this holds when the (∨GLN o〈ϑ〉)-equivariant irreducible constructible sheaf µ(f∗T (ξ))+ occurs
in the decomposition of P+ (cf. (66)). The latter property is true, for P+ and µ(f∗T (ξ))+ are
obtained from the same (∨GLN o 〈ϑ〉)-equivariant local system by intermediate extension and
extension by zero respectively (cf. [ABV92]*(7.11)(b)). This justifies (191) and therefore also
(190). By definition (67) and (190)

cϑg (f∗T (ξ1), f∗T (ξ2)) = cϑg (ξ1, ξ2), ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ
N )ϑ. (192)

Moving to the representation-theoretic multiplicities, we appeal to the translation functor Tλλ+λ1

for GLN o 〈ϑ〉. In KΠ(∨O′,GLN (R), ϑ) we have

M(f∗T (ξ2))∼ =
∑

ξ1∈Ξ(∨O,∨GLΓ
N )ϑ

m∼
r (f∗T (ξ1), f∗T (ξ2))π(f∗T (ξ1))∼ (193)

+
∑
ξ′

m∼
r (ξ′, f∗T (ξ2))π(ξ′)∼

where ξ′ are those parameters in Ξ(∨O′, ∨GLΓ
N )ϑ which do not lie in the image of (181). Applying

Tλλ+λ1
to (193) has the effect of annihilating the second sum on the right ([AvLTV20]*Corollary

17.9.4 and 17.9.8). By Proposition 9.1, the remaining terms are

M(ξ2)∼ =
∑

ξ1∈Ξ(∨O,∨GLΓ
N )ϑ

m∼
r (f∗T (ξ1), f∗T (ξ2))π(ξ1)∼

and this equation implies

m∼
r (f∗T (ξ1), f∗T (ξ2)) = m∼

r (ξ1, ξ2), ξ1, ξ2 ∈ Ξ(∨O, ∨GLΓ
N )ϑ. (194)

Using equations (192) and (194), and replacing mr and cg with m∼
r and cϑg respectively in (189),

we deduce that (173) holds for the possibly singular orbit ∨O.

Proposition 9.2 is the final version of the twisted pairing, and we use it to extend the definition
of endoscopic lifting Lift0 to include singular infinitesimal characters ((131), (132)). In fact, all
of the remaining results used in Section 8 easily carry over to the more general setting, except
for the injectivity of Lift0 (Proposition 5.4). In particular, using the pairing (187) in the proof of
Proposition 5.3, we see that for any ∨G-orbit SG ⊂ X(∨OG, ∨GΓ) we still have

Lift0

(
ηloc
SG(σ)(δq)

)
= M(ε(SG), 1)∼.

It is explained in [Art13]*p. 31 that Lift0 is injective when G is not isomorphic to SON for even
N . However, when G ∼= SON for even N , the endoscopic lifting map is only injective on ON -orbits
[Art13]*pp. 12, 31). That is to say,

Lift0

(
ηloc
S1

(δq)
)

= Lift0

(
ηloc
S2

(δq)
)

for ∨G-orbits of complete geometric parameters if and only if S2 = w̃ · S1 for w̃ as in (178). One
might hope to retain injectivity by restricting the infinitesimal character of S1 to lie in ∨OG, but
this too fails as it is not difficult to construct singular examples in which ∨OG = w̃ · ∨OG.
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Recall decomposition (175)

π(Sψ, 1)∼ =
∑

(S,1)∈Ξ(∨O,∨GLΓ
N )ϑ

nSM(S, 1)∼.

As in the previous section, for each ∨GLN -orbit S with nS 6= 0 there exists a ∨G-orbit SG ⊂
X(∨OG, ∨GΓ) such that ε(SG) = S. The difference now is that when G is an even special orthogonal
group the orbit SG may not be uniquely determined in X(∨OG, ∨GΓ). The lack of uniqueness forces
us to weaken Theorem 8.2 in this context in that the ABV-packets in part (b) below are no longer
necessarily disjoint.

Theorem 9.3. (a) If G is not isomorphic to SON for even N then

ηAr
ψG = ηmic

ψG (δq) = ηABV
ψG and ΠAr

ψG = ΠABV
ψG .

(b) If N is even and G ∼= SON then

ηψG =
1

2

(
ηmic
ψG (δq) + ηmic

Int(w̃)◦ψG(δq)
)

=
1

2

(
ηABV
ψG + ηABV

Int(w̃)◦ψG

)
and

ΠAr
ψG = ΠABV

ψG ∪ ΠABV
Int(w̃)◦ψG .

Proof. The proof of the first assertion is completely the same as the proof of Theorem 8.2(a), since
the injectivity of Lift0 holds. Suppose therefore that N is even and G ∼= SON . As in the proof of
Theorem 8.2 we have

Lift0

(
ηmic
ψG (δq) + ηmic

Int(w̃)◦ψG(δq)
)

= 2π(Sψ, 1)∼

=
∑
j

2nSM(S, 1)∼

= Lift0

(∑
SG

nε(SG)(η
loc
SG(δq) + ηloc

w̃·SG(δq))

)
.

Since Lift0 is injective on ON -orbits of stable virtual characters, the second assertion follows.

10 The comparison of Problems B-E

Theorem 9.3 is a comparison of the solutions to Problem A of Arthur and Adams-Barbasch-Vogan.
Let us compare the remaining problems of the introduction.

Problem E, concerning the unitarity of the representations in the A-packets, stands apart
from Problems B-D. It is also easy to dispense with. Arthur proves that ΠψG consists of unitary
representations ([Art13]*Theorem 2.2.1 (b)), and so by Theorem 9.3, every packet ΠABV

ψG
also

consists of unitary representations.
For problems B-D, we review Arthur’s approach first. The stable virtual character ηAr

ψG
is

written
ηAr
ψG =

∑
σ∈Σ̃ψG

< sψG , σ > σ (195)

as in [Art13]*(7.1.2). Here, Σ̃ψG is a finite set of non-negative integral linear combinations

σ =
∑

π∈Πunit(G(R))

m(σ, π)π

of irreducible unitary characters of G(R) = G(R, δq). Furthermore, there is an injective map from

Σ̃ψG into the set of those quasicharacters of

AψG = ∨GψG/(
∨GψG)0
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which are trivial on the centre of ∨G. The injection is denoted by

σ 7→< ·, σ > .

The element sψG is the image of

ψG

(
1,

[
−1 0
0 −1

])
in AψG . The element sψG is clearly of order two. It is easy to rewrite (195) as

ηAr
ψG =

∑
π∈ΠψG

 ∑
σ∈Σ̃ψG

m(σ, π) < sψG , σ >

π (196)

(cf. [Art13]*Proposition 7.4.3 and (7.4.1)). By defining a finite-dimensional representation

τψG(π) =
⊕

σ∈Σ̃ψG

m(σ, π) < ·, σ >, (197)

equation (196) becomes

ηAr
ψG =

∑
π∈ΠψG

Tr (τψG(π)(sψG))π. (198)

The finite-dimensional representations defined in (197) provide a solution to Problem B. Equation
(198) is close to a complete resolution of Problem C. We also need to show that the quasicharacters
< ·, σ > occurring in a given τψG(π) have the same value επ at sψG . In this way the trace
Tr (τψG(π)(sψG)) would reduce to επ · dim(τψG(π)) as expected. We return to this point when we
compare with ηABV

ψG
= ηmic

SψG
(δq) (49) below.

Problem D concerns endoscopic lifting from an endoscopic group G′ of G. The endoscopic
group G′ is defined to be a quasisplit form of a complex reductive group whose dual ∨G′ is the
identity component of the centralizer in ∨G of a semisimple element s ∈ ∨G (cf. Section 5 and
[Art13]*Theorem 2.2.1(b)). Furthermore, the element s is taken to centralize the image of ψG, and
there is a natural embedding ε′ : ∨(G′)Γ ↪→ ∨GΓ. Arthur’s solution to Problem D tells us that if

ψG = ε′ ◦ ψG′

for an A-parameter ψG′ then there exists a stable virtual character ηψG′ on G′(R) such that

TransGG′(ηψG′ ) =
∑

π∈ΠAr
ψG

Tr (τψG(π)(sψG s̄))π (199)

([Art13]*Theorem 2.2.1). Here, s̄ ∈ AψG is the coset of s, and TransGG′ denotes the standard
endoscopic lifting of Shelstad ([She83]). Observe that (198) is obtained from (199) by taking s = 1.

Now let us look at Problems B-D from the perspective of [ABV92]. Each π ∈ ΠABV
ψG

is of the
form π(ξ) for a unique complete geometric parameter ξ = (Sξ, τξ). Using this, we set

τABV
ψG (π) = τmic

SψG
(P (ξ))

as in (133). This is a solution to Problem B. The solution to Problem C is then given by (139),
which we may write as

ηABV
ψG =

∑
π∈ΠABV

ψG

(−1)d(π)−d(SψG ) dim
(
τABV
ψG (π)

)
π,

where d(π) = d(Sξ) for π = π(ξ) as above. The solution to Problem D is given by [ABV92]*Theorem
26.25. Translated into the setting of (199), it reads as

LiftG0

(
ηABV
ψG′

)
=

∑
π∈ΠABV

ψG

(−1)d(π)−d(SψG ) Tr
(
τABV
ψG (π)(s̄)

)
π (200)
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[ABV92]*Definition 24.15 and (26.17)(f). Here, LiftG0 is the standard endoscopic lifting map of
[ABV92]*Definition 26.18, which is defined on the stable virtual characters of G′(R) and take
values in the virtual characters of G(R).

We wish to compare Arthur’s solutions to Problems B-D with those of [ABV92]. This amounts
to comparing (199) with (200). For this comparison, we shall, for the sake of simplicity, assume
that

G = SON , N odd

from now on. This assumption avoids the irksome complications arising from even special orthog-
onal groups in Theorem 9.3 (b). Under our assumption Theorem 9.3 tells us that the solutions of
Arthur and Adams-Barbasch-Vogan to Problem A are identical.

In comparing (199) with (200), we must choose our endoscopic groups judiciously. Recall that
AψG is the component group of the centralizer in ∨G of the image of ψG. The explicit description
of this centralizer in [Art13]*(1.4.8) makes it clear that every element s̄ ∈ AψG has a diagonal
representative ṡ in the centralizer with eigenvalues ±1. The endoscopic group G′(ṡ) determined by
ṡ is a direct product G′1(ṡ)×G′2(ṡ) in which each of the two factors is a special orthogonal group
of odd rank ([Art13]*pp. 13-14). The A-parameter ψG′(ṡ) decomposes accordingly as a product
ψG′1(ṡ) × ψG′2(ṡ) of A-parameters ([Art13]*pp. 31, 36). Similarly, Arthur’s stable virtual character
ηψG′(ṡ) is defined as the tensor product ηψG′1(ṡ)

⊗ ηψG′2(ṡ)
([Art13]*Remark 2 of Theorem 2.2.1).

Hence, a particular instance of (199) reads as

TransGG′(ηψG′1(ṡ)
⊗ ηψG′2(ṡ)

) =
∑

π∈ΠψG

Tr (τψG(π)(sψG s̄))π. (201)

We now turn to rewriting the left-hand side of (201) so as to match it with the left-hand side of
(200). First, it is noted on [ABV92]*p. 289 that TransGG′ = LiftG0 . Second, using the arguments in
the proof of Corollary 6.2, we see that

ηABV
ψG′(ṡ)

= ηABV
ψG′1(ṡ)

⊗ ηABV
ψG′2(ṡ)

.

Third, since G′1(ṡ) and G′2(ṡ) are both odd rank special orthogonal groups, Theorem 9.3 (a) tells
us that

ηAr
ψG′

j
(ṡ)

= ηABV
ψG′

j
(ṡ)
, j = 1, 2.

Taking these three observations together we conclude

TransGG′
(
ηAr
ψG′(ṡ)

)
= LiftG0

(
ηAr
ψG′1(ṡ)

⊗ ηAr
ψG′2(ṡ)

)
= LiftG0

(
ηABV
ψG′1(ṡ)

⊗ ηABV
ψG′2(ṡ)

)
= LiftG0

(
ηABV
ψG′(ṡ)

)
.

It is now immediate from (199) and (200) that∑
π∈ΠψG

Tr (τψG(π)(sψG s̄))π =
∑

π∈ΠψG

(−1)d(π)−d(SψG ) Tr
(
τABV
ψG (π)(s̄)

)
π

for any s̄ ∈ Aψ. By the linear independence of characters on G(R)

Tr (τψG(π)(sψG s̄)) = (−1)d(π)−d(SψG ) Tr
(
τABV
ψG (π)(s̄)

)
for any s̄ ∈ Aψ. This may be regarded as an equality between virtual (quasi)characters on Aψ (cf.
(197)). By appealing to the linear independence of these (quasi)characters we conclude that

τψG(π)(sψG) = (−1)d(π)−d(SψG )

and
τψG(π) = τABV

ψG (π).
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The former equation gives a complete solution to Arthur’s approach to Problem C.
This completes our solution of Problems B-D for odd rank special orthogonal groups. A similar

argument holds for symplectic and even orthogonal groups, keeping in mind the element w̃ of
Theorem 9.3 (b) when comparing virtual characters on G(R) or G′(R). We leave the details to the
interested reader.
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groups using the trace formula. Ann. Sci. Éc. Norm. Supér. (4), 50(2):269–344, 2017.

79
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in Mathematics. Birkhäuser, Boston, Mass., 1981.

[Vog82] David A. Vogan, Jr. Irreducible characters of semisimple Lie groups. IV. Character-
multiplicity duality. Duke Math. J., 49(4):943–1073, 1982.

[Vog83] David A. Vogan. Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-
Lusztig conjecture in the integral case. Invent. Math., 71(2):381–417, 1983.

[Vog93] David A. Vogan, Jr. The local Langlands conjecture. In Representation theory of
groups and algebras, volume 145 of Contemp. Math., pages 305–379. Amer. Math.
Soc., Providence, RI, 1993.

80


	Introduction
	The local Langlands correspondence
	Extended groups and complete geometric parameters
	The space X(O,G)
	Extended groups for G and G
	Atlas parameters for GLN
	Twisted Atlas parameters for GLN
	Grothendieck groups of characters
	Grothendieck groups of twisted characters

	Sheaves and Characteristic Cycles
	The pairing and the ABV-packets in the non-twisted case
	The pairing in the twisted case

	The proof of Theorem 3.5
	The Beilinson-Bernstein correspondence in the proof of Theorem 3.5
	Vogan Duality for GLN
	Vogan Duality for twisted GLN
	Twisted Hecke modules
	The Hecke module isomorphism
	Verdier duality
	The proof of Theorem 3.5
	Twisted KLV-polynomials for the dual of GLN(R)

	Endoscopic lifting for general linear groups following Adams-Barbasch-Vogan
	Standard endoscopy
	Twisted endoscopy

	ABV-packets for general linear groups
	Whittaker extensions and their relationship to Atlas extensions
	The comparison of G and GABV for regular infinitesimal character
	The comparison of G and GABV for singular infinitesimal character
	The comparison of Problems B-E

