Equivalent definitions of Arthur packets for real classical
groups

J. Adams, N. Arancibia Robert, P. Mezo
August 2, 2021

Contents
1 Introduction
2 The local Langlands correspondence

9

2.1 Extended groups and complete geometric parameters . . . . . . . .. ... .. ...
2.2 Thespace X(YO,VGY) . . . o
2.3 Extended groups for G and VG . . . . .. ...
2.4 Atlas parameters for GLy . . . . . . . ...
2.5 Twisted Atlas parameters for GLy . . . . . . . . . . . . .
2.6 Grothendieck groups of characters . . . . . ... .. ... ... 0L
2.7 Grothendieck groups of twisted characters . . . . . . .. ... ... ...

Sheaves and Characteristic Cycles
3.1 The pairing and the ABV-packets in the non-twisted case . . . .. ... ... ...
3.2 The pairing in the twisted case . . . . . . . .. . Lo o

The proof of Theorem 3.5

4.1 The Beilinson-Bernstein correspondence in the proof of Theorem 3.5 . . . . . . ..
4.2 Vogan Duality for GLy . . . . . . . ..
4.3 Vogan Duality for twisted GLy . . . . . . . . . . .
4.4 Twisted Hecke modules . . . . . . . . . . .. . .
4.5 The Hecke module isomorphism . . . . . . . . . .. ... Lo
4.6 Verdier duality . . . . . . . . L
4.7 The proof of Theorem 3.5 . . . . . . . . . . .
4.8 Twisted KLV-polynomials for the dual of GLxy(R) . . . . .. .. ... ... ...

Endoscopic lifting for general linear groups following Adams-Barbasch-Vogan
5.1 Standard endoscopy . . . . .. ..
5.2 Twisted endoscopy . . . . . . . .. e

ABV-packets for general linear groups
Whittaker extensions and their relationship to Atlas extensions

The comparison of IL,;, and H;}GBV for regular infinitesimal character

The comparison of IL,, and Hf/}GBV for singular infinitesimal character

10 The comparison of Problems B-E

10
11
12
14
16
17
18

19
19
21

25
25
26
28
30
32
35
38
39

42
43
45

52

55

67

69

74



1 Introduction

Guided by the theory of the trace formula, Arthur conjectured a classification of automorphic
representations of a connected reductive algebraic group G in terms of A-parameters ([Art84],
[Art89]). These A-parameters are global objects, which conjecturally decompose as a product
of local A-parameters. The local part of Arthur’s conjectures states that associated to an A-
parameter 1 over a local field F' is a finite set IL;, called an Arthur packet. This is a set of
irreducible representations of G(F') satisfying conditions to be given in Problems A-E below.

Assume for the moment that G is either the split form of GLy, or a quasisplit form of Spy
or SOyn, N > 2 over a local field F' of characteristic 0. For these groups, Arthur defines a set,
which we denote Hq‘zr, and proves that it satisfies most of the conditions [Art13]. His approach uses
harmonic analysis, and both local and global methods.

On the other hand, for a general connected real reductive group Adams, Barbasch and Vogan
define a set which we denote by HﬁBV, and prove these satisfy most of Arthur’s conditions [ABV92].
Their methods are quite different, being based on the connection between representations and
equivariant sheaves.

It has long been expected that the definitions agree when both are defined ([Art08]*Section 8),
i.e. for the real quasisplit groups Spy and SOp. The main result of this paper is that, aside from
the case of even rank special orthogonal groups, it is indeed true that

Ar _ 17ABV
er —_— Hw .

The case of even rank special orthogonal groups requires a slightly modified identity, which we give
later in the introduction.

Imitating [ABV92], we state Arthur’s original conjectures as a sequence of problems. We then
describe the two approaches to these problems. We assume that the reader is somewhat familiar
with the theory of endoscopy for tempered representations [She08]. We follow the notation of
[ABV92] and also provide references from [ABV92] for convenience.

Let T' be the Galois group of C/R and let YGT = VG x T be the Galois form of the L-group of
G. An A-parameter for G, is a group homomorphism

¢G : Wgr X SLy — \/GF (1)

such that ¥g|w;, is a tempered L-parameter and 9¢|sr(2,c) is algebraic. For the definition of Wg
and tempered L-parameters see [Bor79].

Problem A Associate to ©g a finite linear combination of irreducible characters ny, of G(R)
which is a stable distribution ([She79], [ABV92]*Definition 18.2).

The finite set Il of irreducible characters occurring in the stable distribution 7y, is defined to
be the Arthur packet (or A-packet) of ¥g. Let Ay, be the component group of the centralizer in
V@G of the image of 9. For the groups in question this is a finite abelian group ([Art13]*p. 32).

Problem B Associate to each 7 € I, a non-zero finite-dimensional representation 7 (7) of
Ay

Problem C Prove that
e = Z Em dim(Twc (m) ™

ﬂEHwG

for some ¢, = £1.

Problem D Prove that the stable distributions 7, satisfy analogues of Shelstad’s theorem on
endoscopic lifting for tempered representations [ABV92]*Chapter 26.

Problem E Prove that the irreducible representations of Il are all unitary.

For the remainder of this section we assume G is either the split form of GLy, a quasisplit
form of Spy, or SOp. [Art13]*Theorem 2.2.1 is a solution to nearly all of these problems, the only
exceptions being the signs ¢, in Problem C, and in the case that G = SOsy, a general weakening



of the results due to the existence of an outer automorphism. We shall return to both of these
points.

The main idea of Arthur’s approach is to express a symplectic or special orthogonal group G as
a twisted endoscopic group of (GLy,¥) [KKS99]*Section 2. In this pair ¢ is the outer automorphism
of GLy of order two defined by

Wg)=J(g"")TJ', g€GLy, (2)

where J is the anti-diagonal matrix
0 1
J=
(—N-t ' 0

The semidirect product GLx x () is a disconnected algebraic group with non-identity component
GLy % ¢. The group G is attached to the pair (GLy,®) through the existence of an element s €
GLy x 9 for which VG is the identity component of the fixed-point set (VGLy)*”. Furthermore,
there is a natural inclusion

e:VGT — VGLY (3)

which allows us to define the A-parameter
Y =e€org (4)

for GLy using (1).
As in Problem D there are theorems on twisted endoscopic lifting for tempered representations
([Shel2], [Mez13], [Mez16]). One may therefore extend Problem D to

Problem D’ Prove that the stable distributions 7y, satisfy analogues of both standard and
twisted endoscopic lifting for tempered representations.

The solution to Problem D’ in the twisted setting above opens a path towards defining 7. We
may take for granted the existence of an irreducible character 7y, of GLy(R) ([Art13]*p. 64) such
that my solves Problems A-E, i.e.

My = Ty
Now suppose 77 is an extension of 7y, to GLy (R) x (J). Let Try(7};) be the twisted trace of 77y,
which is obtained by restricting the distribution character of 7 to the non-identity component
GLy » 9. The extension 77 is not unique; we choose it following [Art13]*pp. 62-63 by fixing a
Whittaker datum. Towards a solution to Problem A, Arthur defines a stable virtual character 17{22
using a twisted endoscopic transfer identity

Try(my) = Transg ™~ ”ﬂ(nfzé). (5)

The endoscopic transfer map TransgLN Y is defined on the space of stable virtual characters of

G(R), and n,ﬁé is fixed under the action of any outer automorphisms. This defines 77{22 uniquely.

Arthur proves the existence of 77{22 satisfying (5) using the solution to Problem D’ in the tempered

setting.

Adams, Barbasch and Vogan use completely different methods to study Problems A-E. They
first construct a pairing between characters and equivariant sheaves. They then apply techniques
from microlocal geometry to these sheaves and use the pairing to transfer these back to the world
of virtual characters. An outline of their methods is given in the introduction to [ABV92]. Here
we summarize the main ideas, specialized to the case of quasisplit classical groups.

Adams, Barbasch and Vogan introduce a complex variety X (VG') equipped with a ¥ G-action
[ABV92]*Section 6, so that the YG-orbits are in bijection with the equivalence classes of L-
parameters. The advantage to working with orbits of X (VG") lies in the additional topological
structure. The orbits provide a stratification of X (¥G') which naturally leads to the notions of
local systems and constructible sheaves. We define a complete geometric parameter to be a pair



consisting of an orbit S C X (VG'), together with a ¥ G-equivariant local system V on S ([ABV92]*Definition
7.6). The set of complete geometric parameters is denoted by Z(VGT). This definition ignores more

general local systems [ABV92], which are equivariant for an algebraic cover of YG. These aren’t

needed here, and this simplifies the discussion. By [ABV92]*Theorem 10.11 there is a canonical
bijection

E(VG") +— M(G/R) (6)

The set on the right is the set of (equivalence classes of) irreducible representations of certain forms
of G, including a fixed quasisplit form. We write bijection (6) as

§ = m(E).

Each irreducible representation 7 () is the unique irreducible quotient of a standard representation
M (£), so we also have a bijection

§ = M(§)

between Z(VGT') and a set of standard representations. Let KTI(G/R) be the Grothendieck group
of the admissible representations of the strong involutions of G appearing on the right of (6). This
Grothendieck group has two bases, namely {7 (£)} and {M(£)} for £ € Z(VG).

There is a parallel construction in terms of sheaves for the dual group VG. Suppose ¢ € Z(VGT).
The local system of this complete geometric parameter is a ¥ G-equivariant sheaf on S. Applying
the functors of extension by zero to the closure of S, and then taking the direct image gives an
irreducible ¥ G-equivariant constructible sheaf 1(£) on X (VGY). This defines a bijection

& u()

between complete geometric parameters and irreducible ¥ G-equivariant constructible sheaves. Al-
ternatively, one may apply the functors of intermediate extension and direct image. This defines
an irreducible ¥V G-equivariant perverse sheaf P(£), and a bijection

§— P(¢)

between complete geometric parameters and irreducible ¥G-equivariant perverse sheaves. The

Grothendieck groups of the categories of ¥ G-equivariant constructible and perverse sheaves are

isomorphic ([ABV92]*Lemma 7.8, [BBD82]). We identify the two Grothendieck groups and write

them as KX (VGT). The sets {u(¢€)} and {P(¢)} for ¢ € Z(VGT) each form a basis of KX (VGT).
We now define a pairing

(e : KI(G/R) x KX(YG") = Z (7)
using the bases of standard representations and constructible sheaves:
(M(€), m(€)e =e()deer, &€ €E(GT).

Here e(€) is the Kottwitz sign ([ABV92]*Definition 15.8), and d¢ ¢ is the Kronecker delta. It is
natural to ask what the formula for this pairing is in terms of the bases of irreducible representations
and perverse sheaves. It is a deep fact that in these alternative bases the pairing is also, up to
signs, given by the Kronecker delta function. More precisely

(m(€), P(€))c = e(€) (-1)" b, €€ E(VGT).

where d(€) is the dimension of the orbit S in £ = (S, V) (JABV92]*Theorem 1.24).

Using the pairing (7) we may regard virtual characters as Z-valued linear functionals on
KX(VGT). Of particular importance are the stable virtual characters. The theory of microlo-
cal geometry provides a family of linear functionals

oe KX(VGY) » Z (8)



parameterized by the YG-orbits S C X (VG'). These microlocal multiplicity maps appear in the
theory of characteristic cycles ([ABV92]*Chapter 19, [BGK™87]), and are associated with VG-
equivariant local systems on a conormal bundle over X (VGT) (JABV92]*Section 24, [GMS88]). The
virtual characters associated by the pairing to these linear functionals are stable ([ABV92]*Theorems
1.29 and 1.31).

Now we return to the Arthur parameter ¢¢ given in (1). Associated to ¢¢ is a Langlands
parameter ¢y, [Art89]*Section 4 defined by

bsalw) = v (. ['“"% ")) wews )

0 fuw|"2

Let Sy, C X (YGY) be the VG-orbit of ¢y,,. We define ngléc to be the virtual character associated

mic mic

to XS, by the pairing. That is, 7’ is the unique virtual character satisfying

(i me = x5 (0), pe KX(YGh).
As a distribution, the stable virtual character nﬁéc is supported on real forms of G which include
the quasisplit form G(R). In this more general context, Adams, Barbasch and Vogan show that
77112‘(;‘3 satisfies the conditions of Problems B-D. For our purposes however, it suffices to consider the

restriction
ABV mic ( 10)

e = e 1G(R)
of ngléc to the quasisplit form G(R).
Having sketched the construction of n{zé and 77{2(];3\/, we come to the main result.
Theorem 1.1. Let G be a real quasisplit form of Spy or SOani1 and suppose g is an Arthur

parameter for G. Then
Ar __ _ABV
Mpe = T
For the precise statement, including the case of SOsy, see Theorem 9.3. We continue by giving
an outline of the proof under the assumption that G is not a special orthogonal group of even rank.

Arthur’s definition of 77{22 is given in terms of the twisted endoscopic transfer map TransgLN X

appearing in (5). The first step in the proof of Theorem 1.1 is to compare Trans(G;LN *Y with the
analogous twisted endoscopic lifting map Lifty defined in [CM18]*Section 5. We wish to prove

Lifty = Transg ¥ 7. (11)

The construction of the map Lifty follows the construction in [ABV92]*Section 26 and is given in
terms of a pairing analogous to (7) in the setting of twisted characters and sheaves. Associated to
the involution ¥ is a Z-module of twisted characters KII(GLy(R), ) [AV15] . On the dual side we
have a Z-module of twisted sheaves KX (YGLY,9) [LV14]. We wish to define a pairing

(-,-) : KII(GLy(R),9) x KX (YGLY,9) — Z. (12)

One of the technical difficulties in defining this pairing lies in making canonical choices of extensions.
Suppose & € Z(YGLY) (see (6)), with associated standard representation M(€). If M () is fixed
by ¥ then it extends in two ways to a representation of GLy(R) x (). Each of the two resulting
characters restricts to GLx (R) x ¢ to give a twisted character, and the Z-module KTI(GLy (R), )
is defined so that if M (£)* are the two extensions, then M (&)™ = —M ()t in KTI(GLy(R), ).

Similarly, the ¥ GL y-equivariant constructible sheaf ;1(£) extends in two ways to a (Y GLy x (9))-
equivariant constructible sheaf on X (VGL"). The two extensions u(€)* again differ by sign in
KX(VGLY,9).

A standard problem in the twisted theory is how to choose the extensions. On the sheaf-
theoretic side, we use a special property of irreducible VGLy-equivariant sheaves, namely that
they are all constant sheaves. We define (€)™ to be the irreducible (YGLy x (¥))-equivariant
constant sheaf on X (YGLY).

On the representation-theoretic side, the literature offers two ways to choose an extension of
M(€). As mentioned earlier, Arthur uses Whittaker data to fix a preferred extension which we



denote M (&)~ and call the Whittaker extension. On the other hand [AV15] gives an extension
which we label M (€)™ and call the Atlas extension.
Having chosen the extensions we define pairing (12) by

(M)~ m(€)h) = be.er. (13)

The endoscopic lifting map Liftg is defined through pairings (7), (12) and the map € (see (3))
as follows. The map € naturally induces a map

X(VG) — x(VaLy).
The usual inverse image functor on constructible sheaves then induces a homomorphism
e KeX(VGLY,9) = KeX(VGY)

on the complexifications of the Z-modules. The adjoint of €* with respect to the pairings is the
homomorphism

[ Kcn(G/R) — K(cH(GLN(R), 19)
defined by
<€*(77)’ :U’> = <777€*(M)>Ga ne KCH(G/R)’ IS KCX(VGLI[:h 19)

Here, the pairings on the left and right are (12) and (7), respectively. Finally, the endoscopic lifting
map
Lifto : KcII(G(R))® — KcII(GLy(R), )

is defined to be the restriction of €, to the stable subspace of K¢II(G(R)), the complex virtual
characters of G(R). That is, if n € KcII(G/R) is stable then Lift(n) is defined by
(Lifto(n), ) = (n,€" (1) (14)

for all u € KX (YGLY, ).

Now that Liftg is defined, we may proceed to check the equality (11). Fix a ¥G-orbit Sg C X.
The local multiplicity function taking a constructible sheaf to the dimension of a stalk at a point
in S¢ is a linear functional on K X (YGY). By the pairing (7) this defines an element of KTI(G/R).

This is a stable virtual character denoted by 171595 It is the sum of the standard representations in

what is often called a pseudopacket.
Let S ¢ X(YGLY) be the YGLy-orbit containing €(Sg), and let M(S,1) be the standard
representation defined by the trivial local system on S. By Proposition 5.3
Lifto (75<) = (—=1)' D66 ar(5, 1)+ (15)(a)

(the terms in the exponent are defined in Section 4). On the other hand Arthur defines a stable
character g . by

Transg™¥ 7 (ns,) = M(S,1)~. (15)(b)
According to [AMR17] 0 = ngS. The two extensions of M(S,1) are related by
M(S, 1)~ = (1) SD=0SD pr(5,1)* (15)(c)
(see Proposition 7.8). Taken together, (15(a-c)) give
Liftg (77}90;) =M(S, 1)~ = TransgLNxﬂ(ng’g). (16)

Identity (11) follows from the fact that the nlsog form a basis of the stable virtual characters.
Going back to (5), and using (11) we see 77{2:; is determined by

Lifto(njyy) = 7).
Therefore to prove Theorem 1.1 it is enough to show

Lifto(nfzcl?v) =Ty



According to (14), this identity is equivalent to
(73, PENY) = (mps ¥, € (P(E) e (17)

Recall from (13) that the pairing on the left-hand side is defined in terms of standard representations
and constructible sheaves. However, on the left of (17) we require a corresponding formula in terms
of irreducible representations and perverse sheaves. It turns out that the exact formula required is

(m(€)*, PE)T) = (~1)! O-5O5 . (18)

We prove this formula from an identity involving the twisted Kazhdan-Lusztig-Vogan polynomials.
We are in the setting of [LV14] and [AV15], so we have all of the tools of the Hecke algebra available.
The proof of (18) is carried out in Section 4, and Theorem 1.1 then follows.

We now provide further details by running through the remaining sections in sequence. Section
2 begins with an outline of the local Langlands correspondence appearing in [ABV92]. One of the
features in this correspondence is the parameterization of inner forms of G(R) using strong involu-
tions, and the subsequent inclusion of representations of strong involutions in the correspondence.
Unlike the overview above, we shall be keeping track of the infinitesimal characters of these repre-
sentations. As a result, the variety X (VG') in the overview is replaced by X (YO, VG"), where VO
is an infinitesimal character. We assume all infinitesimal characters to be regular until Section 9.
Another important theme of Section 2 is the equivalence of complete geometric parameters with
Atlas parameters for GLy(R). The equivalence between complete geometric parameters and Atlas
parameters forges a connection between [ABV92] and [AV15]. The Atlas parameters are indispens-
able in defining the Atlas extensions, and in the ensuing Hecke operator computations of Section 4.
The section closes with a discussion on twisted characters, and the Z-module KII(Y O, GLy (R), )
which contains them.

Section 3 is devoted to Y G-equivariant sheaves, and their relationship with D-modules and
characteristic cycles. We recall a category of sheaves extended by an automorphism o of YGLy
([ABV92]*(25.7)). The automorphism is of the form

o =1Int(s)od

where s € YGLy. The element s plays no meaningful role in this section, but becomes important
in the theory of endoscopy (Section 5). The category of extended sheaves is the counterpart to the
category of representations on GLy (R) x (19). We define the canonical extended sheaves u(£)™ and
P(&)* in Lemma 3.4. The twisted characters that one obtains from representations of GLy (R) x ()
find their counterpart as microlocal traces ([ABV92]*(25.1)) which are supported on extensions of
irreducible sheaves. The Z-module counterpart to KII(¥O,GLy(R),?) is defined in (58) and is
denoted by K(X(YO,YGL"), ). The pairings (7) and (12) are also defined in this section.

We provide a terse summary of D-modules and their relationship to equivariant sheaves, char-
acteristic cycles, the microlocal multiplicity maps (8), and the definition of 771122‘/' The set of
irreducible characters in the support of nqﬁfv is denoted by HﬁGBV and is called the ABV-packet of
(el

The main objective of Section 4 is to prove the equivalence of the twisted pairings (12) and (18).
Our proof is an adaptation of the proof of the equivalence for ordinary pairings ([ABV92]*Sections
16-17) using the tools of [AV15]. As noted earlier, Hecke operators are among these tools. A
conspicuous difference between [ABV92] and [AV15] is in the objects upon which Hecke operators
act. In [ABV92] Hecke operators are defined on both characters and sheaves. By contrast, the
Hecke operators of [AV15]*Section 7 are defined only on (twisted) characters. The links between
characters and sheaves in the Hecke actions are the Riemann-Hilbert and Beilinson-Bernstein
correspondences ([ABV92]*Theorems 7.9 and 8.3). In Sections 4.1 and 4.2 we describe these

correspondences as a bijection
P(§) «—w(Ye), €eE(V0,Yah),

where 7(¥¢) is the Vogan dual of 7(€) (as the equivalence class of a Harish-Chandra module) (6.1
[AV15]). For G = GLy the correspondence is extended to

P «— ()"



for ¥-fixed complete geometric parameters £&. Once sheaves are aligned with characters in this
manner, the rest of the proof of the equivalence of the twisted pairings follows [ABV92] without
incident.

Subsection 4.8 is included in Section 4 only because it uses the same machinery. This subsection
presents an argument from the twisted Kazhdan-Lusztig-Vogan algorithm ([LV14], [Adal7]) which
is crucial to the comparison of Whittaker and Atlas extensions in Section 7.

In Section 5 we describe the theory of endoscopy, both standard and twisted, for GL using the
framework of [ABV92]. The standard theory of endoscopy in Subsection 5.1 is simply a specializa-
tion of [ABV92]*Section 26 to G = GLy. It is included primarily to motivate the twisted theory,
but is also used in Proposition 6.3 further on. The twisted theory of endoscopy in Subsection 5.2 is
a specialization of [CM18]*Section 5.4 to GLx. In this subsection the ¥ GL y-equivariant sheaves of
K(X(YO,YGLY), 0) are recast as (YGLy x (0))-equivariant sheaves. The endoscopic lifting map
takes the form

Liftg : KCH(V(’)C;, G(R))St — KCH(VO, GLN(R), 19)

The precursor to (16) is Proposition 5.3, where the Atlas extension is used instead of the Whittaker

extension. The endoscopic lifting Lift (77;’2]5’\/) is described as an element nszVJr € KII(VO,GLy (R), 9),

which reduces to nszV when restricted to GLy(R) (Theorem 5.6). The endoscopic lifting map is

proved to be injective for GLy-regular infinitesimal character VOg.
In Section 6 we prove that for any A-parameter 1) of GLx (not necessarily of the form (4)),

there is only one irreducible character in the support of n$BV. This implies that H$BV = {my}. It

also implies that ngBV+ is supported on a single irreducible twisted character obtained by extension

from my. The proof begins under the assumption that 1 is an A-parameter studied by Adams and
Johnson ([AJ87]). Adams and Johnson defined A-packets for these parameters, and it is easily
shown that their packets are singletons for GLy. The anticipated equality of the Adams-Johnson
packets with the ABV-packets is proven in [Aral9]. The proof that ABV-packets are singletons for
arbitrary A-parameters ¢ of GLy follows from a decomposition of ¢ in terms of Adams-Johnson
A-parameters of smaller general linear groups, and an application of all standard endoscopic lifting
from the direct product of these smaller general linear groups (Proposition 6.3).

The purpose of Section 7 is the proof of Equation (15(c)). This equation gives a precise
relationship between the Whittaker and Atlas extensions of 7(£) in terms of the integral lengths
11(&) and I (&) ([ABV92]*(16.6), (60), (61)). This identity is peculiar in that a Whittaker extension
is inherently an analytic object, whereas an Atlas extension is inherently algebraic. When (&) is
the Langlands quotient of a (standard) principal series representation, the differences between the
two extensions may be attributed to differences in the extensions of quasicharacters of the diagonal
subgroup H. This reduction for principal series furnishes an easy proof of (15(c)) (Lemma 7.1).

In some sense (see the proof of Proposition 7.3), () is furthest from a Langlands quotient of
principal series when 7(&) is generic, i.e. has a Whittaker model. The proof of (15(c)) for generic
representations is the key to the general proof, in that irreducible generic representations occur as
subrepresentations of all standard representations (Lemma 7.2), and determine the Whittaker
extensions of standard representations. If one knows the (signed) multiplicity with which an
irreducible twisted generic character 7(£y)™ appears in the decomposition of a twisted standard
principal series representation M (€)™, then one can use the knowledge of (15(c)) for m(£) to prove
(15(c)) for m(&p). This desired multiplicity is computed in Proposition 7.3, and the proof of (15(c))
for generic w(&y) occurring in the standard principal representation M (&) is Proposition 7.4.

It is implicit in the previous paragraph that the parameters and representations are all ¥-
stable. However not every ¥-stable generic representation 7(&p) is a subrepresentation of a 9-stable
principal series representation. Therefore, the strategy of the previous paragraph does not provide
an exhaustive proof of (15(c)). Most of Section 7 is dedicated to the description of a ¥-stable
standard representation which plays the part of the principal series representation. In Lemma 7.6
we prove that every ¥-stable generic representation 7(&y) which has integral infinitesimal character
is a subrepresentation of a ¥-stable standard representation satisfying (15(c)). We remove the
restriction of integrality on the infinitesimal character in Lemma 7.7. We then follow the strategy
of the previous paragraph using the ¥-stable standard representation of Lemma 7.7 to prove (15(c))
in general. This is the last result needed to apply the twisted pairing (18) to the computation of
(17).



The theorems comparing nﬁé with n$§v are to be found in Sections 8 and 9. Section 8 is

presented under the assumption that the infinitesimal character ¥ Og is regular in GLy. This reg-
ularity condition is removed in Section 9 by applying the Jantzen-Zuckerman translation principal
to the (twisted) characters and to the pairings. The main theorem, Theorem 9.3, states that

Mo = Mpe and T = T2V (19)

when G is not isomorphic to SOy for even N, and that
r 1 r
= 3 (1Y + B ) and T — BV U TR, )

when G = SOy with N even. In light of this theorem, we again look back to Problems B-E in
Section 10. In particular, we show that the solution to Problem C in [ABV92] solves Problem C
in Arthur’s definition.

An unsolved problem, related to Problems B and C, is to determined the dimensions of the
finite-dimensional representations 7y (7). This has been explored in [MR20], [MR18], [MgR19]
and in [Meegll] for p-adic groups, where the dimensions have been shown to equal 1. Theorem 9.3
opens up the possibility of using techniques from microlocal geometry to settle this problem.

Our work also connects with the study of Adams-Johnson packets ([AJ87]). Adams-Johnson
packets have been proven to equal Arthur’s packets in [AMR18]. Moreover, Adams-Johnson packets
are particular cases of our ABV-packets ([Aral9]). They are the ABV-packets with regular and
integral infinitesimal character.

A natural question for future consideration is how the packets for quasisplit unitary groups,
established by Mok [Mok15], compare with the microlocal packets of [ABV92]. The methods devel-
oped here appear to be equally applicable to the setting of quasisplit unitary groups. Furthermore,
the context of pure inner forms in which we work, ought also to allow for easy comparison with
the related work of [KMSW14] and [Art13]*Chapter 9.

Another natural question is whether similar comparisons between p-adic Arthur-packets can
be made. In the p-adic context 77$r is also defined in [Art13]. The beginnings of 771/2(1;3\/ in the
p-adic context are to be found in [Vog93] and [?]. Low rank comparisons between the two stable
distributions are made in [?]*Part 2.

The second and third authors would like to thank the developers of the Atlas of Lie groups
software. It was a pleasure to see our early conjectures borne out by low rank computations.

2 The local Langlands correspondence

This section begins with a review of the local Langlands correspondence as conceived in [ABV92].
An important feature of this version of the correspondence is the notion of strong real forms and
their representations. More recently, strong real forms have been supplanted by the equivalent
notion of strong involutions ([AdC09]). We have chosen to use the language of strong involutions
in our review.

Another difference in our review is in limiting ourselves to only pure strong involutions. In
doing so, we limit the scope of [ABV92] to fewer real forms of G. This limitation is compensated
for by not having to introduce covers of the dual group VG. We still capture all of the information
needed for the quasisplit form of GG, while preserving a sense of how the theory applies to other
real forms.

The objects parameterizing irreducible representations in [ABV92] have also been supplanted
by newer parameters in [AdC09] and [AV15]. We call these newer parameters Atlas parameters.
The advantages to Atlas parameters are their amenability to Vogan duality and Hecke algebra com-
putations. These advantages are used in Section 4. Another advantage to using Atlas parameters is
in defining canonical extensions of representations of GLy (R) to representations of GLy (R) x (19).
We call these canonical extensions Atlas extensions.

We conclude this section with a discussion of the Grothendieck groups of representations for con-
nected groups G and for the disconnected group GLy x (¥). In the connected case the Grothendieck
group is isomorphic to the Z-span of distribution characters. In the disconnected case we construct
a quotient of the Grothendieck group which will be seen to be isomorphic to the Z-span of twisted
distribution characters.



2.1 Extended groups and complete geometric parameters

In this section G can be an arbitrary connected reductive complex group. We give a version of
the local Langlands correspondence suitable to our application. We largely follow [ABV92], with
modifications from the more recent papers [AdC09], [AV15] and [AvLTV20].

Our starting point is the connected reductive complex group G, together with a pinning

(B, H,{Xa}) (21)

in which B is a Borel subgroup, H C B is a maximal torus and {X,} is a set of simple root vectors
relative to the positive root system R* (G, H) = R(B,H) of R(G,H). Let Vp =1 Y aeR+(GH) O

We fix an inner class of real forms for G. The inner class is determined by a unique algebraic
involution dyg of G fixing the pinning ([AdC09]*Section 2). The involution defines the extended
group

GY' =G % (&).

A strong involution of G' is an element 6 € G — G such that §2 is central in G and has finite
order ([AvLTV20]*Definition 12.3). Two strong involutions are equivalent if they are G-conjugate.
There is a surjective map from (equivalence classes) of strong involutions to (isomorphism classes
of) real forms. This map takes a strong involution d to the real form G(R,d) in the inner class

with Cartan involution
05 = Int(d).

This map is bijective if G is adjoint, but is not injective in general.
There is also a well-known bijection between real forms in the inner class and the cohomology
set HY(R,G/Z(G)) ([Spr98]*¥12.3.7). The domain of the quotient map

H'R,G) — H'(R,G/Z(G)) (22)

defines the set of pure inner forms ([Vog93]*Section 2). Let o € T be the nontrivial element of the
Galois group. For any 1-cocycle z € Z1(R, ) one may define a strong involution by

z(0) exp(mi VY p)dy € GT

(exp(mti ¥V p)do is the large involution in [AV15]*(11f)-(11h)). This sends classes in H*(R,G) to
G-conjugacy classes in GI' — G. The (equivalence classes of) pure strong involutions are defined
as the image of this map. The quasisplit real form is pure in the sense that the fibre of the trivial
cocycle in (22) is a singleton. The pure strong involution corresponding to the quasisplit pure real
form is

8, = exp(mti ¥ p)do.

Given a strong involution § we set K to be the fixed-point subgroup G%. The real form G(R, )
contains
KR)=GR,0)NK (23)

as a maximal compact subgroup and is determined by K ([AV15]*(5f)-(5g)). By a representation
of G(R,d) we usually mean an admissible (g, K)-module, although we will need admissible group
representations in Section 7. A representation of a strong involution is a pair (m,d) in which ¢ is a
strong involution and 7 is an admissible (g, K')-module. There is a natural notion of equivalence of
strong involutions ([AdC09]*Definition 6.1), and we let II(G(R, §)) be the set of equivalence classes
of irreducible representations (7', ") of strong involutions in which ¢’ is equivalent to §. Let

I(G/R) = [TI(G(R, 6))
)

be the disjoint union over the (equivalence classes of) pure strong involutions 4.
Let VG be the Langlands dual group of G together with a pinning

(VB,VH,{Xva}).
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The pinning and the involution dy fix an involution Y&y of VG as prescribed in [AV15]*(12). Fol-
lowing this prescription, Vdg is trivial if and only if dy defines the inner class of the split form of
G. The group

VG =VG % (Ydo)

is the L-group of our inner class.

Suppose A is a semisimple element of the Lie algebra Vg. After conjugating by VG we may
assume A € Vh. Using the canonical isomorphism Vb ~ h* we identify X\ with an element of b*,
and hence via the Harish-Chandra homomorphism, with an infinitesimal character for G. This
construction only depends on the Y G-orbit of \. We refer to a semisimple element A\ € Vg, or a
VG-orbit YO C Vg of semisimple elements, as an infinitesimal character for G. Let

11(Y0,G/R) C TI(G/R)

be the representations (of pure strong involutions) with infinitesimal character VO.
Let P (YG") be the set of quasiadmissible homomorphisms ¢ : Wg — VG" ([ABV92]*Definition
5.2). Associated to ¢ € P(YGT) is an infinitesimal character ([ABV92]*Proposition 5.6). Let

P (V (97 \/GF)
be the set of quasiadmissible homomorphisms with infinitesimal character ¥O. The group VG acts
on P (YO,YG") by conjugation.
2.2 The space X(YO,G")

We make frequent use of the complex variety X (VO, VGF) of geometric parameters ([ABV92]*Definition
6.9, [Vog93]*Definition 6.9). Here we sketch a definition based on [ABV92]*Proposition 6.17 and
state its main properties.

Write the Weil group Wi as C* [[jC*. Suppose ¢ € P (YG'). Define A,y € Vg by

#(z) = 22277, ze€C*. (24)(a)

Let Yn()\) be the sum of the positive integer eigenspaces of ad(A) on Vg, and let YN(\) be the
connected unipotent subgroup of VG with Lie algebra Yn(\). Set

YG(N\) = Centvg(exp(27i)))

VL(A) = Centva(A) € VG(N) (24)(b)

and let
YP(X) ="YL(\)"N(X) (24)(c)

a parabolic subgroup of YG(\). Finally, write

y = exp(iA)o(j)
VK, = Centvg(y)

(24)(d)
and let YN, ()) be the group generated by

YN\ NInt(y)(YP(A)  and YP(A) NInt(y)(YN(N)).
Define an equivalence relation on P(¥VG"') by

Ay, \) ~ ¢ (v, \) if ¥ =y and N =n-\ for some n e YN,(\)N"EK,

where the action is by the conjugation action of ¥G. This equivalence relation preserves each subset
PMO,VGY) c P(VGY). We let X(VO,VG") be the set of equivalence classes

X (Vo,YG") =P (YO,YG") / ~ (25)
with the quotient topology. The element y of (24)(d) is constant on equivalence classes, so for

pe X (VO,VG") we define y(p) accordingly.

11



There are ¥ G-equivariant maps
P (VO, vGF) - X (VO, VGF) — P (VO,VGF) /G (26)

which are bijections on the levels of ¥ G-orbits ([ABV92]*Proposition 6.17). The more interesting
and useful space is X (YO, VG"). It has finitely many YG-orbits. Here is some information about
its structure (see [ABV92]*Section 6).

Use the notation of (24)(a)-(24)(d), and suppose p € X(VO,VG"). Let y = y(p). Note that
VK, is the fixed-point subgroup of the involution Int(y) in YG(A). There is an open and closed,
connected, smooth subvariety

Xy(\/oa \/GF) C X(\/Oa \/GF)
such that the ¥G-orbits on X, (YO, VGT) are in bijection with the VK ,-orbits on the partial flag
variety YG(X)/Y P()\). Furthermore, this bijection respects the closure relations between VG and
Y K,-orbits ([ABV92]*Proposition 6.16).

Now suppose S C X(VO,VGY) is a VG-orbit. If p € S let VG, = Stabvg(p). A pure complete
geometric parameter for X(VO,VG"Y) is a pair (9, 75) where S is a YG-orbit on X (YO,YGY) and
Ts is (an equivalence class of) an irreducible representation of the component group VG, /(¥ G,)°
([ABV92]*Definitions 7.1 and 7.6). We denote the set of pure complete geometric parameters for
X(VO,VGY) by Z(VO,VGh).

A special case of the local Langlands correspondence as stated in [ABV92]*Theorem 10.11 is a
bijection

I("0,G/R) +— =(Y0,"G") (27)
between representations of pure strong involutions and pure complete geometric parameters. Recall
from the previous section that the left-hand side of (27) contains the subset II(YO, G(R, d,)).

2.3 Extended groups for G and VG

We specialize the results of the previous section to the groups GLy, Spy and SOy, providing
further details.

For the group GLy we fix the usual pinning (21) in which B is the upper-triangular subgroup,
H is the diagonal subgroup, and X, is a matrix with 1 in the entry corresponding to o and zeroes
elsewhere. We fix the split inner class for GLy. The split inner class consists of the split group
GLy(R), and, if N is even, also the quaternionic form GL /o (H).

There are two algebraic involutions of GLy which fix the pinning: the identity, and 9 (2). It is
a coincidence that the strong involution corresponding to the split inner class is ¢. Indeed,

Gﬁ_ ON, N odd
B Spy, IV even

which match the respective maximal compact subgroups of GLy (R) and GL /2 (H) ((23), [Kna96]*(1.123)).
Thus, we define
GLY = GLy x (5o) (28)

where 62 = 1 and &y acts (by chance!) as 9 on GLy.

Lemma 2.1. 1. There is a unique conjugacy class of strong involutions in GLy X (§g) which
maps to the (isomorphism class of the) split group GLy (R).

2. The strong involutions § in this conjugacy class are characterized by

6% = (=1)N*T = exp(2mi Vp).

8. If N is odd this is the unique conjugacy class of strong involutions.

4. If N is even there is exactly one other class, whose elements square to 1. This other class
maps to the real form GLy /o (H).

12



5. In both cases there is only only one class of pure strong involutions, and it corresponds to the
split form GLy(R) so that

1(YO,GLy/R) = 1 (YO, GLy(R)). (29)

Proof. By [AdC09]*Proposition 12.19 (2) the conjugacy classes of strong involutions are parame-
terized by the H-conjugacy classes of the elements in

{t50 € Hx <50> : (t50)2 S Z(G)}

modulo the action of a Weyl group. For GL it is straightforward to compute that up to conjugacy
the representatives in this set are &y, with 62 = 1, and, when N is even, § = exp(7i¥ p)do, with
5% = —1. The real forms associated to these strong involutions are as stated ([Ada08]*Examples
7.6 and 7.8). We leave the identity exp(27i Vp) = (—1)V*+! as an exercise. All that remains to be
proven is that when N is even, the real form GLy (H) is not pure. Looking back to (22), this follows
from the fact that H'(R, GLy) = {1} corresponds to a single real form, which is (quasi)split. O

If § is a strong involution of any group G, we say & has infinitesimal cocharacter g € by if
62 = exp(2mig).

Lemma 2.1 tells us that the pure strong involutions of GLy are exactly those with infinitesimal
cocharacter Vp. Let §; = dp when N is odd and §, = exp(mi ¥ p)dy when N is even. According
to Lemma 2.1, the strong involutions ¢ in the GLy-conjugacy class of ¢, form the set of pure
involutions and these are the only strong involutions for which GL(R, §) =2 GLy(R).

Since GLy (R) is split, the L-group is

VGLY = VGLy x (Vé) ~ YGLy x Z/2Z. (30)

We write YGLy instead of GLy just to emphasize that the group is on the “dual side”.
We also need the extended group
GLN Pl <’l9>

Although this is isomorphic to GLY, = GLy x (d0), it plays a very different role. The group GLR,
plays a role in the ordinary (untwisted) Langlands correspondence by carrying strong involutions
and thereby information about real forms. By contrast, the group GL x () is the central object
in the theory of twisted characters. We use this notation to distinguish the two roles. With this
in mind, we have the group

GLY x (9) = (GLy, 6o, 9)

in which ¥ and Jg commute. Similarly, we define
VGLY x (9) = (YGLy, Yo, 9) (31)

in which ¥ and Vg commute. See Section 5.2 for a discussion of the twisted endoscopic groups for
(YGLY,9).

Next we consider extended groups for Spy and SOpy. As in [Art13]*Section 1.2, we adopt the
convention of expressing these groups in such a way that their upper-triangular subgroups are Borel
subgroups. With this convention, their diagonal subgroups are maximal tori. When there is no
confusion with the setting of GLy, we will also denote these Borel subgroups by B and maximal
tori by H. In fact, we will abusively imitate the notation for GLy when the setting is clear. We
arbitrarily fix a set of simple root vectors {X,} for each simple root in R(B, H).

Suppose first that G = Sp,,, or G = SOg,,41. Each of these groups has one inner class, which
is the inner class of the split form. This allows us to choose dg to act trivially on these groups and
set

G' = G x (&)

where 62 = 1. Define §, = dp, so that G(R,§,) is the split real form. The dual groups VG =
VSpy,, = SO2,41 and VG = YSOg,+1 = Sp,,, have Borel subgroups and maximal tori as earlier.
The L-group of G corresponding to the split inner class is

VG =VG x (Vo) 2 VG x Z)27.
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Finally, take G = SOs,,. This group has two inner classes: one for the split form and the other
for the quasisplit form SO(n 4+ 1,n — 1), which is not split. The following definitions follow from
[AV15]*(12¢) and [Bou02]* Chapter VI §4.8 XI.

If the inner class contains the split form then Vd, acts trivially and

V803, = SO2, x (Vdo).

If, in addition, n is even then &y acts trivially and SO5, = SOs,, x (J). On the on the other hand
if n is odd then dy acts by conjugation by an element in O, — SOs,, which preserves the pinning.
In this case SOb,, is a nontrivial semidirect product SOs,, 3 (do).

If we fix the inner class to be that of SO(n+1,n—1) then the L-group is the semidirect product

VS80S, = S0q, x (V)

in which Vg acts by conjugation by an element in O, — SOs,, which preserves the pinning. If n
here is even then SOgn = SOs,, % (do) where dy acts in the same way as Vdy. On the other hand,
if n is odd then SO = SOy, x (&).

For either of the two inner classes of SOg,, the strong involution §, = exp(iY p)do corresponds
to a quasisplit real form G(R, §,) [AV15]*(11f).

2.4 Atlas parameters for GLy

For our application we use a formulation of the local Langlands correspondence for GLy (R) which
is well suited to Vogan duality (see Section 4.1). The main references for this section are [AdC09]
and [AV15]*Section 3.

We start by working in the context of the extended group (28): GLY = GLy X (d). Let Vp be
the half-sum of the positive coroots for GLy. Following [AV15]*Section 3 we set

Ay, = {(5 € Normgr s, (H) | 62 = exp(2mi vp)} /H

where the quotient is by the conjugation action of H. This is a set of H-conjugacy classes of strong
involutions with infinitesimal cocharacter ¥ p. By Lemma 2.1, these strong involutions are all pure
and correspond to the split form GLy (R).

Now we fix a J-fixed, regular, integrally dominant element A € Vh for GLy. This means

I(N) = A
\MVa)#0, «a€ R(GLn,H) (32)
\Va) ¢ {—1,-2,-3,...}, a € R"(GLy, H).

This will be the infinitesimal character of our representations of GLy(R). The assumption of
integral dominance is harmless ([AV15]*Lemma 4.1). We shall remove the regularity assumption
at the beginning of Section 9.

The action of dp induces an action on the Weyl group W(GLy, H). Consider the set

{w € W(GL,, H) : wdp(w) = 1}. (33)

If z € Xv, then the action (by conjugation) of  on H is equal to wéy for some w in the set (33).
Define p(z) = w accordingly. The map p is surjective. Let XY, be the fibre of p over w so that

X¢, ={zxeX,:zha~' =wdy-h, foralhe H}. (34)

On the dual side we have an analogous set in which the infinitesimal cocharacter Vp is replaced
by an infinitesimal character \, namely

VX)\ = {V(S € NOI‘vaLN v(;o(vH) | \/52 = exp(?m’)\)}/vH.
Recall that GLy (R) is split, so Vg acts trivially on YGLy, and we can safely identify this set with

{V6 € Normvegr, (VH) | V2 = exp(2mi\)} / VH.
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Since Vdy acts trivially, the analogue of (33) is
{fweW |w*=1}.

Let VX" be the analogue of (34).
It is easily verified that

w §o(w) = wwowwy * = (wwp)?, w € W(GLy, H) (35)
where wg € W(GLy, H) is the long Weyl group element. It follows that
w — Ww

defines a bijection from (33) to {w € W(GLy, H) : w?> = 1}. This map allows us to pair any set
XY, with the set ¥ AX\"".

The next result follows from [AdC09], [ABV92] and [AV15]*Theorem 3.11. We give the proof,
which is much simpler in the case of GLy than for other reductive groups.

Lemma 2.2. There is a canonical bijection

IT  x xvaye «—=(V0,YGLY).

Vp
{w:wdo (w)=1}

Proof. First of all |X¥)| =1 for all w. This follows from [AdC09]*Proposition 12.19(5): the dual
inner class is the equal rank inner class, consisting of (products of) unitary groups U(p, ¢), and it
is well known that the Cartan subgroups of U(p, ¢) are all connected. This is equivalent to the fact
that all L-packets for GLy(R) are singletons.

So the lemma comes down to the statement that there is a bijection

I vayre«—=(o0,YGLY).

wdp(w)=1

Recall the right-hand side is the set of pure complete geometric parameters (S, 7) where S is a
VGLy-orbit in X (YO, VGLR,) and 7 is an irreducible representation of the component group of

the centralizer of a point in X (YO, VGLI;V). Since V4§, acts trivially on VGLy, these centralizers
are products of general linear groups, and are hence connected. Therefore we are further reduced
to showing
[T vav «— X (Y0,YGLY) /YGLy.
wdp (w)=1
Suppose y € VX", This means that y € Normvgr,, (H) (we can ignore the extension), y
maps to w € W(GLy, H), and y? = exp(2mi)). Define ¢ : Wg — VGLY by

P(z) = 2ZAIWDN 5 e CX
#(j) = exp(—mid)y

(compare (24)(a) and (d)). It is straightforward to see that ¢ is a quasiadmissible homomorphism
(see the end of Section 2.3), and only a little more work to show that it induces the bijection
indicated. See [AdCO09]*Proposition 9.4.

O

Together with (27) this gives

Theorem 2.3. Let VO be the VGLy-orbit of X. There are canonical bijections:

IT x xvaye «—=(V0,YGLY) «— I (YO,GLy(R)).
{w:wdo(w)=1}
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As in [AV15]*Theorem 3.11 the bijection of Theorem 2.3 is written as
X, x V2 3 () = J(z,y,N) (36)

We call the pair (z,y) on the left the Atlas parameter of the irreducible representation J(z,y, A).
By Lemma 2.2, the Atlas parameter (x,y) is equivalent to a complete geometric parameter & €
2(VO,GLY), and accordingly we define

ﬂ-(f) = J(x,y, >‘)

The representation 7(§) is the Langlands quotient of a standard representation which we denote
by M(E) or M(z,y).

2.5 Twisted Atlas parameters for GLy

Our next task is to describe the generalization of Theorem 2.3 to the ¥-twisted setting. This
involves certain irreducible representations of the extended group GLy (R) x (¥). We specialize the
results of [AV15]*Sections 3-5 to this case. We are fortunate that some of the more complicated
issues that arise in [AV15] do not occur for GLy.

We continue with the hypotheses of (32). Recall that both ¥p and X are fixed by 9. By Clifford
theory, an irreducible representation of GLy (R) x () restricted to GLy (R) is either an irreducible
¥-fixed representation, or the direct sum of two irreducible representations which are exchanged
by the action of ©/. We only need representations of the first type.

It is a lengthy but straightforward task to show that the map (36) is ¥-equivariant (¢f. [CM18]*Theorem
4.1). Therefore J(z,y, \) is ¥-stable if and only if (z,y) € A¥, x YA is fixed by . Let

I(YO,GLy(R))Y c II(VO,GLy(R))
be the subset of ¥-fixed irreducible representations and set
W (60,9) = {w € w | wop(w) = 1,w =Y (w)}
(¢f. (33)). By the ¥-equivariance, Theorem 2.3 restricts to these sets and we obtain

Corollary 2.4. Suppose X satisfies the hypotheses of (32) and let VO be its ¥ G-orbit. Then there
18 a canonical bijection

[T % xvay «—1n(Yo,GLy(R)’
{wew (é0,9)}
written (z,y) — J(z,y, \).

We now introduce the extended parameters of [AV15]*Sections 3-5, and summarize the facts
that we need. Fix w € W(dp, ). An extended parameter for w is a set

E=Mm10t), MteX*(H), 6t X,(H) (37)

satisfying certain conditions depending on w (see [AV15]*Definition 5.4).! There is a surjective
map

B (2(E),y(E)) (38)
taking extended parameters for w to X, x VX", This map only depends on A and £. In addition,
J(z(E),y(E),\) € I(YO, GLy(R))”,

and every v-fixed irreducible representation arises this way. The remaining parameters T and ¢ in
E define an irreducible representation J(FE,A) of GLy(R) x () satisfying

J(E, NlaLy®) = J(2(E),y(E), A).

Warning! The symbols A and T here are not to be confused with symbols A and 7 appearing elsewhere. Note
the slight difference in font. We have chosen to use A and T for ease of comparison with [AV15].
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The representation J(z(E),y(FE),\) is determined by a quasicharacter of a Cartan subgroup of
GLn (R). The representation J(E, \) is determined by the semidirect product of this Cartan sub-
group with an element h) € GLy x9 ([AV15]*(24e)) and a choice of extension of the quasicharacter
to the semidirect product. The value of the extended quasicharacter on the element hvY depends
on a choice of sign [AV15]*Definition 5.2, and the square root of this sign is given by

2(B) = i{m0Fwt (1)), (39)

The preceding discussion is a specialization of a general framework to GLx (R) x (). One of the
special properties of GLy (R) is that the preimage of any (z,y) € A%, x VA" under (38) has a
preferred extended parameter of the form

(}\7 T’ 07 0)'

This comes down to the fact that X¥, is a singleton (see the proof of Lemma 2.2). By taking t =0
we see z(A,T,0,0) = 1, and this amounts to taking the aforementioned semidirect product of the
Cartan subgroup with Y = ¥, and setting the value of the extended quasicharacter at ¢ equal to
1. In this way, the preferred extended parameter defines a canonical extension

J(x,y, \) " = J((A,7,0,0),A) (40)

of J(z,y,\) to GLy(R) x (). We call this extension the Atlas extension of J(x,y, A).
Going back to Theorem 2.3 and Corollary 2.4, we may formulate the result as follows.

Corollary 2.5. There is a natural bijection of ¥-fized sets

IT x xvaye «— =2(V0,YGLY)? +— (Y0, GLy (R))”
{weW (60,9)}

Furthermore, if € € 2(VO,YGLY)? is identified with (x,y) under the first bijection then there is a
canonical representation

w7 = J(z,y, N7
extending w(§) to GLy(R) x (1).

The irreducible representation 7(£)T is defined as the unique (Langlands) quotient of a repre-
sentation M (€)' such that M(é‘)ELN(R) = M(&). We call m(£)T and M ()" the Atlas extensions

of m(§) and M (§) respectively.

2.6 Grothendieck groups of characters

The setting for studying characters of reductive groups is the Grothendieck group of representations
with a given central character. There is a corresponding notion in the twisted setting. In this section
we establish notation for the objects that we need.

Fix a semisimple orbit YO C Vg, which we view as an infinitesimal character for G (cf. Section
2.1). Recall TI(YO,G/R) is the set of equivalence classes of representations (m,d) of pure strong
involutions. We define KII(VO,G/R) to be the Grothendieck group of representations of pure
strong involutions with infinitesimal character VO (see [ABV92]*(15.5)-(15.6)). We identify this
with the Z-span of distribution characters of the irreducible representations in II(¥O,G/R). We
refer to elements of this space as virtual characters.

When G is Spy or SOx we only need the subspace of stable characters, and only for the
quasisplit form. So we define

KI(YO,G(R,6,))* ¢ KII(YO,G(R,d,))

to be the subspace spanned by the (strongly) stable virtual characters. If we identify virtual char-
acters with functions on G(R, dp) these are the virtual characters n which satisfy 7(g) = n(g’") when-
ever strongly regular semisimple elements g, ¢’ € G(R,d,) are G-conjugate. See [She79]*Section 5
or [ABV92]*Definition 18.2.
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2.7 Grothendieck groups of twisted characters

Here, we consider the split inner class of GLy, equipped with the involution ). Recall in this case
M(VO,GLN/R) = TI(YO,GLN(R)) (cf- (29)), and so
KTI(GLy/R) = KTI(GLy (R)).
We define
KI(YO,GLy(R))Y ¢ KII(VO, GLy(R))

to be the submodule spanned by II(YO,GLx(R))?. This is not the Grothendieck group of ¥-
stable representations of GLy (R), but we retain the “K” to help align the object with its ambient
Grothendieck group. On the other hand we let

KTI(YO,GLy (R) % (9)) (41)

be the Grothendieck group of admissible representations of GLy (R) x () with infinitesimal char-
acter VO.

We now discuss the Z-module of twisted characters of GLy(R). An irreducible character in
KII(VO,GLN(R) x (9)) is a distribution

f—Tr /GLN(R) f(x)m(x)dx + Tr /GLN(R) fla)r(x)n(9) dx,

where f € C°(GLy(R) x (9)) and 7 is an irreducible representation of GLy(R) x (d). The
restriction of such a distribution character to the non-identity component GLy(R) x ¢ has the
form

f—Tr f@9)m(x)m(9)dx, fe CF(GLy(R) % 9). (42)
GLx (R)

When the resulting restricted distribution is non-zero, we define it to be an irreducible twisted
character of GLy(R) x ¢. We define

KT(YO,GLy(R), )

to be the Z-module generated by the irreducible twisted characters of GLy (R) x ¢ of infinitesimal
character Y O.

As noted in Section 2.5, an irreducible representation of GLy(R) x (1) restricts either to
an irreducible ¥-fixed representation of GLy(R), or to a direct sum 7 @ (7 o ) of inequivalent
irreducible representations. In the second case the twisted character is 0, so we only need to consider
the first case. The first case describes the irreducible representations in KTI(VO,GLy(R))?. If
7 € II(VO,GLN(R))? then it has two extensions 7% to GLy(R) x (), satisfying

7 (9) = -7t (V). (43)

Consequently the twisted characters of 7 agree up to sign. If we set Uy = {#£1} then it follows
that the homomorphism

KII(YO,GLN(R))? @7 Z[Us] — KTI(YO, GLy(R), ),

which restricts the distribution character of w(£)™ to the non-identity component, is surjective. By
(43), the homomorphism passes to an isomorphism

KII(YO,GLy(R),9) = KII(YO,GLy (R))? @z Z[Us] /(7 @ 1) + (7 ® —1)) (44)(a)

where the quotient runs over m € (YO, GLy(R))?. The map taking 7(¢) € II(YO, GLy(R))? to
the twisted character character

froe [ ) @) O () dr, € CF(CLy(R) #0)
GLn (R)
extends to an isomorphism
KII(YO,GLy(R),¥) ~ KTI(YO, GLy(R))". (44)(b)

We should once again remind the reader that the Z-modules appearing in (44) are not Grothendieck
groups in any natural fashion, notwithstanding the appearance of the “K”. Nevertheless it is helpful
to use this notation, to help remind the reader of the origins of these modules.
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3 Sheaves and Characteristic Cycles

Suppose 9 is an Arthur parameter for G as in (1). In this section we give more details on the
definition of the ABV-packet Hfzgv and its stable virtual character n$§v (10). The results apply
in the more general context of complex connected reductive groups G (JABV92]*Sections 19, 22).
However, for this section G will be Spy, SOn or GLy, with the setup of Section 2. The definitions
depend on a pairing between characters and sheaves.

We also define a pairing between twisted characters and twisted sheaves for GLy [CM18]*Sections
5-6. The key properties of this twisted pairing are listed in this section and shall be proved in Sec-
tion 4.

3.1 The pairing and the ABV-packets in the non-twisted case

Let ¢y, be the Langlands parameter associated to ¢ (9), YO be the infinitesimal character of
by, and Sy, C X(VO,VGY) (25) be the corresponding orbit ([ABV92]*Proposition 6.17, (26)).
Recall that Z(VO,YGY) is the set of pure complete geometric parameters (see the end of Section
2.2). There is a bijection (27) between Z(VO,YG") and (YO, G/R), the (equivalence classes of)
irreducible representations of pure strong involutions of G.

Let C(X(YO,YG"Y)) be the category of ¥ G-equivariant constructible sheaves of complex vector
spaces on X (VO,VGY). This is an abelian category and its simple objects are parameterized by
the set of complete geometric parameters £ = (S, 75) € Z(VO,VGT) as follows. Choose p € 9, let
VG, = Stabvg(p), and choose a character 7¢ of the component group of YG), so that (p,7¢) is a
representative of {. Then 7¢ pulled back to VG, defines an algebraic vector bundle

V@ Xva, V- 5. (45)

The sheaf of sections of this vector bundle is, by definition, a ¥ G-equivariant local system on S
([ABV92]*Section 7, Lemma 7.3). Extend this local system to the closure S by zero and then
take the direct image into X (VO,VGT) to obtain an irreducible (i.e. simple) ¥ G-equivariant con-
structible sheaf denoted by u(€) ([ABV92]*(7.10)(c)).

Now let P(X (YO, VGY)) be the abelian category of ¥ G-equivariant perverse sheaves of complex
vector spaces on X (VO,VGY) [BL94]*Section 5. The simple objects of P(X (YO, VGT)) are defined
from & = (S,75) € Z(YGY,VO) and the algebraic vector bundle (45) by taking the intermediate
extension [BBD82]*Section 2 to the closure S instead of the extension by zero. This is denoted
P(¢) ([ABV92]*(7.10)(d)). It is an irreducible ¥ G-equivariant perverse sheaf on X (¥VO,VG?L).

The Grothendieck groups of the two categories C(X (YO, VGY)) and P(X (YO, VG")) are canon-
ically isomorphic ([BBD82], [ABV92]*Lemma 7.8). We identify the two Grothendieck groups via
this isomorphism and denote them by KX (¥O,VGT). This Grothendieck group has two natural
bases

{@©) 1€ €E2(Y0,YGN)}  and  {P(§) | €€ E(V0O,YG")}

Suppose ¢ = (S,7) € Z(V0O,VG"). We define two invariants associated to &. First, let d(¢) be
the dimension of S¢. Second, associated to £ is the representation 7(§) of a pure strong involution
of G (27). Let e(§) = £1 be the Kottwitz invariant of the underlying real form of this strong
involution ([ABV92]*Definition 15.8).

As discussed in the introduction, we define a perfect pairing

(+,): KII(VO,G/R) x KX(YO,VG") - Z (46)

by
(M (&), n(&)) = e(€) d¢.er-

The pairing also takes a simple form relative to the bases given by 7(€) and P(£') (JABV92]*Theorem
1.24, Sections 15-17). We state it as a theorem.

Theorem 3.1. The pairing (46) satisfies

(m(€),P(€) = (1) @ e(€) deer, &€ €E(Y0O,VEN).
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This pairing allows us to regard elements of KII(¥ O, G/R) as Z-linear functionals of KX (YO, VG").
The microlocal multiplicity maps x2i¢ discussed in (8) are Z-linear functionals on KX (VO,"G").
Before making the obvious connection with the pairing (46), we review some facts needed to define
2, To begin, we consider the category of VG-equivariant coherent D-modules on X (VO,YG").
We denote this category by D(X (VO,VGT)). Here, D is the sheaf of algebraic differential operators
on X(VO,VGTY) ([BGKT87]*VIIL.14.4, [ABV92]*Section 7). Convenient references for equivariant
D-modules are [HTT08] and [ST00].

The equivariant Riemann-Hilbert correspondence ([BGK*87]* Theorem VIII.14.4) induces an
isomorphism

DR: KD(X(Y0,VG")) - KX(Y0,vG"). (47)

For simplicity we write X = X(VO,YG"), and DX = D(X(VO,VG")).

The sheaf D is filtered by the order of the differential operators, and the associated graded
ring is canonically isomorphic to Op-(x), the coordinate ring of the cotangent bundle of X
([HTTO8]*Section 1.1). Suppose M € DX. Then M has a filtration such that the resulting
graded sheaf grM is a coherent Op-(x)-module ([HTTO08]*Section 2.1).

The support of grM is a closed subvariety of T*(X) (JABV92]*Definition 19.7). Each minimal
Y G-invariant component of this closed subvariety is the closure of a conormal bundle T¢(X), where
S C X is a YG-orbit ([ABV92]*Proposition 19.12(c)). Therefore to each conormal bundle T (X)
we may attach a non-negative integer, denoted by Xglic(/\/l), which (when nonzero) is the length
of the module grM localized at T4 (X) [HTTO08]*Section 2.2.

The characteristic cycle of M is defined as

Ch(M) = > xFM) Tg(X).

SeX/VG

mic

For a given YG-orbit S we may regard x%'¢ as a function on D-modules which is additive for
short exact sequences ([ABV92]*Proposition 19.12(e)). It therefore defines a homomorphism
KD(X(VO,VG")) — Z, called the microlocal multiplicity along S. Using the isomorphism (47),
we interpret this as a homomorphism

X&' KX(Y0,VGY) = Z.

mic

We now return to the pairing (46) and its relationship to x%'¢. This relationship defines
nfzgv. We first define 7l € KII(YO,G/R) to be the element of KTI(YO,G/R) corresponding
via the pairing to the element ¥ in the dual of KX (YO, VG"). Explicitly working through the
identifications in the definition we see

e = Y (-1 dSe) e (P(e) m(e). (48)
EeE(VO,VGT)

An important result of Kashiwara and Adams-Barbasch-Vogan is

Proposition 3.2 ([ABV92]*Theorem 1.31, Corollary 19.16). 771‘21; is a stable virtual character.

The microlocal packet Hgﬁf of 1q is defined to be the irreducible representations in the support
of r]fZ‘éC. In other words

Ijie = {m(€) : £ € E(YOYEY) | x&i° (P(€)) # 0}

This is a set of irreducible representations of pure strong involutions of G. We are primarily
interested in the packet for the quasisplit strong involutions. We therefore define

Mo © = e (0g) (49)

to be the restriction of nlrféc to the submodule of KTI(VO,G/R) generated by the representations
in II(VO, G(R, §,)). The ABV-packet H;%GBV is defined as the support of ngfv, that is

Y = {m(€) : € € 2(V0,YE"), x5 (P(€)) # 0,7(€) € (G(R,4,))}- (50)
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We conclude this section with a restatement of Theorem 3.1. Define the representation-theoretic
transition matrix m, by
ME= Y m(E,9n(E). (51)
gleg(vovvcl")

Define the geometric “transition matrix” c, by

P = Y (-1 (&,9) (). (52)

E’EE(VO,\/GF)
(see [ABV92]*(7.11)(c)). Then [ABV92]*Corollary 15.13 says

Proposition 3.3. Theorem 3.1 is equivalent to the identity

my(€,€) = (~1)4O=4E) ¢ (g, &) (53)

This equation relates the decomposition of characters with the decomposition of sheaves.

3.2 The pairing in the twisted case

As discussed in the previous section, the pairing (46) plays a fundamental role in the definition of
ABV-packets. We now discuss a twisted version of this pairing for GLy.

We replace KII(YO,GLy(R)) with the Z-module KII(YO, GLy(R), ) of twisted characters
(44). Associated to &€ € Z(YO,YGLY)? are an irreducible representation m(¢) € TI(YO, GLy(R))?
as well as a canonical extension m(£)" to GLy(R) x (9) (Corollary 2.5). The twisted character of
(€)™ is an element of the space KTI(Y O, GLx(R),?) of twisted characters, and this gives a basis
of KII(YO, GLy(R),¥) parameterized by Z(¥O,YGLY)”. See (41) and the end of Section 2.5.

The twisted characters are to be paired with twisted sheaves which are elements in a Z-module
generalizing KX (VO,VG"). The twisted objects for this pairing are given in [ABV92]*(25.7) (see
also [CM18]*Section 5.4). We provide a short summary.

Let s € GLxy be an element such that

o =Int(s) o ¥ (54)

is an automorphism of GLy of finite order. Then o acts on X(YO,YGLY) in a manner which
is compatible with the YGLy-action ([ABV92]*(25.1)), and so also acts on its ¥ GLy-equivariant
sheaves.

Let P(X(VO, VGLR,); 0) be the category of VGL y-equivariant perverse sheaves with a compat-
ible o-action. An object in this category is a pair (P,op) in which P is an equivariant perverse
sheaf and op is an automorphism of P which is compatible with o ([CM18]*Section 5.4). Similarly,
we define C(X (YO, YCGLY); 0) to be the category of ¥GL y-equivariant constructible sheaves with
a compatible o-action. An object in this category is a pair (u, 0,) in which p is an equivariant
constructible sheaf and 0, is an automorphism of y which is compatible with o.

The Grothendieck groups of these two categories are isomorphic [CM18]*(35). We identify
them and denote their Grothendieck groups by K (X (YO,YGLY);0). This is the sheaf-theoretic
analogue of KTI(GLy (R) x ().

As with the representations (see (40)), we seek a canonical choice of extension of P(§), i.e. an
automorphism op ) of P(§).

Lemma 3.4. Let VG = VGLy, € = (S,75) € E(VO,VCGLY)?, p € S, and (45) be the equivariant
vector bundle representing u(§).

(a) Suppose p’ € S and p' = a - p for some a € VGLy. Then the maps
L) (55)

/

(g,v) = (9a~
g-prr(ga™)-p

define an isomorphism of equivariant vector bundles
V@ Xva, V-Va X\/Gp, V. (56)

which is independent of the choice of a.
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(b) There exist canonical choices of pairs
p&)" = (ul), 07 € C(X(YO,YGLY); 0),
P(&)* = (P(€), 08 € P(X(VO,VGLY); 0)

such that if p € S is fized by o then 0':(5) (and 0';;(5)) acts trivially on the stalk of p(€) (and
P(¢) e KX(VO,YGLY)) at p.

Proof. Let (p,7) and (p/,7") be representatives of £. It is well-known that the component group
VGp/(YG)p)? is trivial for the general linear group ([ABV92]*Lemma 7.5), and so 7 is its trivial
quasicharacter. For the same reason, 7 is the trivial quasicharacter of the trivial group. Both 7
and 7’ lift to the trivial representations of VG, and VG, = aVGa™! respectively. By definition

(gh,’U) = (g7T(h)U) = (97’0), (97U) € VG XVGP ‘/7 h e va-
Applying (55) to the left-most element, we obtain
(gha*17v) = (gaflahafl,v) = (gafl,T'(ahafl)v) = (ga~

in VG xvg, V. This proves that the map (55) is well-defined. The map is clearly a YGLy-
equivariant isomorphism. The element a € Y@ is unique up to right-multiplication by an element
in a; € YG)p. Since

1 1 1 )

(9(aar)™,v) = (garaa; a™ " v) = (ga™, 7/ (aa; a ) = (ga™t, v)

in V@ Xvg,, V, the isomorphism (55) is independent of the choice of a. This proves the first
assertion.
Suppose p’ = o(p) =a-p € S. Then o induces a bundle isomorphism

e Xv@a, V-Va X\/Gp/ V,

which when composed with the inverse of (56) yields a canonical automorphism which we set equal
to cr:(f). To be explicit

O-:L_(g)(gvv) = (U(Q)G,U), (g,’l}) eV@ Xva, 1% (57)

We identify cr:(g) with the unique automorphism of p(£) which it determines.
This choice of U:(E) determines a canonical choice 0';;(5) by virtue of the fact that p(§) oc-
curs in the decomposition of P(£) in KX (YO,YGLY,) with multiplicity one ((7.11)(b) [ABV92],

[CM18]*pp. 154-155).
Finally, suppose o preserves p. Then g = a =1 in (57) and the last assertion is proved. O

We now imitate the definition of KTI(YO, GLy(R), ) (44) for the sheaves appearing in Lemma
3.4. Attached to & € 2(YO,YGLY,)? are perverse sheaves P(¢€)*, where P(£)7 is defined in Lemma
3.4, and P(¢)~ is the unique other choice of extension. Furthermore, the microlocal traces of P(£)*
differ by sign ([ABV92]*(25.1)(j)). Similar comments apply to u(&)*.

We are interested only in irreducible sheaves with non-vanishing microlocal trace. We conse-
quently follow the definition of (44) in defining the quotient

KX(Y0,"GLy,0) = K(X (Y0, GLY))" @ Z[U2]/{(P(¢) ® 1) + (P(§) ® ~1)) (58)

where the quotient runs over & € Z(VO,YGLY)?.
This is the Z-module which we shall pair with

KI(YO,GLy(R))Y = KTI(YO, GLy(R), )
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in Section 4. We call the elements of this module twisted sheaves, and remind the reader that
these modules are not naturally Grothendieck groups, even though we have kept the “K” in the
notation.

For reasons that will only become clear in Section 7, the definition of our twisted pairing
involves some additional signs. The signs depend on the integral lengths of parameters, which may
be described as follows.

From now on we assume A € O satisfies the regularity condition (32). Let & € (Y0, YGLY)?.
Lemma 2.2 tells us that associated to & is an element x € Av,. Set 0, = Int(z) € Normg(H). Let

R(\) = {a € R(GLy,H) | (\,Ya) € Z} (59)(a)
be the A-integral roots, with positive A-integral roots
R (\) = {a e RO | (A,a) > 0}. (59)(b)

Define the integral length, following [ABV92]*(16.16), as
1
11(¢) = ~3 ({a € RT(N) : 0,(@) € RT(N)}] + dim(H)) . (60)

The integral length takes values in the non-positive integers.
Furthermore define

Ry(A\) = {a € R((GLY)", (H")°) | (Yo, \) € Zso}-
We define the ¥-integral length by

1y(6) = —% (Ha € Ry (N) [ 6a(@) € RE (N} + dim((H”)%)) . (61)

This is the integral length for (the identity component of) the group GL?\,.
Now we define a perfect pairing (under the assumption (32)):

(-,-): KII(YO,GLy(R),¥) x KX(YO,YGLY,0) = Z (62)

by setting
Tgy g1
(M), u(€)) = (- OO 5 (63)
for £,¢' € 2(V0O,VGLY)”. The analogue of Theorem 3.1 is

Theorem 3.5. Suppose A € VO satisfies (32). Define the pairing (62) by (63). Then
Toey gl
(m(©)F PE)) = (-1 (-1 OB 5o
where €,& € 2(Y0O,VGLY)”.

The proof of this theorem is the primary purpose of Section 4. Its proof is modelled on the
proof of Theorem 3.1 in [ABV92]*Sections 15-17.

The signs (—1)11(5)_1119(5) appear in the pairing to account for the comparison of extensions
given in Section 7. Note that if ¢} were taken to be the identity automorphism then the signs would
disappear, and one would recover the ordinary pairing (46) for GLy .

We conclude this section by giving a twisted analogue of Proposition 3.3. This analogue will
only be needed in Sections 7 and 9, so the reader may wish to skip this discussion and return to it
later.

For &,¢ € Z2(VO,VGT)?, define m,(¢/.,£,) to be the multiplicity of the representation 7(&")*
in M(£)* in the Grothendieck group KTI(Y O, GLx(R) x (9)) (Section 2.6). In other words

MET= > me(E ) mE) +ma(€ ) m(E) T+

g/eE(vo7vgr)ﬂ
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where the omitted summands are irreducible representations of GLy(R) x (¢) of the second type
(Section 2.6). Define

m? (5/7 f) = My (gfi-a §+) — My (5/—75-"—) (64)

for £,¢ € Z(VO,VGY)” (¢f. [AVLTV20]*(19.3d)). By construction, the image of M (&)t in
KII(YO,GLN(R),¥) (44) decomposes as

MET= > ml(,9rE)" (65)
€'€E(VO,VGLE)?
Lemma 3.6. The matrixz given by
m)(€.€), &€& €2(V0,VGN)
(64) is invertible.

Proof. The invertibility of the matrix given by m,(£,£) in (51) follows since it is uni-upper-
triangular with respect to the Bruhat order ([AvLTV20]*Definition 18.4, [Vog81]*Lemma 6.6.6).
We show that m? (£¢) inherits the same two properties. By restricting to GLy (R) we see

mr(flvf) = mr(gfi-af-‘r) + mT(g/—vf-‘r)

(see the equation preceding [AvLTV20]*19.3c). Furthermore m..(¢,&) =1 implies my(&, &) =1
and m,.(£_,€64) = 0 or m,(£4,€4) = 0 and m,.(€_,&,) = 1. Therefore m?(£,¢) = +1 and by
(64) we conclude m?(¢’,€) is upper-triangular with +1 along the diagonal. In particular, it is
invertible. O

In a parallel fashion, we define ¢, (&, &) for €, & € (VO,VGY)? by

PEOT= > (D" g€ e ()T + ()M o (€ g uE) + (66)

f’EE(VO,VGF)ﬂ

in the Grothendieck group KX (VO,YGLy;0) of Section 3.2. Setting

cg(€,6) = ¢g(€h,&4) — co€1, &4). (67)
we see that the image of P(¢)™ in KX (VO,VGLy, 0) is
Yoo (=) e ot (68)

f’EE(VO,VGF)’g
Just as Theorem 3.1 is equivalent to Proposition 3.3. We have the following equivalence.

Proposition 3.7. Theorem 3.5 is equivalent to the identity
mi(€,€) = (1) O~ e ¢) (69)
forall &,¢ € 2(VO,VGLY)Y.
Proof. Using Lemma 3.6 we compute

(&), P(&)T) = (md)THEL &) ) (€, &) (—1)M (M (E)T, w(&h))

1:€5

= Z (], &1) (€], &) (—1)4E) (—1)! €15

for &,& € E(YO,YGLY)?. If Theorem 3.5 holds then this sum is equal to

I I
(—=1)%&) (—1)! (51)419(51)551752
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and S0 I I gt ’ I I (¢t
m?(&,&) = (-1) (§1)—d(&1) (—1)! (El)—d(él)(_1)%(51)—!@(&1) 03(51,51)-

By [AMR17]*Proposition B.1,
(_1)11(51)—d(£1) — (_1)11(61)—01(51)

is a constant independent of any parameters £ and &;. Thus,

ml (§,61) = (=1) @0 E) (g, &),

The process we have given may easily be reversed to prove the converse statement. O

4 The proof of Theorem 3.5

4.1 The Beilinson-Bernstein correspondence in the proof of Theorem
3.5

Our proof of Theorem 3.5 will follow the same strategy as the proof of Theorem 3.1 in [ABV92]*Sections
15-17. We recall some of the theory of KLV-polynomials in the non-twisted context first.

The basic tool in this theory is the Hecke algebra for GLy (R) ([ABV92]*(16.10)). For Harish-
Chandra modules of GLy(R) of infinitesimal character VO, this is a free Z[q'/?, ¢~1/?]-algebra
H(YO), which comes equipped with a representation on the Hecke module

KII(VO,GLy(R)) = KII(YO, GLy (R)) ®z Z[g'/?, ¢~ /2.

This representation is actually transported from a Hecke algebra action on a module generated
by constructible sheaves ([Vog82]*Proposition 12.5, [LV83]), using the Riemann-Hilbert (47) and
Beilinson-Bernstein [BB81] correspondences.

It is the latter kind of Hecke algebra action which gives us a representation of H(¥O) on

KX(M0O,VGLY) = KX (V0,VGLY) @z Z[¢'/?, ¢~ /2]

[ABV92]*Proposition 16.13. In order to describe the details of the Hecke action in the twisted case
(Section 4.4), it is convenient to replace the space KX (¥YO,YGLY) with a space of characters of
representations of certain inner forms of YGLy. To be more specific, we define

YII(Y O, GLy (R))

to be the set of irreducible characters obtained by applying the Riemann-Hilbert and Beilinson-
Bernstein correspondences to the irreducible equivariant perverse sheaves on X (YO, YGLY).

Here is some detail about VII(YO,GLy(R)). Suppose & = (S,75) € Z(VO,YCLY) and write
¢ for the Langlands parameter with orbit S (JABV92|*Proposition 6.17, (26)). Define A and y by
(24)(a), YVGLN(A) by (24)(b), and VK, as in Equation (24)(d). It is easy to see that YGLy () is
a product of groups GL,,, and that the real group corresponding to ¥ K, is a product of indefinite
unitary groups U(p;, ¢;) with p; + ¢; = n;. Let Vpy = %ZaeR*(A) Va (see (59)). Then Yp — Vpy
defines a two-fold cover of VK, which we denote by Vf{y ([AV92a]*Definition 8.11). The set
VII(YO, GLy(R)) consists of (Ygly(\), Y K, )-modules.

To summarize:

Proposition 4.1 ([Vog83]*Proposition 1.2, [ABV92]*Theorem 8.5). The Riemann-Hilbert and
Beilinson-Bernstein correspondences define a bijection

2(V0,VGLY) +— YII(YO,GLy(R)).

In this correspondence ¢ € 2(YO,YGLY) is sent to an irreducible (Ygly(N), Y K,)-module of in-
finitesimal character Vp. This correspondence induces an isomorphism of Z-modules

KX (Y0,YGLY) = KVII (YO, GLN(R)). (70)
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4.2 Vogan Duality for GLy

We want to understand the (Vg[N()\),Vf(y)—modules of Section 4.1 in terms of our parameters.

Suppose £ € Z(YO,YGLY), and let (z,y) be the corresponding Atlas parameter in Xv, x VX
given by Lemma 2.2. As we shall see, the reversed pair (y,z) then defines an Atlas parameter for
VGLy (M) ([AV15]*Section 6.1). In the case of integral infinitesimal character this is an example of
Vogan duality in the version of [AdC09]*Corollary 10.8.

Here are some details in our setting. Let o,, € GLy be the Tits representative of an element
w € W(GLn, H) [AV15]*Section 12, and wy € W(GLy, H) and w) € W(YGLn()),YH) be the
long elements in their respective Weyl groups. Set

6 = O’w/O'_l(so € GLy % <50>

(see (28)).
Lemma 4.2. (a) (6})% = exp(2mi(Vp — Vpy)) € Z(GLN(N)).

(b) GLy(X) x (8)) is an E-group for YGLy(X) in the sense of [ABV92]*Definition 4.6, with
second invariant exp(27i(Vp — Vpa)).

(¢c) The pair (y,z) € Y X\xXv, is naturally an Atlas parameter for an irreducible (¥ gly (N), Vf(y)-
module.

Proof. For part (a) we compute
(60)* = (860w (36) 1) (8600, 00)
= 0’56(1”0) (Uwéd;géoa;()léo)

_ -1 _—1
= Ouwy;, (0“’6071’0 050(71)0))

_ 2 -2
= O'wéo'wo .

using property [AV15]*(53¢g) twice. The final equality is a consequence of [AV15]*Proposition 12.1.
It is straightforward to show that conjugation by d{ preserves the pinning of GLx(\) obtained
by restricting the usual pinning of GLy. This is all that needs to be verified for part (b), once the
definition of an E-group is recalled.
For part (c), suppose (x,y) € XY, x VX" (Lemma 2.2). We must prove that

(y,z) € VY™ x Xvawgwé
relative to the extended groups
YGLN(A) x (Y8g)  and  GLx(X) x (85). (71)

It is a tautology that y € YAX}\""°. For the class x the corresponding statement follows from the
fact that x acts on H as

wdy = wwowdy.
The pair (y,z) now determines a (Vh, ¥ HY)-module of infinitesimal character ¥ p) [AV15]*Corollary
3.9. This is equivalent to a (Vh,V HY)-module of infinitesimal character ¥p ([KV95/*p. 719). The

latter module then leads to a (Ygly(A), Y K,)-module following the prescription of [AV15]*(20). [
Suppose ¢ € Z(YO,VGLY,) corresponds to (z,y) € XY, < VA as in Lemma 2.2. We define
Ve = (y,x) € VA0 x LMD, (72)

By Lemma 4.2 (c¢), the Atlas parameter (y,x) defines an irreducible (Y gl ()), Vf(y)—module, which
we denote by 7(V¢). The (Vgly(N),VK,)-module 7(V€) is the Langlands quotient of a standard
(Vgly(N), Y Ky)-module ([AV15]*(20)), which we denote by M (V).

26



Proposition 4.3. Under the bijection (70) we have:

(a) P(&) = 7(¥¢)
(b) (=1)"Op(&) = M(V€)

Proof. This proposition holds in greater generality, but is simpler for GLy (R). Suppose £ = (S, 7s)
corresponds to (z,y) as in Lemma 2.2. The (Vgly(\),YK,)-module corresponding to P(§) under
the Riemann-Hilbert and Beilinson-Bernstein correspondences is described by [ABV92]*Proposition

6.16 and [Vog83|*Corollary 2.2, Proposition 2.7. These results tell us that the (Vg[N()\),VI?y)—

module is determined by an (Vh,YHY)-module. The character of YHY in this (Vh,YHY)-module
is completely determined by Vp and 7g. In our case the matter is simplified in that 75 is the
trivial representation of a trivial component group. This is also equivalent to the group Y HY being
connected, or to the fact that all Cartan subgroups of U(p, ¢) are connected. In consequence the

Vb, V’I\{/y)—module is determined entirely by the infinitesimal character Vp specified on V.
On the other hand, according to the proof of Lemma 4.2 (c), the Atlas parameter (y,z) de-

termines an irreducible (Vgly(\), Y K,)-module in terms of a (b, VHY)-module with infinitesimal
character ¥p. Since YHY is connected this (Vh,Y HY)-module is determined by vp alone, and is

equal to the (Vb, @)—module obtained from P(§) above. This proves (a).
For (b) we recall (52) and apply [Vog83]*Theorem 1.6 to obtain

V)= > (g )M, (73)
&e=E(VO,VGET)

(The absence of signs in (73) is due to the fact that the sheaf on the left-hand side of [Vog83]*1.5
is equal to (—1)%%) P(§) according to the definitions of [Vog83]*5.13 and [ABV92]*(7.10)(e), see
also the proof of [ABV92]*Proposition 16.13). The matrix ¢, is invertible and so (73) implies

MrO= D N one). (74)
E’EE(VO,VGF)
Similarly, by inverting the matrix ¢, in (52), we obtain
D" Ou© = Y M€ OPE). (75)
§’€E(VO,VGF)

By part (a) the Riemann-Hilbert and Beilinson-Bernstein correspondences carry the right-hand
side of (75) to the right-hand side of (74). Therefore the left-hand sides correspond, which gives
(b). O

Corollary 4.4. The pairing
{(-,-) : KII(VO,GLN(R)) x KYII(YO,GLN(R)) — Z (76)

defined by

(M(€),M(V) = (—1)" ©oe e
satisfies

(m(©),m("¢)) = (=1)" ©éee
Proof. By Proposition 4.3, Theorem 3.1 is equivalent to the assertion that if a pairing
(-, K(V0,G/R) x K’TI(VO,VGY) — Z

is defined by

(M), M(V€)) = (~1)" ¢ ¢

then
(m(€),m(VE)) = (—1)" g 0. (77)



By [AMRI17]*Proposition B.1
(= 1)U () ©) = () O+ = (—1)° (78)
does not depend on £. Therefore, the pairing in (76) satisfies
(o)==

The assertion of the corollary follows from Equation (77) and Equation (78). O

4.3 Vogan Duality for twisted GLy

In the previous section we replaced the sheaf-theoretic module K X (VO, VGLR,) with the isomorphic

representation-theoretic module KVII(YO,GLy(R)). We now wish to replace the twisted sheaf-

theoretic module KX (VO,VGLY, o) (58) with a space of twisted characters, and hence restate

Theorem 3.5 with a statement about twisted representations analogous to Corollary 4.4. The main

tool is Vogan duality for the disconnected group GLy (R) x (1), as discussed in [AV15]*Section 6.1.
By analogy with (58) we define

EYII(YO,GLy (R),9) = KVII(YO, GLy (R))” ® Z[Us] /(n(V€) © 1) + (n(V€) © —1))

where the complete geometric parameters ¢ run over Z(¥O,YGLY)?.
Using Propositions 4.1 and 4.3, we define a bijection

P = (YO, €e=(V0,YGLY) .

The extended representation 7(¥&)™ on the right is obtained by Vogan duality from (&)t as in
[AV15]*Corollary 6.4. The bijection yields an isomorphism

KX(V0O,VGLY, 0) = KVII(YO, GLy (R), 9). (79)
Proposition 4.5. Under the isomorphism (79)
(=)™ OuE)" = M(OF, €€ E(Y0,YGLY)".
Proof. Define a Z-linear map
B: KX(N0O,VGLY)? ® Z[U,y] — KVII(Y O, GLy(R))Y @ Z[Us]

by setting
B(P(&)T) ==x(Y&)" and B(P(&)") =x(¥¢)~, €£€Z(V0O,YGLY)".

Recall Equation (66). The matrix ¢, given by this equation is invertible. We may therefore invert
Equation (66) by writing

()" = > g (€, 61) P(E)T + e (€L,&4) P(E) ™+

¢'€E(VO,VGLE)?
The projection of this equation to KX (YO, VGLY)? @ Z[Us] is

> g (€L E) PE)T + M (€, &) P(E). (80)

f’eE(VO,VGLR,)ﬂ
Applying B to (80), we obtain

B((-1)"@pu(&)*)

B Y GUELED) PEY e €L g PE)T

{/65(\/07\/(;]'_‘5‘\1)19

_ 3 g € e ) (Ve + et (el e ) m(VE)T (81)

{’EE(VO,VGLE‘V)"S
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The sum on the right is a formal sum of extensions of (¥gly(A), VIN{y)—modules (Lemma 4.2 (c)) to

(Valy(N), VI, % (9))-modules. Since both 7(¥¢)+ and 7(VE)™ restrict to the same (Y gly (X), VK,)-
module 7(VE), we write the restriction of this sum as

B((_l)d(g)/‘@)—i_)\KVH(VO,GLN(R)W = Z (Cg_l(ﬁﬁr’@r) + 051(§L’§+)) (V¢ (82)
¢/€E(VO,VGLE,)?

In a similar manner we apply to equation (80) the forgetful functor which takes (YGLy x (0))-
equivariant sheaves to ¥ GL y-equivariant sheaves. The result is

(1) @ p(e) = S (M€ E) e (ELE)) P,
€€=(VO,VGLE)?

Comparing this equation with (75), we see that

Cg (€ 864) + 5 (€L, 64) = ¢5 1 (€,6)-
Consequently, equation (82) takes the form
B((-D)* O p(&) ") kv 0,01y @) = Z e (€, OV,
¢'eE(VO,vVGLL)?

and by (74)
B((=1)"u(€) ") xvnro.cuymye = M(VE).
The standard module M (V¢) has exactly two extensions M (Y¢)*. We need to show

B((-1)"pu(e)") = M(V¢)*

and for this it suffices to prove that 7(¥&)™ occurs in M (YV€)T as a (sub)quotient. Looking back to
(81), the latter is equivalent to proving that ¢, '(&4,&4) # 0. Looking a bit further back to (80)
we see that this amounts to P(£)* appearing in the decomposition of p(£)™, and this is true by
definition (see the proof of Lemma 3.4). O

Using Proposition 4.5 we can restate Theorem 3.5.

Lemma 4.6. Theorem 3.5 is equivalent to the following assertion. The pairing

{(-,-) : KII(YO,GLy(R),9) x KYII(YO, GLy(R), ) — Z (83)
defined by

I
(M(E)*F, M(VENT) = (=) © b ¢
satisfies
I
(T, 7w (VEN)T) = (=)W 5 e

where £, € 2(VO,VGLY)?.
Proof. We just need to notice that by Proposition 4.5, Theorem 3.5 is equivalent to the assertion

that if a pairing
{(-,-) : KII(YO,GLy(R),¥) x KYII(YO,GLy(R), ) — Z

is defined by
I I
(M, M(VENT) = (-1 (=) O~ E 5 .

then , ,
(r(&) T, (Ve = (—1) O (—1)V O L) g .

The proof then follows exactly like that of Corollary 4.4, we leave the details to the reader. O
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4.4 Twisted Hecke modules

The proof of Theorem 3.5 relies on a Hecke algebra and Hecke modules as in the ordinary, non-
twisted setting of Sections 4.1-4.2. In the twisted setting, Lusztig and Vogan define a Hecke algebra
which we denote by H(A) [LV14]*Section 3.1. This Hecke algebra acts on the Hecke modules

KI(YO,GLN(R),¥) = KII(YO, GLx(R), 9) @7 Z[g"/?, ¢ /7]

and

KYII(YO,GLy(R)) = KVII(YO,GLy (R)) @ Z[g"/?, ¢~ '/?]

as in [LV14]*Section 7. We shall extend the pairing (83) to these Hecke modules. Once the Hecke
algebra action is supplemented with Verdier duality [LV14]*Section 2.4, we present special bases of
the Hecke modules, essentially eigenvectors of Verdier duality. Theorem 3.5 will be seen to follow
from a theorem expressing the values of the pairing on the special bases (Theorem 4.15).

We continue with a closer look at the Hecke algebra H()A). Let x be a ¥-orbit on the set of
simple roots of RT(\). The orbit & is equal to one of the following:

one root {a = ¥(a)} (type 1)
two roots {a, B=9(a)}, (a,YB) =0 (type 2) (84)
two roots {a, B =3(a)}, (a,VB) =-1 (type 3).

Write W () for the Weyl group of the integral roots R()), and let
W = {we W) : d(w) =w}.
The group W (\)? is a Coxeter group ([LV14]*Section 4.3) with generators

S K type 1
Wk =4 SaSp K type 2 (85)
SaS8S8a K type 3.

The Hecke algebra H()\) ([AV15]*Section 10, [LV14]*Section 4.7) is a free Z[q'/?, ¢~ 1/?]-algebra
with basis
(T, - w € W(N)}.

Tt is a consequence of [LV14]*Equation 4.7 (a) that 7 () is generated by the operators T}, := T, ,
where & is a J-orbit as in (84).

Before we move to a discussion of H(A)-modules, we digress on how the J-orbits x are further
categorized relative to a fixed parameter ¢ € E(¥VO,VGLY)?. The parameter £ € Z(YO,VGLY)"Y
is equivalent to an Atlas parameter (z,y) as in Lemma 2.2. The adjoint action of x acts as an
involution on R(A). This action separates the ¥-orbits of roots into various types, e.g. real,
imaginary, etc. Lusztig and Vogan combine this information with the types of (84) and also with
the types defined by Vogan in [Vog81]*Section 8.3. The interested reader must be vigilant in
distinguishing between these three kinds of types! The list of combined types may be found in
[LV14]*Section 7 or [AV15]*Table 1.

Not all of the types that appear in this list are relevant for GLy (R). For example the classifica-
tion of roots in [Vog81]*Section 8.3 labels the roots as either type I or type II, and it is well-known
that roots of GLy (R) are all of type II. Another well-known fact is that GLx (R) has no compact
roots relative to x in the sense of [Kna86]*Section VI.3. Using these two facts, it is tedious, but
simple, to verify that the only relevant types for GLy(R) in [AV15]*Table 1 are labelled as

1C+,1C—,1i2f, 1i2s, 1r2, 1rn, 2C+, 2C—, 2Ci, (86)
2Cr, 2122, 2r22, 2rn, 3C+, 3C—, 3Ci, 3r, 3rn.
Any 9-orbit s also has a type relative to the dual parameter V¢ (72). The dual parameter is

equivalent to the Atlas parameter (y,z) and the adjoint action of y is essentially the negative of
the adjoint action of  ([AV15]*Definition 3.10). In consequence it is easy to convert the types of
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(86) into types for the Vogan dual group YGLx(A) % (Vdg) ((71), [AV15]*Section 11 and Table 5).
They are

1C—,1C+,1r1f, 1r1s, 1i1, 1ic, 2C—, 2C+, 2Cr, (87)
2Ci,2r11,2i11,2ic, 3C—, 3C+, 3Cr, 3i, 3ic.

Let us return to the subject of Hecke modules. In [LV14]*Section 4 and [AV15]*Section?7 it is
explained how KII(YO,GLy(R),?¥) can be made into a Hecke module by defining the action of
the operators T}, on the generating set {M (&)t : ¢ € E(YO,VGLY)?}. The actions are computed
explicitly in a geometric setting in [LV14]*Section 7, and are presented in terms of extended
Atlas parameters in [AV15]*Proposition 10.4. A case-by-case summary of the actions is given in
[AV15]*Table 5, according to the categorization of (86).

The construction defining the Hecke algebra H(A) and the Hecke module structure for the
module KII(YO,GLy(R),¥) in [LV14], also defines a Hecke algebra YH(\) and a Hecke module
structure for LVII(YO, GLx(R),9). The Hecke module actions in this case are again given in
[AV15]*Table 5 in terms of (87). The Hecke algebra YH(A) for the Vogan dual group (71) is
generated by Hecke operators TV ,,, where ¥k runs over the simple coroots corresponding to . The
bijection between the two sets of operators

Wik E simple} «— {1V, : k € simple
T, R™()\) simpl T R™(\) simpl

extends to an isomorphism H(A\) & VH()). In this manner, we also regard KVII(Y O, VGLy (R), )
as an H(A)-module.

There is a partial order on Z(VO,YGLY)?, the Bruhat order which is defined geometrically
([LV14]*Section 5.1, [ABV92]*(7.11)(f)). The Bruhat order for the dual parameters VZ(¥ O, VGLY)?
is defined by the inverse order

Vez Ve e e<t, ¢ €5(Y0,VGLY)". (83)
We now return to the pairing (83) and extend it to a Hecke module pairing
() : KI(YO,GLN (R),¥) x KYII(V O, YGLy (R),¥) — Z[g"/?, ¢~ /%], (89)
by setting
(M(E)T, M(ME)T) = (—1)1s @ @ CN)/2 5,

for all &, ¢ € E(VO7VGL§\1)§. In view of the Kronecker delta, the term ql/Q(ZI(f)—HI(vgl)) in the

pairing could be replaced by qUQ(ll(i)HI(VE)) or ql/z(ll(‘g”ll(vgl))‘ In fact, both of the latter terms
are independent of £ or £, as may be seen by the following lemma.

Lemma 4.7. Suppose £ € Z(YO,VGLY)Y. Then

Q)+ (') = 5 (RY )|+ dim(H)

Proof. For simplicity let us identify the dual group ¥YGLy(A) with GLy (). Similarly, we identify
VH with H. Let (z,y) be the Atlas parameter of £ as in (36). Then (y, ) is the Atlas parameter
for V¢ (72), where the adjoint action of y on b is the negative of the adjoint action of x on bk
([AV15]*Definition 3.10). From definition (60) we compute that

() +1(V¢)
= —% ({a € RT(N) 1z € RT (W)} + dim(H")) — % ({a € RT(N\) :y-a € RTY(N)}| + dim(HY))
- —% ({a € R¥(\) 2 a € RF W} + [{a € RY(\) : —(z-a) € RT(N)}] + dim(H*) + dim(H*))

(IR (N)| + dim(H)) .

M| —
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4.5 The Hecke module isomorphism
The extended pairing (89) induces a Z-module isomorphism
KII(YO,GLy (R),9) — KYII(Y O, GLy (R),9)* (90)
M(E)T = (M), )

We endow KVII(YO,GLy(R),d)* with the Hecke module structure given in [AV15]*Section 11.
The main goal of this section is

Proposition 4.8. The map (90) is an isomorphism of H(X)-modules.

This is a generalization of [AV15]*Proposition 11.2, which is stated only in the case of integral
infinitesimal character. In the course of the proof we correct a sign in [AV15]*Proposition 11.2.

We first describe the H(A)-action in more detail. Since H(\) is not commutative, one cannot de-
fine a Hecke action on KVII(Y O, GLy (R), ¥)* merely by transposing the action on LVII(YO, GLy (R), 9).
One must include an anti-automorphism of 7 (\) defined by

T — (1)L 0y € W(N)?,

(cf. [AV15])*(50) (removing ¢ on the left), [ABV92]*(17.15)(c)). Here, I(w) is the length of w with
respect to the simple reflections in W(GLy, H), and ly(w) is the length of w with respect to the
generators of (85). The H(A)-action on KVII(YO,GLy(R),d)* is defined by

T;, : K'TI(YO,GLy (R),9)" — KVII(YO, GLx (R), 0)" (91)
T p= (_1)l19(w)ql(w) (lel)t "

where (T,1) is the transpose of T);!. According to [LV14]*Equation 7.2(a), for any ¥-orbit & of

a simple root in R(A) we have

(T, + 1)(T, —¢')) = 0. (92)
From this, the inverse of T, may be computed to be
Tt = T, 4 (g7 — 1),
The Hecke action of (91) for a generator therefore takes the form
Ty -pn=—(Tw,)" - p+ (@) = 1)p. (93)

The Hecke module structures of both the domain and codomain in the proposed isomorphism
(90) are now established, and both are presented in [AV15]*Table 5 in terms of cross actions and
Cayley transforms ([AV15]*Tables 2-4). Our next goal is to show that cross actions and Cayley
transforms commute with Vogan duality (72). In the following two propositions we distinguish in
notation between o € R(\) C R(GLy, H) and Ya € R(YGLy()), Y H) although the reader may
prefer to identify these two roots.

Proposition 4.9. Fiz a complete geometric parameter € € Z(¥0,VGLY)? and w, € W(\)? as in
(85). Then

(a) V(ws x M()) = wv, x M(YE)
(b) v(wn X M(§)+) = Wvg X M(Vf)Jr

Proof. We identify £ with its equivalent Atlas parameter (z,y) of Lemma 2.2. The dual parameter
V¢ is then identified with the Atlas parameter (y,z) (72). By the definition of cross action in
[AdC09]*(9.11 f),

wye X M(z,y) = Mz, wyw™!) (94)

where w € GLy(\) is any representative for w,. By (72)

V(we x M(x,y)) = Y Mzt wyw ™) = My o™ t) = wv, x M(y,z)
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This proves the first assertion of the proposition.
For part (b), we first claim that

we x M(E)F = (wy x M) (95)

In other words the cross action carries an Atlas extension to an Atlas extension (40). When the

J-orbit k of a simple root in R(A) is also comprised of simple roots in R(GLy, H), this may be

seen by noting that an extended parameter (A,T,0,0) for M(£)™ (37) is carried to an extended

parameter of the form (A',7’,0,0) under all instances of cross action in [AV15]*Tables 2-4. For

general  this fact follows from [AV15]*Definition 10.4 and Tables 2-4. (This is a special property

of the group GLy X (do) which avoids “bad” roots such as those of type 2112 in the tables.)
Taking the Vogan dual of (95), we obtain

Ywn x M(€)T) = Y ((we x M(€))T) = (¥ (we x M(&)))" = (wv, x M(YE))".

Here, the second equality follows from the definition of Vogan dual for an Atlas extension ([AV15]*Corollary
6.4), and the final equality follows from the first assertion of the proposition.
To complete the second assertion, we must prove

(u]v,i X M(Vf))+ = Wvg X ]\4(vf)-"_7

which is analogous to (95). However, unlike (95) this identity is to be proved using [AV15]*Tables
2-4 for the dual group rather than for GLy % (dg). Once again we turn to extended parameters.
If (A,7,0,0) (37) is an extended parameter corresponding to M (§)T = M(z,y)* then an extended
parameter corresponding to M (V)T = M(y,z)™ may be chosen to have the form (0,0, ¢, t").
Indeed, the zeros in the first two entries satisfy the requisite equations of [AV15]*Propositions 3.8
and 4.5 when regarding M (y,z) as a (gly(N), vIz'yg)—module of infinitesimal character py (Section
4.1). As [AV15]*Tables 2-4 indicate, any cross action from (87) applied to (0,0, ¢,t") yields an
extended parameter with zeros in the first two entries. This means that wv, x M (V€)' has an
extended parameter with zero in its first entry. According to [AV15]*Lemma 5.3.1 this extended
parameter corresponds to the Atlas extension (wv, x M (V¢))1, and the proposition is complete. [

Proposition 4.10. Fix a complete geometric parameter £ € E(VO,VGLR,)@ and suppose that k
as in (84) allows for a Cayley transform c, ([AV15]*(42¢))*. Then

(a) ¥ (ex(M(€))) = cvu(M(Y))
(b) ¥ (en(M(§)T)) = evi(M(VE)T)

Proof. We see no means for avoiding a case-by-case proof, the cases being according to the type
of  as given in (86). We will prove an illustrative case in detail, leaving the others to the reader.
As in the previous proposition we identify € with its equivalent Atlas parameter (x,y) of (36), and
identify the dual parameter V¢ with (y, ).

Suppose £ = {a, 8 = ¥ - a} is of type 2r22, i.e. «,3 € RT()\) are orthogonal roots which
are real with respect to a(ny) strong involution in the class = ([AV15]*Proposition 3.4. Suppose
further that o and B are simple in RT(GLy, H). Then ¢, is defined as the composition of the
Cayley transforms ¢, of o, and c¢g of 8 (¢f. [LV14]*7.6 (h)). The Cayley transform c, is defined in
terms of Atlas parameters in [AdC09]*Definitions 14.1 and 14.8 as follows. Let G, be the derived
group of the centralizer of ker(a) in G = GLy, and let H, C G, N H be the one-parameter
subgroup corresponding to a. Then G, is isomorphic to SLy and H, is a Cartan subgroup of G,,.
Let 0, € G4 be the Tits representative ([AV15]*(53)) of the non-trivial Weyl group element in
W (G, H,) and write m,, = 2. The same formalism applies with G = YGLy and Ya, so that we
have a Tits representative ov, and mv, = (0v,)?. Let § € x and V4 € y be representative strong
involutions. Then the Atlas parameters of the representations in the image of ¢, (M (z,y)) are the
classes of (040,0v, V) and (Mmaoad,0v, V). In this case the two classes coincide (¢f. type 1r2
[AV15]*Table 1) and therefore c, (M (z,y)) is single-valued.

2Contrary to custom, we leave & in subscript regardless of whether the Cayley transform is made relative to real,
complex or imaginary roots.
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The same reasoning applied to ¢ leads to a single representation in the image of ¢ (M (z,y)) =
cg(ca(M(x,y))) and the Atlas parameter of this representation is the class of (03040, 0vg0v, V).
The Vogan dual of this Atlas parameter (72) is the class of (ovgov, V8, 004,0). Following the path
delineated above, it is a straightforward exercise to compute that this is the Atlas parameter of
evi(M(y,x)), where now V& = {Va,VB} is of type 2111 with respect to the representative V¢ of
y. This proves the first assertion of the proposition for the first example when « and § are simple
in R*(GLy, H).

When a and 8 are merely simple in RT(\) and not necessarily simple in RT(GLy, H) then the
Cayley transform is defined by

eu(M(z,y)) = w™h X cpp(w x M(z,y)) (96)

where w € W(GLy, H)” and wk is comprised of simple roots in R (GLy, H) ([AV15]*Proposition
10.4). In this case the Atlas parameter of ¢, (M (z,y)) is the class of
(0 0w ™ M, 0 v Oy vt Y ST D) (97)
= (u’;_lawﬂawawd, w_lo'w VOV oW V(S),
where w is any representative of w (c¢f. the proof of Proposition 4.9) and o, etc. are the Tits

representatives in Gy, etc. These Tits representatives, as well as the Tits representatives of
0q € Gy, etc. for the possibly non-simple roots, all have the form

0 1

-1 0
regarded as elements in SL,. From this it is clear that one may choose w so that W™ lo,ath = 0q,
W™ loy,p = og, and then (97) reduces to

(0’[30'(1(57 GvBUvav(5>.

The class of this pair has the same form as the class in the case that x is simple earlier on. Thus,
the first assertion of the proposition follows for non-simple  as in the simple case.

For the second assertion of the proposition we choose an extended parameter (A,T,0,0) for
M(&)* = M(z,y)" and return to (96) in this extended setting. As noted in the proof of Proposition
4.9, w x M(£)T has an extended parameter equivalent to (A1,Ty,0,0). According to [AV15]*Table
3, cur(w x M(€)T) then also corresponds to an extended parameter of the form (Ag,T2,0,0).
Finally applying a cross action by w~! yields an extended parameter of the form (A3, T3,0,0) for
cx(M(&)T). The zeroes appearing in the two finally entries of this extended parameter imply that
Ce(M(E)T) = (cu(M(€))T (cf. (40)). The sequence of equalities

Y (enMEN) =V (M ©)F) = (V(eaM () = (evn(M(EN)T = evn(M (V)
follows using the same reasoning as given at the end of Proposition 4.9. O
We are now ready to prove the main result of this section.
Proof of Proposition 4.8: Recalling the dual H(\)-action (93), the proposition amounts to proving

(T, M(E)Y, M(VE2)T) = (M(&)*, =T, M (V&) " + (¢ = )M (V&2)") (98)

for all £,& € E(VO,VGLY)? and w, as in (85). Looking back to the definition of (89), the
left-hand side of (98) may be expressed as

(T M (&), M(V6) ") = (~1)'n(@)gH @HICED2 (the cocfficient of M (&) in T, M(£1)").
Similarly, the right-hand side of (98) may be expressed as the product of (—1)% (1) (" (€D)+"("€1)/2

with
the coefficient of M (V&)  in — Ty, M(VE)T + (¢") —1)M (V&) T,

34



By Lemma 4.7, Equation (98) is equivalent to proving that

(1)) =10(E) . (the coefficient of M (€)' in Ty, M (&) T) (99)
= the coefficient of M (V&)  in — Ty, M(VE)T + (1) —1)M (V&) T,
The proof of the proposition is a case-by-case verification of (99) according to the type of  relative
to x for & = (z,y) ((36), (86)). We prove a typical case in detail here, leaving the remaining cases

to the reader.
Suppose that  is a root of type 2122 relative to &. Then

e (M(&) ") = {M(&)", M(£)"}

is double-valued [AV15]*Table 1. According to [AV15]*Table 5, the coefficient of M (&))" in
Ty, M(&)T is 1 when & = &, £,£" and 0 otherwise. As for the ¥-integral lengths (61), we compute

l{g(f) = —% (|{a S R:,r()\) FWT o € Ri,r()\)H + dim((Hﬁ)w”'I))

1
=5 ({a e Rf(N):w-ae REN}H -2+ dim((H")"))
=15(&) +1
and so (71)1{9(51)*1119(5) = —1. Similarly (71)1119(51)*1119(5/) = —1. The left-hand side of (99) is

therefore equal to 1 if & = &1, is equal to —1 if & = £, &', and is equal to 0 otherwise.
Let us consider the right-hand side of (99), in which v is of type 2r11 relative to ¥¢;. According
to [AV15]*Table 5, M (V&) T occurs in Ty, M (V€)™ only if one of the following holds

L M(Vé&)tT =M(VéE)T
2. M(Y&)™T belongs to cv (M (V&)™)
3. M(v€1)+ = Wvg X M(v€2)+.

The third possibility reduces to the first. Indeed, the third possibility holds if and only if M (V&)™ =
wv, x M(V&)T, and for Yk of type 2r11 relative to V&) one may compute that wv, x M (V&) =
M (V&)™ using (94). Hence, we need to compute the right-hand side of (99) only for the first two
possibilities.

When M (V&) = M(VE)T, ie. & = &, the right-hand side of (99) is

—(* =2 +¢™ —1=—(-2)+¢ -1=1

[AV15]*Table 5, and this equals the left-hand side of (99).

In the second possibility, M (V&)™ is a Cayley transform of M (V&)™ and this is true if and
only if M (V&) is an inverse Cayley transform of M(V&)™. The latter condition is equivalent to
V¢ being equal to either V¢ or V¢, and Vk is of type 2i11 relative to V€. As [AV15]*Table 5
indicates, the right-hand side of (99) equals —1, which is also equal to the left-hand side of (99). O

4.6 Verdier duality

In proving Theorem 3.5 we have extended (62) to the pairing (89) of Hecke modules and discussed
the related Hecke algebra actions. Ultimately, we must evaluate the pairing on special elements
which recover the basis elements 7(£) and 7(V¢) of Lemma 4.6. As already mentioned, the desired
elements are essentially eigenvectors of Verdier duality ([LV14]*Section 2.4). We introduce the key
properties of Verdier duality, define the “eigenvectors,” and finally show that the Hecke algebra
isomorphism of Proposition 4.8 is equivariant with respect to Verdier duality.

Verdier duality on KII(YO,GLy(R),¥) is a Z-linear involution D satisfying

D(q"*M(&)F) = ¢ /*D((&)7)

(100)
D((Tw + )M (&)") = ¢~ )(T,. + 1) D(M(£)™)

See [LV14]*4.8(f).
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Theorem 4.11 ([LV14]*Section 8.1). Define elements R(&',€) € Z[q*/?, ¢ /%] by
DME©)=¢ O 3 () OTEORE g ME)
§'eE(VO,VGLE)?
in KII(YO,GLy(R),¥). Then
(a) R(', &) =1,
(b) R(&,€) # 0 only if ' <&

In addition, if D' is any Z-linear involution of KII(YO,GLy(R),9) which satisfies the properties
of this theorem and (100), then D = D’'.

The constructions of [LV14] apply equally well to the dual module, yielding a Verdier Duality
VD on KVII(YO,GLN(R),¥). The Verdier duality VD satisfies the obvious analogue of Theorem
4.11.

We also a need a dual version of Verdier duality. Let & € Z(Y0O,YGLY)” so that (M(&)*,-)
belongs to KVII(YO, GLy (R),9)*. As in [ABV92]*(17.15)(f), we define

VD* : KVTI(Y O, GLy (R), 9)* — KVII(Y O, GLy (R), 9)*

by —
YDHM(E)T, ) = (M()F, VD()),
where VD is the Verdier duality on KVII(YO, GLy(R), ) and
-, Z[ql/Q’q—l/Q] N Z[ql/qu—l/Q]

is the unique automorphism sending ¢'/? to ¢—'/2. Imitating the proof of [Vog82]*Lemma 13.4, it
is straightforward to verify that ¥ D* satisfies the analogues of (100) and Theorem 4.11, so we are
justified in calling ¥ D* a Verdier dual.

Proposition 4.12. The Hecke module isomorphism (90) is equivariant with respect to D and ¥ D*,
that is

(DM (&))", M (&)™) = (M(&)*, VDM (V&) F),
for all £1,& € 2(VO,VGLY)?.

Proof. As already remarked, both D and vV D* satisfy (analogues of) (100) and Theorem 4.11. The
resulting properties of D imply that the Z-linear involution

<M(£1)+7 > — <DM(£1)+’ >

on KVII(YO, GLy (R),9)* also satisfies the analogues of (100) and Theorem 4.11. The proposition
therefore follows from the uniqueness statement in the dual analogue of Theorem 4.11. O

We now define the special basis elements alluded to at the beginning of this section. The special
bases are defined in terms of the twisted KLV-polynomials PY(¢,€) € Z[q*/?,q=/?] defined in
[LV14]*Section 0.1.

Theorem 4.13 ([LV14]*Theorem 5.2). For every £ € 2(VO,VGLY)?, define

cl(€) = S ()IOTE P ey M), (101)

¢'eE(VO,VGLL)?
an element in KTII(Y O, GLy(R),9). Then
1. D(C?(€)) = ¢ O C(¢)
2. PP(£,6) =1
3. P =0if & £¢

36



4. deg PU(¢,6) < (1(5) —11(&) —1)/2if & < €.

Conversely suppose {C(&',€)} and {P(¢',€)} satisfy (101) and (a-d). Then P(¢',€&) = PY(¢,€)
and C(€',§) = CV(€,€) for all §,¢ € E(YOYGLY)”.

Properties 2-3 of Theorem 4.13 ensure that
{C7(§) - £ € 2(Y0,YGLY)"}

is a basis for KII(Y O, GLy (R), 9).
[LV14]*Theorem 5.2 also applies to KVII(YO,GLy(R),¥), so there is an obvious variant of
Theorem 4.13 characterizing the dual KLV-polynomials ¥ P?( V¢’ V¢) and the basis elements

C're = Y (IO VP e Ve M) (102)
E'EE(VO,VGLR})"&
Proposition 4.14. By specializing to ¢ = 1, we obtain
U1 = ()",
CU(Vo) =w (Yot

for all € € E(YO,VGLY)".

Proof. The assertions of the proposition are given in purely representation-theoretic terms. How-
ever, in the second equality the representations M (V¢') occurring in (102) are representations of
possibly different strong involutions of ¥ GLy (), which complicates matters. It is therefore clearer
if we transport the assertion back to the original context of constructible sheaves using (79). The
assertion equivalent to

Crre) = (Ve
in this context is that P(V€)™ equals

> (—D)MEVPI(VE VM) u(VE)T (103)

gleg(vovaLr&)ﬁ

(recall Proposition 4.5 and (78)). It follows from the definition of the KLV-polynomials ([LV14]*Section
0.1), (67) and (78) that

VPY(VELVE)(1) = (~1)HOUE (e g) = (1) OE (el g, (104)

(Note that the definition of P(€) in [LV14] differs from ours by a shift in degree d(&) ¢f. [ABV92]*(7.10)(d).)
This implies that (103), as an element in KX (YO, "YGLY,, 0), is equal to

ST (DM (g€l 4) — g€, €4)) m(VENT

&'eE(VO,VGLE)?

= > Co(€ €4) (1) N p(VE)yt — cg(el,64) (1) (Ve T

£€E(YO,VGLE)?
= Y @ &) DO + g€l 60 ()M u(VE)
€/€E(YO,VGLE)?
=P()"
where the final equation is (68). This proves the second assertion of the proposition. The first may

be proved in the same manner. However, a purely representation-theoretic proof is also possible
following [AvLTV20]*Theorem 19.4 O
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4.7 The proof of Theorem 3.5
The main theorem of this section is

Theorem 4.15. Pairing (89) satisfies
(C?(),C0 (V")) = (—1)1© O+ (D)2 Se.cr. (105)
for all £,&' € 2(Y0O,VGLY).
To prove Theorem 4.15 we need the following lemma.

Lemma 4.16. There are unique elements C”(€) € KII(YO,GLy(R),9), £ € 2(VO,YGLY)?,
satisfying
(C7().C7(V€)) = (~1)s€) O T2 5

More explicitly, let P(£',€) € Z[q*/?,q7'/?] be the entries of the matriz inverse and transpose to
the matriz formed by the polynomials ¥ P? (V¢ VE) given in (102), i.e.

Y. PEQVPU(VEVE) = e

§/€E(VO,VGL1;\])19

Then , , , ,
c’(¢) = > (—1)FO-EE ()L ©O-LED) pe ) M(e')*.

£'eZ(VO,YGLE, )Y

Proof. We just need to verify, for all £,¢” € 2(YO,YGLY)?, the equality

<Z(1)l’(§)l’(£’)(1)l§(£)l§(€’)p(§'7§) M(§I)+7Cﬁ(vg/')> = (—1)© G ©@+ M) /2 Og -
5/

Let k = —3 (|[RT(\)| + dim(H)) as in Lemma 4.7. Applying (89), we compute

<Z(1)11(5)11(5’)(1)l§(£)l§(£’) P(e,€) M(€)™, Cﬁ(v§//)>

é/
I gl e I gL gt I gty _gIev
= <Z(1)l OO () O=LE) prer ) M(e)*, Y (-)H T VPﬁ(Vfl,Vé")M(V§1)+>
¢ 31
I IV g1t
= (_1)179(5) (—1)F(=1)! (O+(7E) gk /2 Z P(e,&)VP (Ve Ve
¢'€E(VO,VGLE)?
I
= (_1)%(5) qk/25§’§,,
(—1) O (1" ©@+"(e)/2

O,
O

Proof of Theorem 4.15. If one proves that the coefficient polynomials P(¢,€) of CV(€) satisfy
properties 1-4 of Theorem 4.13, then the uniqueness statement of that theorem implies C” () =
C?(¢) and the theorem follows from Lemma 4.16. To show properties 1-4 we follow the proof of
[Vog82]*Lemma 13.7. For the first property we apply Proposition 4.12

(DC?(€),C7(VE)) = (C”(€), VDC?(V¢))

IV ¢t
=q¢" (), CV(V¢)
I IV ¢t _ I IV ¢t
— (fl)lﬁ(oql (7€) g= /20 O+ ( 5))5575,
=

g 'O (), 07 (Ve
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Since the elements CV(V¢') form a basis we conclude that
DC’ (&) =q "9 C(©)

and the first property of Theorem 4.13 is proved.

The second and third properties of Theorem 4.13 follow for P(¢’,€) since it is defined in terms
of the transpose and inverse of a unipotent matrix, and the map £ — V¢ (72) is order-reversing
(88).

The fourth property of Theorem 4.13 is proven by induction on the integral length of a param-
eter. This uses a straightforward reformulation of [Vog82]*(13.9) which is left to the reader.

The uniqueness statement in Theorem 4.13 now implies PY(¢,¢') = (—1)b(© 1) pi (¢ ¢
and CY (€) = C?(€). Finally by Lemma 4.16, Equation (105) holds, completing the proof of the
theorem.

O

The proof of Theorem 3.5 is now immediate.

Proof of Theorem 3.5. Tt is enough to prove Lemma 4.6. Let (-,-) be the pairing in (89). By
Theorem 4.15 we have

I I IV ¢
(C7().C7(€) = (-1 1O MO 25
Setting ¢ = 1 and applying Proposition 4.14, we conclude

(T, m(VEN) = (~1) O

as required. O

4.8 Twisted KLV-polynomials for the dual of GLy(R)

This section is thematically related to the others in Section 4, although it admittedly has noth-
ing to do with the pairings. The sole purpose of this section is to determine the polynomials
VPU(VE VE) € ZlgH/?, g7 /?] appearing in the definition of C¥(V¢) (102) under certain circum-
stances. In our application £ will be the parameter of a generic representation, and the value of
VPY(Ve Ve will be used in Section 7 (Proposition 7.3 and Proposition 7.4) to compare the Atlas
extensions with the so-called Whittaker extensions.

A block of parameters is defined in [Vog82]*Definition 1.14. In particular P(&,¢’) # 0 implies
£, & are in the same block.

Proposition 4.17. Suppose V& is the unique mazximal element of a block ¥ B with respect to the
Bruhat order (88). Then ¥V P?(V¢,Véy) =1 for all VE € VB.

The proof of the Proposition 4.17 is algorithmic in nature and relies on computations with
Hecke operators. A broad examination of the algorithms is presented in [Adal7] and [LV14]. We
assemble a few facts from these references here. The facts are centred upon the characterization
of eigenspaces of Hecke operators.

For each ¢ € Z(Y0O,VGLY)?, Lusztig and Vogan define what it means for (the Weyl group
element of) a J-orbit & of a simple root in R(\) to be a descent for V¢ ([LV14]*Section 7.2). We
leave the definition (which is equivalent to (108)) to the interested reader, being content merely to
record the relevant properties. By definition, a ¥J-orbit x is an ascent for V¢ if it is not a descent
for V€. To assist in indexing these ¥-orbits we define 7(V¢) to be the set of 9-orbits of simple roots
which are descent for V¢. Thus, & is

e a descent for V¢, if k € 7(VE), and

e an ascent for V¢, if k ¢ T(V¢).
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Recall that the H(\)-module
KYTI(Y O, GLy (R),9) = KVTI(YO,GLy (R),¥) ® Z[q"/?, ¢~ /]

((79), Section 4.4) has a basis {M (V&)™ : € € E2(VO,YGLY)?}. For each d-orbit & let

T, = g 100/2(7, 1 1),
Suppose k € T(VE), i.e. k is an ascent for V€. Then we define

By(¥¢) € 2(Y0,"GLY)"
to be the set of parameters which indexes the non-zero summands in fiM (VE)T, that is

MO = Y aVe)M(YVE)T, 0#£a(¢) € Zlg'? ¢,
§’€Bx(VE)
A case-by-case inspection of [AV15]*Table 5, or the formulas of [LV14]*7.5-7.7, confirm that £ €
B (¥€), and |Bx(¥€)| < 3. Let
M(€) = Zlg"?, g~V /?)-span of {M (V&) ¢ € Bu(VE)}.
Keeping in mind that x ¢ 7(V¢), we write
Vel Bove

if ke T(V¢) and & € B, (Y€). In this definition x is an ascent for V¢ and a descent for V¢’
The quadratic relation (92) gives

~, ~

Ts _ (ql(wm)/Q _’_q—l(wﬁ)/Z)TH.

An important consequence of this equation is that the image of T}, is contained in the (¢!(*=)/2 4+
q~1x)/2)_eigenspace of T ([LV14]*7.2 (c)).

From a case-by-case inspection of [AV15]*Table 5 or the formulas of [LV14]*7.5-7.7, it follows
that if k € 7(V€) then the space M, (VE) is ﬁ@—invariant, and the (¢!(ws)/2 4 ¢=4()/2)_cigenspace
of T, on M,.(Y€) is spanned by

{f,{M(Vg’ﬁ L Ve s Vg} = {:F,{M(Vg’ﬁ . Ve € Bo(V€) and k € T(Vg’)} . (106)

Now suppose x € T(¥€), i.e. is a descent for V¢, Then [AV15]*Table 5 tells us that if  is not
of type 1r2, 2r22 and 2r21 with respect to V&, then

LMY T =a(Ve) | MYOT+ Y M) (107)
{gvesve

for some a(V¢) € Z[g'/?,q~/?]. A quick glance at (87) affirms that the types 1r2, 2r22 and 2r21
do not occur, so (107) holds for every s which is a descent. Another fact we need for k € 7(V¢) is
that C?(V¢) € KVTI(YO, GLy(R), ¥) defined in (102) satisfies

To0V(VE) = (/)2 4 g2 O (V). (108)

This is stated in the last paragraph of [LV14]*Section 7.2, where C”(V¢) is denoted as 2, (see
[LV14]*Section 5).3

3There is a misprint in this paragraph of [LV14]. In our notation C?(V¢€) belongs to the ¢'(*)-eigenspace of T}
(not Ty + 1), and C?(V¢) is in the (¢"(wx)/2 4 =1 (wr)/2) cigenspace of Tj.
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Finally, fix an arbitrary 9-orbit . If k is a descent for V¢’ and is not of type 1ic,2ic,3ic,
then [AV15]*Table 5 indicates that &' € B,;(VE), where & is an ascent for some V€. From this it is
easy to see that

KICO,GLyR), ) = 3 M9 @& D Zlg M),
{Ve¢ : kgT(VE)} K 1fic, %igl,,3ic

This decomposition and (106) imply that the (g!(“=)/2 4 ¢~!(~)/2)_eigenspace of T, is spanned by

{(T.M(VeN keT(Ve)) (109)
Lemma 4.18. Suppose & is a 0-orbit of a simple root in Rt()\), and &,&' € 2(YO,VGLY)? satisfy
ke€T(VE) and K € T(VE'). Then

\/Pﬁ(v{/ \/f) — Z \/Pﬁ( EII Y, )
{g/ltvg//gvg/}
Proof. Write CV(V¢) as
' = Y VPO MUE)TH Y VP Y M(YE)T (110)
{€":keT(VE")} {&:wgT(VE)}
On the other hand by (108) and (109) we have
' = D bV Ye TVt

erner (v}

for some b(V¢",VE) € Zlg'/?, ¢~ /?]. Inserting (107) into this equation yields

'V = Y (Ve YOa(Me )y MVt (111)
{emmer(ven}

+ > b YOaMey YD MYt

{gmer(Ve”) {eversve

Since k & T(V¢') for all V€' appearing in the final sum, we may compare the coefficients of M (V¢"”)™
with k € 7(V¢"”) in (110) and (111) to conclude

( 5// \Y ) ( 5//):\/}319( 5// \Y )
Therefore
Cﬂ(\/g) _ Z \/Pﬁ( 6// v ) (\/5//)-&-
{€"mer(VE)

oY P YD M)t

{¢7:mer(Vem) (erventven
Changing the order of summation in the second sum, it becomes
> > VPV MY
{&:mgT(VEN} [eriven Bvery
Comparing with the second sum in (110) gives
VP = Y VP Ye).
{gr:verBvery

This completes the proof. O
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Lemma 4.18 simplifies even further in the present setting.

Corollary 4.19. Suppose r is a 9-orbit of a simple root in RT()\), and £,& € Z(VO,VGLY)?
satisfy k € T(V€) and k & T(VE'). Then there exists exactly one € € Z(YO,YGLY)? such that
Ve BoVe Furthermore,

\/P'L9(\/€/’\/§) _ \/P'ﬂ( 6” \% )

Proof. Here are the formulas, derived from [LV14]*Section 7 or [AV15]*Table 5, for T, M (Y¢')* for
the various types k € 7(V¢') which arise in (87).

[Type [ T.M(VE)T |

e+ | ¢ V2 (MYE)T +we x M(VED)T)

1i1 *1/2 (MVE)T +we x M(YE)T + e M(YE)T)
2C+ ( (VEN T Fw. x M(VENT)

2Ci +1) (MVENT + . M(VENT)

(

2i11 | ¢~ (M(VE)T +w, x M(VENT + e M(VE)T)
3¢+ | ¢ %2 (M(YE)T +we x M(VENT)

3Ci | ¢ 2(q+1) (M(YE)T + e M(YE)T)

31 [ ¢+ 1) (M(YE)" +exM(YE)T)

The “Cayley transforms” ¢, appearing here follow the notation of the references. They may include
cross actions in their definition (see types 2ci and 3ci which are 7.6 (¢) and 7.7 (¢) in [LV14]). In
any event, the ¢, appearing here are all single-valued. Once more a case-by-case inspection of the
types in [LV14]*7.5-7.7 shows that in each entry of the second column there is exactly one summand

whose parameter makes # a descent. Consequently, the table indicates that {&” : V¢"” 5 V¢'} has
exactly one element. The corollary now follows from Lemma 4.18. O

We are ready to provide the proof for Proposition 4.17

Proof. It follows from the maximality of V&, that 17 (V&) is maximal among all the integral lengths
appearing from the representations in the block ([Vog82]*Lemma 12.10). If x is a ¢¥-orbit of a simple
root in RT(A\) with k ¢ 7(V&) then 11 (VE") > 11(V&y) for some £ € B, (V&) ([LV14]*7.5-7.7)-a
contradiction to the maximality of If(V&y). Therefore k € (V&) for all J-orbits k.

If ¢ # & then by the uniqueness hypothesis V¢’ is not maximal in the Bruhat order. By
[Vog82]*Theorem 8.8, M (V&) is equal to the cross action or Cayley transform of some represen-
tation in its block with higher integral length. Looking to the formulas in [LV14]*7.5-7.7, we see
that this implies the existence of some x & 7(V¢).

We now prove ¥ P? (V¢ V&y) = 1 by induction on 11 (V&) — 11 (V). T (VEy) = 17(V€') then the
uniqueness hypothesis implies V¢ = V¢, and we are done by [LV14]*Theorem 5.2 (c). Otherwise,
(V&) > 11(V¢E') and we have shown above that the hypotheses of Corollary 4.19 are satisfied for
some K. Corollary 4.19 tells us that VP?(V¢',VEy) = VPP(VE" V) for some VE" 5 Ve The
condition V¢” 5 V¢ necessitates I1(V¢") > 11(V¢') and so

\/Pﬂ(vé»/’Vgo):\/Pﬁ( 5// \% ) 1

by induction. 0

5 Endoscopic lifting for general linear groups following Adams-
Barbasch-Vogan

In this section we review standard endoscopy and twisted endoscopy from the perspective of
[ABV92], but restricted only to the particular case of the group GLy. We shall be using all of the

previously defined objects and work under the assumption of (32) for the infinitesimal character.
The references for this review are [ABV92]*Section 26 and [CM18]*Section 5.
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5.1 Standard endoscopy
Let VGLY, = VGLy x (Ydy) be as in (30). An endoscopic datum for ¥ GLY, is a pair
(s, VG)
which satisfies
1. s € VGLy is semisimple
2. VG' ¢ VGLY is open in the centralizer of s in VGL},
3. VGT is an E-group for a group G ([ABV92]*Definition 4.6).

This is a specialization of [ABV92]*Definition 26.15 to YGLY. The groups YG and G here are
isomorphic to products of smaller general linear groups. Consequently, VG and YGLy share the
diagonal maximal torus VH, and G and GLy share the diagonal maximal torus H. We shall
abusively denote by J, the strong involution on both G’ and GLy which correspond to the split
real forms. The group G in this definition is called the endoscopic group.

We do not require the general concept of an E-group in this section. From now on we assume
that VGT' = VG x (Vdg) where V2 = 1. In other words, VGT is an L-group for G.

There is a notion of equivalence for endoscopic data, and using this equivalence we may assume
without loss of generality that s € VH. We fix A € Vi satisfying the hypotheses of (32) so that A
is regular with respect to VGLy. Let YOg be the Y G-orbit of A and VO be the YGLy-orbit of \.
The second property of the endoscopic datum above allows us to define the inclusion

e: VG' — VGLY. (112)
This inclusion induces another map ([ABV92]*Corollary 6.21), which we abusively also denote as
e: X (Y0g,YGY) = X (Y0O,VGLY). (113)

It is easily verified that the ¥ G-action on X (YOg, YGY) is compatibly carried under € to the ¥ GL -
action on X (YO,VGLY) ([ABV92]*(7.17)). As a result, the map(s) ¢ induces maps on the orbits
of the spaces X (YOgq,VGT) and X (YO, VGLY), and also induces a homomorphism

AR(e) Gy /(YGp)” = (YGLN ) () /(Y GLN)e()” (114)

on the component groups. As we have seen, the component groups for GLy, and therefore also for
G, are trivial.
The inverse image functor of € on equivariant constructible sheaves induces a homomorphism

e K(V0O,VGLY) = K(YO0g,vaY) (115)

[ABV92]*Proposition 7.18. One may describe its values on irreducible constructible sheaves p(§),
€= (S,7) € Z(VGLY, VO) as follows. If the orbit S is not the image of an orbit of X(¥Og, " G")
under € then €*u(¢) = 0. Otherwise, S is the YGLy-orbit of €(p) € S for some p € X(VOg, VG").
In this case p(§) may be identified with (45) where 7¢ = 1 the trivial quasicharacter of the trivial
group (YGLN)e(p)/((YGLN)(p))°- The stalk of the constructible sheaf €*1u(€) at p is then the stalk
V of (45). The representation on V is given by the quasicharacter 7¢ o A1°¢(¢), which is again the
trivial quasicharacter (on the trivial component group). In summary,

e u(€) =€ u(S,1) = > 1(S1,1)

{SlivGLN~6(sl):S}

in which S; is a VG-orbit in X(YOg, " G"). This sum will be seen to reduce to a single term in
Proposition 5.1.
When €* is combined with the pairings of Theorem 3.1, we obtain a map

[ KCH(V(Qg, G/R) — KCH(V(’L GLN(R))
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defined on ng € KclI(YOq, G/R) by

(exnc, 1(€)) = (e, € u(€))g, € € E(VGLY,Y0). (116)

Here, K¢ = C®z K and we have placed a subscript G beside the pairing on the right to distinguish
it from the pairing for GLy on the left.

The endoscopic lifting map is a restriction of €, to a subspace of KcII(YOg,G/R) which is
perhaps best described in two steps. The first subspace is generated by the (equivalence classes
of) representations of the quasisplit strong involution ¢, (Section 2.1). We denote this subspace by
KcII(YOq, G(R, d,)). Lemma 2.1 tells that

Kcll(YOq,G(R,6,)) = Kcll(YOg, G/R),

but this will not be true when we look at twisted endoscopic groups in Section 5.2. Inside of
KcII(YOq, G(R, d,)) is the subspace generated by stable virtual characters of G(R,d,) (Section
2.6, [ABV92]*¥18.2). We denote this subspace by KcII(YOq, G(R,d,))%. Again, since G is a
product of general linear groups, stability is not an issue and we have

Kcll(YOg, G(R, 04))™ = KclI(YOg, G/R). (117)

This equality will not hold for twisted endoscopic groups in Section 5.2. We define the endoscopic
lifting
Lifty : KclI(YOg, G(R,§,)) — KclI(YO,GLy(R)) (118)

as the restriction of €, to KcII(YOq, G(R, d,))".
An argument of Shelstad ([She79], [ABV92]*Lemma 18.11) provides a basis for K¢cII(YOg, G(R, 6,)).
The basis elements are of the form

n§c(6g) = M(S1,7s,), (119)

TS1

where (S1,75,) € 2(YGT,VOg) runs over those complete geometric parameters which correspond
to the strong involution d, under the local Langlands correspondence. As mentioned earlier, g, is
trivial for G and so (119) reduces to

nsc(8g) = M(S1,1),
a single standard representation.
Proposition 5.1. In the setting of (32):

(a) Suppose Si,S C X(VOg, GT) are VG-orbits which are carried to the same ¥ GLy-orbit S
under €. Then S1 = Ss.

(b) The endoscopic lifting map Lifto (118) is injective and sends n$°(8) = M(S1,1) to ng°® =
M(S,1).

(¢) The endoscopic lifting map Liftg is equal to the parabolic induction functor indg%ﬁg{; on
KcII(YOq, G(R, 6,)).
Proof. By [ABV92|*Definition 6.9 and [ABV92]*(6.4), we may take ¥ G-orbits
S1="G-(y1,F(N), S2="G " (y2, F(Ad(g1))),
where g, € VG, y1,92 € VGT, and
F(A) =Ad(P(A)A, F(Ad(g1)A) = Ad(g1)(Ad(P(N)A)

for a solvable subgroup P(\) C VG ([ABV92]*Lemma 6.3). By the hypothesis of the first assertion,
there exists g € YGLy such that gysg~' = y; and

Ad(gg1)(Ad(P(A))A) = Ad(P(A)A.
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In particular, Ad(gg1)A = Ad(g2)A for some go € P()\). As A € Vb is regular the resulting equation
Ad(gytggi)\ = X implies that g5 'gg1 € VH C VG. Since g1, g2 € VG, this also implies g € VG
and the first assertion is proven.

The second part of the second assertion is equivalent to e*nl°c(§ ) = nl,o?C and this is proved in
[ABV92]*Proposition 26.7. Finally, to prove the claim of injectivity, we observe that by the first
assertion Lifty sends the basis

{0 (8,) = S a ¥ G-orbit of X(¥VOg,VG")}
of KcII(YOgq, G(R,d,))"* bijectively onto the linearly independent subset
{1056 : Sa a Y G-orbit of X(VOg, G )}

of KcII(VO,GLy (R)).

We now prove the third assertion. Since the standard characters form a basis for (117) and Liftg
is additive, it suffices to prove Lifty (M (S1,1)) = 1ndg%ﬂgéR)M(Sl, ). By the second assertion, this
is equivalent to proving

. GL
mdc(n& yM(51,1) = M(S,1). (120)

Let us recall the definition of M (S7,1) using the Langlands classification [Lan89]. The YG-orbit
S1 corresponds to a unique YG-orbit of an L-parameter ¢¢ for G ([ABV92]*Proposition 6.17).
The image of ¢¢ is contained in a Levi subgroup YGy C VG minimally ([Bor79]*Section 11.3).
It follows that the L-parameter ¢ factors through an L-parameter ¢g, for Go, and ¢g, corre-
sponds to a unique Y Gg-orbit Sy of geometric parameters for Gg. The standard characters are de-
fined so that M (S, 1) = indg, s | M(So, 1) and M(S,1) = indg %5 M(So, 1) (ABV92]*(11.2),
[AV92b]*(8.22)). Identity (120) is therefore a consequence of induction by stages. O

The proof that Liftg ( 1OC) (04) = ngoc in this proposition follows from an elementary computa-
tion of €*nio¢ ([ABV92]*Proposition 23.7). It is much more difficult to compute the value of Lifto
on the stable virtual character ng“c given in (48). Let ¢ = eotg. According to [ABV92]*Theorem
26.25

Lift (n}iy) = Yo (F)HEIESI e (P(g)) m(€) = mipe. (121)
£eE(VGLE,,V0O)

Recall from (50) that the ABV-packets HABv and HABV are defined from nm‘C and nm‘C respectively.
We shall see in Section 6 that these ABV packets are singletons. Equatlon (121) 1mplies that the
endoscopic lift of H;?GBV is Hz‘BV.
5.2 Twisted endoscopy

Following the path of the previous section, we define twisted endoscopic data, the twisted endo-
scopic version of Liftg (118), compute twisted variants of Lifto(ne¢) for S € X(YOg,VG'), and
compute twisted variants of Lifto(n g‘c).

An endoscopic datum for (VGLN,ﬂ) is a pair
(s, YG")
which satisfies
1. s € YGLy is ¥-semisimple (see [KS99]*(2.1.3))
2. VG c VGLY, is open in the fixed-point set of o = Int(s) o 9 in GLY, x () (31)
3. VGY is an E-group for a group G ([ABV92]*Definition 4.6).

This is a special case of [CM18]*Definition 5.1 to YGLY;. There is a notion of equivalence for these
endoscopic data ([CM18]*Definition 5.6, [KS99]*(2.1.5)-(2.1.6)). Up to this equivalence the relevant
elements s € YGLy in Arthur’s work are drawn from [Art13]*Section 1.2 (see [CM18]*Example
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5.2 for the details in the present setting). We shall restrict our attention to at most two elements
s from [Art13]*Section 1.2, namely the diagonal matrix

The resulting automorphisms o = Int(s)o® are involutions, and the endoscopic groups G are simple
to describe. For s as in (122) and odd N, the endoscopic group is Sp_;. For s asin (122) and even
N, the endoscopic group is SOy. For s as in (123), the endoscopic group is SOny1. In the first
and last cases, the embeddings of VG! in VGL]FV determine a real structure on G as a split group.
In the second case there are two distinct embeddings of YG' in YGLY which determine either a
split real structure on G = SOy, or a non-split and quasisplit structure on SOy ([Art13]*Section
1.2). We henceforth work only with s as in (122)-(123), the so-called simple endoscopic data. As
in the previous section, we will not require the concept of an E-group for these classical endoscopic
groups. From now on we assume that YG' is an L-group as in the end of Section 2.3.

Unlike the previous section, we must distinguish between maximal tori in ¥G and VYGLy. We
let ¥ H be the diagonal maximal torus in YGLy, and ¥ Hg be a maximal torus in VG. In this case
V H is preserved by Int(s) as well as 9. We may and shall take

\/HG _ (VH)O' _ (\/H)ﬁ'

We fix A € Vb satisfying (32) so that A is regular with respect to YGLy. Let YOg be the
V' @G-orbit of A and YO be the YGL y-orbit of .

The € maps of (112)-(113) have obvious analogues and are equally valid in the twisted setting.
The proof of the injectivity of € on the level of ¥ G-orbits is more delicate in the twisted setting.

Proposition 5.2. In the setting of (32), suppose Sy, S C X(YOgq,VG") are VG-orbits which are
carried to the same ¥ GLy-orbit under e. Then S; = So.

Proof. By [ABV92]*Proposition 6.17, the ¥ G-orbits of X (YOg,VGT) are in one-to-one correspon-
dence with Y G-orbits of L-parameters with infinitesimal character in YOg. It is simpler to prove
the first assertion in the more familiar territory of L-parameters. To this end let ¢; : W — VGV
and ¢9 : Wg — YGTU be L-parameters with infinitesimal characters \; € YOg and Ay € YOgq
respectively. Suppose further that

¢1 = Int(g) o ¢2 (124)

for some g € YGLy. We shall prove that there exists ¢’ € VG such that ¢; = Int(g’") o ¢a.
Without loss of generality we may assume that Ay = A € Vh and Ay = Ad(g1)A € Vh for some
g1 € VG normalizing ¥V H. Moreover, we may assume that ¢;(j) and ¢2(j) normalize VH. As in
[ABV92]*Proposition 5.6,

$1(z) = 2 ZAURA 4 (5) = ZAdGDAZAG2()9)A 5 e CX,

By hypothesis

LAd(990A A58 090N _ Tn(g) 0 dol2) = by (2) = 2 AdG1OA

It follows that Ad(ggi)A = A. Since A is regular in YGLy, the element gg; belongs to VH and
g = hgy! for some h € VH. Returning to the identity (124), we obtain

hg ' ¢2()g1h ™ = 61()-
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Set ny = ¢1(j) and ny = g7 '¢a(j)g1, so that the previous equation becomes
hn2h71 =MNj.

As € maps into the fixed-point set of o = Int(s) o ¥, both ny,ny are fixed by o. Since n; and ngy
normalize ¥ H, they represent involutive elements in the fixed-point subgroup W (YGLy, Y H)*” =
W(VGLy,VH)?. We seek an element b’ € VHY C VG such that

h/ng (h/)71 = h’/lghil =MnNj. (125)

With this element in hand we may set ¢’ = /gy ! and the proposition is proved. Since VH =
VH?VH=? we may decompose h = hihg, where hy € VHY and hy € VH™Y. We compute that

(hinghy ng M) (hanghy 'ng ) = hy(hanohy 'ny ') (nohy 'ng ') = miny ' € VH =VHY.  (126)
In addition, since ny,my € W(YGLy, "V H)?, we have
V(hanahy 'ny') = 9(ha)nad(hy )ny ' = hy 'nohany ' = (hanohy 'ny )t

Therefore honghy 'nyt € VH=?. Similarly, hinohy 'ny' € VH?. By (126) we have hanghy 'ngy ' €
VH=? N VHY. It is now an elementary exercise to show that there exists h} in the finite 2-group
VH=Y NV H? such that

hhna(hh) " tnyt = honghy 'nyt.

Indeed, conjugation by n is represented by a ¥-invariant product of 2-cycles when W (YGLy, Y H)”
is regarded as a subgroup of the symmetric group, and the elements in YH =NV HY are represented
by diagonal elements with +1 as entries. Leaving the details of the exercise to the reader, we set
h' = hyhl and (125) holds.

O

At this point the picture of twisted endoscopy is more or less the same as the picture of standard
endoscopy. The new idea in the twisted setting is to include the action of ¢ = Int(s) o ¢} into the
objects pertinent to endoscopy. In particular we wish to extend the sheaf theory of [ABV92] for
VGLy to the disconnected group YGLy x (o), where we identify the automorphism o of (54)
with the automorphism in the endoscopic datum. This mimics the extension of the representation
theory of GLy to the disconnected group GLy % (9) in Section 2.5. Rather than viewing the
sheaves in C(YO,VGLY; 0) as YGLy-equivariant with compatible o-action (Section 3.2), we view
them simply as (YGLy X {o))-equivariant sheaves and apply the theory of [ABV92] which is valid
in this generality [CM18]*Section 5.4.

Let £ = (5,1) € E(VO, VGLR,)ﬂ and (p, 1) be a representative for the class £&. Here, p € S and
1 is the trivial representation of the trivial group ¥(GLy),/(¥(GLy),)? with representation space
V = C as in (45). We define 17 on

Y(GL)p/(Y(GLN)p)° x (0) (127)

by
1M (0) = o+ =1 (128)

(ef. (57)). In this way, 1T defines the local system underlying the irreducible (VGLy x (0))-
equivariant constructible sheaf p(¢)* (Lemma 3.4, [ABV92]*p. 83).

In a similar, but completely vacuous, fashion we may include the trivial action of ¢ on u(§;) €
C(VOgq,YG) with & = (S1,71) and p; € S1. In other words, we may regard u(&1) as a (VG x (0))-
equivariant sheaf whose underlying local system is defined by a quasicharacter 7, on

Gy, /(Y Gpy)? () (129)
by 71" (0) = 1. This artifice allows us to define a homomorphism, as in (114), by

AP(e) VG [(YGpy)? X (0) = (YGLN)e(py)/ (Y GLN ) (p1))” X (0).
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The inverse image functor (115) in the twisted setting is defined on (YGLy x {(0))-equivariant
sheaves (Section 3.2)
e KX(V0,VALY,0) = KX(YOg,VGY)

in the following manner. If the orbit S in £ = (S,1) € Z(VO,VGLY,)? is not the image of an orbit
of X(VOg,VGT) under € then €*u(¢) = 0. Otherwise S is the Y GLy-orbit of €(p;) € S for some
p1 €51 € X(VOg,VGY). By Proposition 5.2 the orbit S; is unique. The stalk of the constructible
sheaf e*11(€)T at p; is the stalk V = C of (45) at p = €(p1). The representation on V is given by
the quasicharacter 17 o A'°°(¢), which is again the (abusively denoted) trivial quasicharacter 1+ on
the group (129). In summary,

e u(€)" =€ pu(S,17) = u(S1,17). (130)

By contrast p(€)~ is characterized by the quasicharacter 1~ of (127) with 1~ (o) = —1. With some
obvious substitutions we obtain

e (€)™ =€ p(S,17) = u(S,17).

As in standard endoscopy, we combine ¢* with a pairing, namely the pairing of Theorem 3.5,
to define
€x @ Kcﬂ(vOG, G/R) — K@H(VO, GLN(R),’ﬁ)

To be precise, the image of any n € KcIl(YOg, G/R) under ¢, is determined by
<€*777 M(£)+> = <777 E*ﬂ(£)+>g , §€ E(VGLIJ;/’ \/O)ﬂ‘ (131)
(¢f. (116)). The twisted endoscopic lifting map
Lifto : KcII(YOg, G(R, 6,))% — KcIl(Y O, GLy (R), 9) (132)

is the restriction of €, to KcII(YOgq, G(R,d,))™, a proper subspace of K¢(¥Og, G/R) (cf. (117)).
The pairing on the right-hand 51de of (131) is determined by pairing representations of G(R, d;)
with elements of the form (S, 7i5). This is defined by

<M(Sl,7'1),u(51,7'1i)>czi1, and <M(S{,T{),u(51,7'1i)>G:0

when 7{ # 71. (For a more conceptual explanation of these pairings see [CM18]* p. 151.)

Now, we wish to compute Liftg on the basis elements (119) of KcII(YOg, G(R, d,))%t. To main-
tain ease of comparison with [ABV92] we compute them on the virtual representations nloc( 0)(dq)
([ABV92]*p. 279). These virtual characters are defined by

ng)lc ZTT Sl,Tl ZM 51,7’1

where 71 runs over all quasicharacters of VG, /(VG,,)° as in (129) which correspond to the strong
involution §, ([ABV92]*Definition 18.9). It is immediate from the definitions that

15 (0)(3q) = 757 (84)

and so this virtual character is stable ([ABV92]*Lemma 18.10). (Although not needed for our
purposes, one could adhere to the framework of [ABV92] further by extending [ABV92]*Definitions
26.10 and 26.13 through taking products with (o), and then speak of o-stability.)

Proposition 5.3. Suppose S; C X(VOgq, G") is a VG-orbit which is carried to a ¥ GLy-orbit S
under €. Then the endoscopic lifting map (132) sends ng°(0)(d,) to (71)11(5,1)4{9(5,1) M(S, 1)t

Proof. We prove the proposition without the injectivity of orbits given in Proposition 5.2. Not
assuming injectivity, instead of equation (130), we see that

51+_ZM a(S1, 1)+ D0 (s,

S1#£8)
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where S| Tuns over the ¥ G-orbits in X (¥Og,VG") carried to S’ under € (cf. [ABV92]*Proposition
23.7 (b)). Therefore, according to (63), when & = (S, 1)

(Lifto (13°(0)(50)) (&)™) = (5°(0)(8,), €* (S, 1)) g

:<ZM S1,7'1 S1, )>
G

Now suppose £ = (5’,1) where S’ is a Y GLy-orbit not equal to S. Then
(s, )" = Zu S 1)

where S1 # 5. If the sum runs over the empty set then we interpret it to equal zero and compute

that
(Lifto (nS°(0)(84)) » (&)™) = (ng°(0)(8q), € (&) T) = (S (0)(84), 0), =
Otherwise the index of the sum is not empty and by (63)

(Lifto (157(0)(8,)) , m(€)) = (155 (0)(8g), € () )

<ZM(5177—1)32M(517 1)>
T1 Si

=0

G

Looking back to the definition of the pairing (62), we see that we have proven the proposition. [

Proposition 5.4. Under the hypothesis of (32), the twisted endoscopic lifting map (132) is injec-
tive.

Proof. The proof follows from Proposition 5.2 as in the proof of Proposition 5.1. We need only to
observe that according to Proposition 5.3, Lifty sends the basis

{nloc : Sg a Y G-orbit of X (¥ OG‘zVGF)}
of KcII(YOg, G(R,8,))** bijectively onto the linearly independent subset
{1 x50 1 Sa a ¥ G-orbit of X(VOg,"G")}
of KcII(YO, GLy (R)). )

The next and final goal of this section is to provide the twisted analogue of the endoscopic
lifting of the virtual characters attached to A-parameters as in (121). As a guiding principle, it
helps to remember that in moving from 7$° to 79°(0)(d,) we extended the component groups by
(o) to obtain (129), and then extended the quasicharacters 71 defined on the original component
groups. We shall follow the same process with Mres mic - doing our best to avoid the theory of microlocal
geometry.

The stable virtual character (48) for the endoscopic group G is

mhe = 3" (=1)HF9mdShe) e (P(g)) w(€) € KTI(YOg, G/R)™.
£EE(VOG,VGT)

Here, Sy, C X (YOgq, GT) is the VG-orbit determined by the L-parameter ¢y, and { = (S¢, 7s,).

For each such &, there is a representation TS (P(&)) of YGye /(YGye)?, the component group of
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the centralizer in VG of the image of 1, which satisfies the following properties

. ngz (P(€)) represents a (possibly zero) ¥ G-equivariant local system Q™°(P(¢)) of  (133)

complex vector spaces.

e The degree of Tgnp‘; (P(&)) is equal to XE“;'; (P()). (134)
olf £ = (ch,TSwG) then Té“;; (P(&)) = TSy © 1Sy, Where (135)

iS5y, Gue/(VGye)” = VGy/(YGp)°

is a surjective homomorphism for p € Sy, .

([ABV92]*Theorem 24.8, Corollary 24.9, Definition 24.15). By (134), we may rewrite n$é° as

=S (1) Se) Ty (7 (P(€))(1)) 7(€). (136)

EEE(VOG,VGF)
Next, we extend ¥ Gy, /(Y Gy )° trivially to
VG¢G/<\/G¢G)O X <G>a (137)
and extend Tgi::; (P(£)) trivially to (137) by defining TSIPJ:; (P(£))(0) to be the identity map. We
define
) = Y (~)HS ) Ty (7 (P(€))(0)) 7(€)

£eE(V0g,VGT)

= Y ()OI dim (r8E (P())) w(E).

£eE(V0g,VGT)

Clearly ' .
Mie () =M - (138)
Finally, define
Me(0)(3,) = Y (~1)HSI ) Ty (72 (P(€))(0)) (&) (139)
(Ses7s,)
= 30 () dim (5 (P(©)) 7(€)
(Sg,‘l’sf)

in which the sum runs over only those & = (S¢,7s,) € E(YOg,"YG") in which 7g, corresponds to
the strong involution d,. Therefore

W (0)(8,) = m3 (6,) = nAPY

(49). The virtual character 7}°(0)(d,) is a summand of the stable virtual character 7 and is
therefore also stable ([ABV92]*Theorem 18.7). Consequently, n$éc(0)(5q) lies in the domain of

Lifty. In addition, the ABV-packet Hﬁfv consists of the irreducible characters in the support of
My (0)(34) (50).

What we have done for nfb“éc we begin to do for ng‘i”, which we define as
mic - mic Tiey—1L
Pt =3 (RIS Ty (yBie(P(e))) (-1)N OB On(e) T (140)
¢€E(VO,VGLL)Y
for
Y =e€oygq. (141)

The main difference now is that o does not act trivially on YGLy and so the extensions require
more attention. Properties (133)-(135) hold for ¢ and GLy as they do for )¢ and G.
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The first step is writing

mi — mic ! —15
gt =S (21O T (e (P(€)) (1) (-1 O H O (g)*
E€E(VO,VGLL )Y

This holds from (134) as (136) did for the endoscopic group G. What is new and simpler here is
that the component group (YGLn)y/((YGLy)y)? is trivial ([Art84]*Section 2.3). It follows that

ng;C(P({)) is either the trivial representation or zero.

Let us digress briefly to examine property (135) for £ = (Sy, 7s, ). Since the component group
(YGLN)p/((YGLy),)? is trivial, the quasicharacter 7g, =1 is trivial. It follows that

TE(P(Sy,7s,)) = 75, 0ig, = loig, =17#0. (142)

mic

In particular, 7(Sy, 1) is in the support of 7;}'° and belongs to H{}BV. In the next section we will
prove that this is the only representation in HﬁBV.
Returning to the matter of extensions, there is an obvious extension

(YGLN)4/((YGLN)y)" x (o)

of the trivial component group, as o fixes the image of . We wish to extend the representation
TﬁC(P(ﬁ)) to this group for £ € Z(VO,YGLY)?. The action of ¢ on P(§) € P(YO,VGLY;0)
determines an action on the stalks of the local system Q™i¢(P(£)) as in (133) ([ABV92]*(25.1)).
[ABV92]*Proposition 26.23 (b) allows us to choose a stalk over a o-fixed point p’ (related to Sy)
in the topological space of Q™¢(P(£)). This places us in the same setting as Lemma 3.4, with
Ts replaced by ngjc(P(f)) and S replaced by the VGLy-orbit of p’. As a result, 0 determines a
canonical isomorphism of the stalk at p’ equal to 1. In short, we define

TE(PE))(0) =1 (143)

and extend TEZ?C(P(@) to a quasicharacter T%C(P(g)ﬂ. The quasicharacter TgEC(P(f)*) represents

the (YGLy x{0))-equivariant local system of the restriction of Q™i¢(P(£)) to the orbit of p’. We may
extend ig, in (135) to include the products with (o). Definitions (128) and (143) are compatible
in that

75, (P(§)" =17 ois,.

»
Finally, we define

n$1c+(0) _ Z (—1)4(Se)=d(Sy) Tr(TSrgEc(P(g)ﬂ(o)) (—1)11(5)—z{9<f)7r(§)+. (144)
§EE(VO,VGLY)®

Tt is clear from definition (140) that nﬁic+(0) = nlrzlic'*'.
The obvious definition of the quasicharacter rgnJC(P(g)—) is to take rg‘JC(P(g)—)(o) = —1. With
this definition in place the following proposition is a consequence of [ABV92]*Corollary 24.9.

Proposition 5.5. The functor TgSC('), from (YGLy x {(0))-equivariant perverse sheaves to repre-

sentations of ¥ Gy /(¥ Gy)? x (), induces a map from the Grothendieck group K(X (¥ O,YGLY); o)
to the space of virtual representations. Furthermore the microlocal trace map

Tr () (0))
induces a homomorphism from K(X(YO,YGLY),0) (as in (58)) to C.

mic

A similar statement is true for TS and the (VG x (0))-equivariant sheaves defined earlier.

Theorem 5.6. (a) As a function on K(X(YO,VGLY,), o) we have
(ni=* (o), ) = (=" Tr (r25()(0))
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mlc+( 0) is equal to

(b) The stable virtual character 7

(03T T (TR )(0) ()OO ()

£EE(VO,VQLL)?

(¢) Lifto (n3i°(0)(8,)) = " (o).

Proof. The first two assertions follow from Theorem 3.5 and the computation

(ng=(0)(8,), PE)F ) = (—=1)"59) T (35(P())(0))

(¢f. [ABV92]*Lemma 26.9).
For the final assertion, we compute

<6*77"“C 0)(0q), w(§)T) = <77mlc (€t >
= (e (o) 5)*>
- <—1>d<S«/Jc>Tr (78 () 1) (@)

using (130) and [ABV92]*Lemma 26.9 for 7°(0). By the deep result [ABV92]*Theorem 25.8,
and the first assertion of the theorem, we may continue with

= (~)"SITr (785 (u(€) ") (o))
= (Wt (o), m()")

and the theorem is proven.

6 ABV-packets for general linear groups

In this section we prove that any ABV-packet for GLy (R) consists of a single (equivalence class of
an) irreducible representation. This implies that such an ABV-packet is equal to its corresponding
L-packet ([ABV92]*Theorem 22.7 (a)). From the classification of the unitary dual of GLy(R) we
may deduce that the single representation in the packet is unitary.
In this section we let
’(/}:WRXSLQ%GL?V

be an arbitrary A-parameter for GLy(R). The description of the ABV-packet HﬁBV will be
achieved in three steps. First, we treat the case of an irreducible A-parameter. Second, we compute
the ABV-packet for a Levi subgroup of GL y, whose dual group contains the image of ¢ minimally.
The final result is obtained from the second step by considering the Levi subgroup as an endoscopic
group of GLy and applying the endoscopic lifting (121).

Following the description of [Art13]*Equation (1.4.1), all A-parameters ¢ for GLy(R) may be
represented as formal direct sums of irreducible representations of Wgr x SLg

Y ="L(p1 R, )B---BL(u Ruy,). (145)

Here, v,,; is the unique irreducible representation of SLo of dimension n;, and pu; is an irreducible
representation of Wr with bounded image. The representations ; are of dimension one or two
[Kna94]*Section 3. The parameter ¢ in (145) is said to be irreducible if r =1 and ¢; = 1.

Proposition 6.1. Suppose ¥ is an irreducible A-parameter of GLy. Then
single unitary representation.

HQBV consists of a
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Proof. We begin with the case of ¥ = u X vy, in which p is a one-dimensional representation of
Wr. Since vy is irreducible, the image of SLs under v contains a principally unipotent (i.e. regular
and unipotent) element of GLy. [Aral9]*Theorem 4.11 (d) (a generalization of [ABV92]*Theorem
27.18) therefore implies that HQBV consists of a single unitary character.

Let us now suppose that ¢p = p X v, is an A-parameter in which p is a two-dimensional
irreducible representation of Wg (i.e. N = 2n). The restriction of ¢ to C* may be taken to have
the form

P(z) = 222, 2 e CX (146)
where A1, Ay € Vb are semisimple elements with exp(27ti(A1 — A2)) = 1 (¢f. [ABV92]*Proposition
5.6). Let L be the centralizer of 1(C*) in YGLy. Following [Ta7]*4.2.2, it is straightforward to
verify the following technical conditions

AJ1. The identity component of the centre of the centralizer of ¢(j) in £ is contained in the centre

AJ2. ¢(SLs) contains a principally unipotent element of L.
AJ3. (M +Vpr,a) # 0 for all roots o € R(YGLy, "V H).

These three conditions place ¥ among the family of A-parameters studied by Adams and Johnson
in [AJ87] [Art89]*Section 5. According to [Aral9]*Corollary 4.18,

AB A
Hw V:H J7

where H;?,J denotes the packet of cohomologically induced representations introduced in [AJ87]*Definition
2.11. The set Hﬁ‘] is in bijection with a set of parabolic subgroups ([AMR18]*Section 8.2),

which in this case reduces to a single parabolic subgroup (with Levi subgroup isomorphic to
RQSC/RGLN). ]

Let us go back to the case of a general A-parameter v as in Equation (145). Let

’(/} = 532:151‘%‘7 ’(/}Z = M X Un;s
be its decomposition into irreducible A-parameters ;. Let N; be the dimension of ¢; and define

T

VG = H (VG = H(GLNZ.)‘ZI‘ (147)

i=1

to be the obvious Levi subgroup of YGLy containing the image of ¢. Let VG' = VG x T, a
subgroup of VGLI;V. It is immediate that v factors through an A-parameter

b Wa x SLy 29 VGT < VGLY, (148)

where g = x7_ lithg,; and each ¢ is an irreducible A-parameter of YGI = VG; x I'. The
description of the ABV-packet corresponding to ¢ is a fairly straightforward consequence of
Proposition 6.1. We must only remind ourselves that the direct product of (147) translates into
a tensor product of ABV-packets as it passes through the process defining the packets in Section
3.1.

Corollary 6.2. The ABV-packet H;?GBV consists of a single unitary representation m(Sy,1).

Proof. Let VOg C Vg be the Y G-orbit of the infinitesimal character determined by the L-parameter
¢y This orbit has an obvious decomposition YO = []/_, (Y O;)% into VG;-orbits, and the variety
X(VOg,VGT) of geometric parameters decomposes as

X (YOg, G = H (x (Y0,,YGM)".

i=1
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As a consequence, all complete geometric parameters £ = (5, 7g) = (5,1) in 2 (VOg, vGF) decom-

pose as
EZ <H(Si)£iv®7—z®&> )
i=1

i=1
for VG;-orbits S; ¢ X (V(Qi, en ), and trivial quasicharacters 7; = 1. Furthermore, the algebra of

differential operators Dy (v o, var), its graded sheaf, and the conormal bundle 77 ;; (X (VOg, VGF))
all decompose as direct products. Irreducible Dy o, ver)-modules D(&) ([ABV92]*(7.10)(e),
(47)) are therefore tensor products

D(¢) = ®D(&)®“, & = (Si,mi)

of irreducible DX(VOi VG_p)—modules, and the same can be said about their corresponding irre-

ducible graded modules. Consequently, the singular support SS(D(&)) of the graded sheaf grD(¢&)
([ABV92]*Definition 19.7) decomposes as

r

SS(D(¢)) = [[(ss(p(&))”,

i=1
and in particular
Té*va (X (VOg,VGF)) C SS(D(9))
if and only if
T3, (X (Y0.,YGY)) € SS(D(&))
for all 1 <4 < r. This is equivalent to saying
B (PE) A0 = XEE (PE)#0, Vi<i<r

In other words, 7(¢§) € Hfzgv if and only if 7(&;) € HfoY forall 1 <i < r (50). By Proposition 6.1,
each ABV-packet Hﬁg\; consists of a single unitary representation. It is a consequence of (142)

that each such unitary representation is of the form m(Sy ,,1). A look back to the definition of
ABV-packets reveals that

IAEY = (@7, m(Sye., 1)} = {m(Sye, 1)}

We are ready for the final step of describing the ABV-packets for GLy (R).

Proposition 6.3. Let 1 be an A-parameter for GLy as in (145). Then the ABV-packet HfZBV
consists of a single unitary representation m(Sy,1).

Proof. Define VG as in (147). Take s € Z(VG) C VGLy to be as regular as possible so that its
centralizer in VGLy is equal to VG. Set YGY = VG x T, so that (s, VG") is an endoscopic datum
(Section 5.1). Write ¢g : Wg x SLy — VGU for the A-parameter for G, satisfying 1 = € o ¥g
((112), (148)). According to (121), Corollary 6.2, and Proposition 5.1 (c)

0 = Lifto (i) = Lifto (7(Syq, 1)) = indg i 45 7( Sy 1).

The proposition now follows from the fact that parabolic induction for general linear groups takes
irreducible unitary representations to irreducible unitary representations ([Tad09]*Proposition 2.1,
Sections 4-5). O

Corollary 6.4. The stable virtual character ngic+(d) defined in (144) is equal to (71)11(5)71§(£)W(§)+7
where & = (Sy,1). In particular,

Lifto (1 (0)(8,)) = (~1)" @~ @n(e)*
Proof. By Proposition 6.3, Tg?de(P(g)) is non-zero only for £ = (Sy,1). By definition (143),

ng/fC(P(ﬁ)"‘)(G) = 1 when £ = (Sy,1) and is zero otherwise. The first assertion follows. The

second assertion is a consequence of the first and Theorem 5.6. O
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7 Whittaker extensions and their relationship to Atlas ex-
tensions

Thus far we have been working with preferred extensions of irreducible representations, from
GLN(R) to GLx(R) x (). These are the Atlas extensions of (40). Arthur uses a different choice
of canonical extension in [Art13], which we call the Whittaker extension. After reviewing the
definition of Whittaker extensions, we will compute the sign giving the difference from the Atlas
extensions. We conclude by rewriting the pairing of Theorem 3.5 using Whittaker extensions.
Written in this manner, the pairing becomes simpler (Corollary 7.9).

The review of Whittaker extensions which we are about to give may be found in [Art13]*Section
2.2. We fix a unitary character x on the upper-triangular unipotent subgroup U(R) C B(R) which
satisfies x o ¥ = 9. In this manner (U, x) is a ¥-fixed Whittaker datum. We work under the
hypothesis of (32) on an infinitesimal character A € Vh and set YO to be its ¥GLy-orbit. Let £ €
2(V0O,VGLY)? so that 7(¢) is (an infinitesimal equivalence class of) an irreducible representation
of GLy(R). Here, and whenever we define Whittaker extensions, we must work with a bona fide
admissible group representation in this equivalence class which we also denote (7(§), V). If w(§) is
tempered then up to a scalar there is a unique Whittaker functional w : V' — C satisfying

w(m(§)(u)v) = x(v)w(v), ueU(R), (149)

for all smooth vectors v € V. It follows that there is a unique operator Z~ which intertwines
7w(€) o ¥ with 7(£) and also satisfies w 0 T~ = w. We extend m(£) to a representation w(£)~ of
(GLy(R) % (9) by setting w(£)~ () = Z™~. We call this extension w(§)~ the Whittaker extension
of 7(§).

If 7(§) is not tempered then we express it as the Langlands quotient of a representation induced
from an essentially tempered representation of a Levi subgroup. The d-stability of w(£) and
the uniqueness statement in the Langlands classification together imply the ¥-stability of the
essentially tempered representation. The earlier argument for tempered representations has an
obvious analogue for the essentially tempered representation of the Levi subgroup. We may argue
as above to extend the essentially tempered representation to the semi-direct product of the Levi
subgroup with (). One then induces this extended representation to GLy (R) % (). The unique
irreducible quotient of this representation is the canonical extension of 7(§), namely the Whittaker
extension 7(£)~ of w(£). If one omits the Langlands quotient in this argument then we obtain the
Whittaker extension M (&)™ of the standard representation M (§).

We now turn to the question of how 7(€)™~ differs from 7(£)*. The operators m(£)~(d) and
7(€)T(Y) are involutive, and both intertwine m(£) o 9 with m(£). Therefore they differ by a sign,
i.e.

(€)™ (9) = £ (&) (9). (150)
Lemma 7.1. Suppose & € E(V(’),VGL?\,)& and M (&) is a ¥-stable principal series representation
of GLN(R). Then the Whittaker and Atlas extensions of M(€) are equal, i.e. M(£)~ = M(&)T.

Proof. We abusively identify the equivalence class M (&) with one of its representatives M (§) =

indg%]g)(R)ﬂo. Define an operator Z on functions f in the space of M (&) by

Zf(g) = f(¥(g)), g€ GLN(R).

It is easily verified that Z intertwines (indg%ﬂg(R)ﬁo) o9 with indg%ﬂg(R)(ﬁo o¥). By the J-stability
of M(§) we have

ind 3 o 2= (ind 3 ®mo) 0 9 = ind G (g 0 ).

The uniqueness statement in the Langlands quotient theorem may be applied to the equivalence
above to conclude that my = mp o . Therefore Z intertwines M (§) o ¢ with M (). We will prove
the lemma by showing that M (&)~ (9) =Z = M (&)™ (9).

Given a(ny) Whittaker functional w satisfying (149), M (€)™~ (¥) is defined by wo M (£)~(9) = w.
A convenient Whittaker functional to work with is

w(f) = fou)X(u) du (151)
U(R)
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[Sha80]*Section 2. Here f is a smooth function in the space of M(£) and 1y = J is a representative
of the long Weyl group element in W(GLy, H). We compute

woT(f) = /U o, HH e

= f(0(wou))X(u) du

U(R)

= f(ou)x(d(u)) du
U(R)

fwou)x(u) du
U(R)

= w(/f):
This proves w o Z = w so that M (§)~(9) = Z.
To prove M (&)1 (9) = Z we recall the definition of M ()" as in (40). The complete geometric

parameter £ corresponds to an Atlas parameter (z,y) (Lemma 2.2), where x is the equivalence
class of a strong involution

§ = exp(7i¥ p)ingdy = exp(mi" p).J o

as in [AV15]*Proposition 3.2 (see the proof of Lemma 7.6). This strong involution negates every pos-
itive root in R(B, H). It follows that the underlying (gl , K)-module of M (&)™ is the representation

[AV15]*(20), in which the Borel subalgebra b is real. This implies that M (&) = 1ndGI(“(§V Hi)%x e md,
where 7j () = 1, since the value of the function z given in (39) is one. Suppose f is a function in
the space of 1ndGLﬂg\;Hf);q< ) ar. We compute
(M(€)*(9)f) (9) = f(g9)

= f(09(g))

=g (9) f(9(9))

= f(0(9))

=(Zf)(9)
This proves that M (&)1 (0) = Z. O

Our next goal is to make a link between the signs in (150) and the twisted multiplicity polynomi-
als m? (¢, €) appearing in (65). By Proposition 3.7 and (104), we have the alternative formulations

m?(¢,€) = (1)~ ©Ocd (¢ ¢)

T (152)
= (—1)! (€)= (€)+" (©)—1y(8) VPY(VeE, Ve (D).

If 7(¢’) is a subquotient of M(§) occurring with multiplicity one then it is easily verified that
m? (&', €) = 1 if and only if 7(¢/)* is a subquotient of M (£)*. Similarly, m?(¢',€) = —1 if and only
if (¢')~ is a subquotient of M (£)T. In this sense m? (&', €) is a signed multiplicity.

There is a special irreducible subquotient of M (&) which is generic, i.e. admits a non-zero
Whittaker functional as in (149).

Lemma 7.2. Suppose & € Z(YO,VGLY)?. Then

(a) (up to infinitesimal equivalence) there is a unique irreducible ¥-stable generic representation
m(&) = M (&) which occurs in M(€) as a subquotient with multiplicity one;

(b) (any representative in the class of ) w(£o) embeds as a subrepresentation of (any representative

in the class of) M(£);

(c¢) (any representative in the class of) (&)™~ embeds as a subrepresentation of (any represen-
tative in the class of ) M(§)™
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Proof. A result due to Vogan and Kostant states that every standard representation M (£) contains
a unique generic irreducible subquotient occurring with multiplicity one ([Kos78]*Theorems E and
L, [Vog78]*Corollary 6.7). In the rest of the proof we write 7(&y) for the actual generic represen-
tation (not the equivalence class) for some & € Z(YO,YGLY,). It is straightforward to verify that
(&) o ¥ satisfies (149), just as w(&y) does. Therefore w(&) o ¥ is the unique irreducible generic
subquotient of M (€) o9 = M(£). By uniqueness, (&) 09 = 7(&) and so & € E(VO,VGLY)?.

The statements about 7(&p) occurring as a subrepresentation of M (&) and (&) = M (&) may
be found in [Vog78]*Theorem 6.2 and [CS98]*Theorem 6.2.

For part (c) we consider the standard representation M (&), which has a Whittaker functional w
([Sha80]*Proposition 3.2). The functional w restricts to a non-zero Whittaker functional on 7(&p).
By definition, M (§)~(¥) is the intertwining operator which satisfies wo M (£)~ () = w. Restricting
this equation to the subrepresentation 7(&p) yields in turn that

7(80)™ (V) = M(&)™ () r(eo) and m(&0)™ — M(§)™. (153)
O

Lemma 7.2 tells us that the multiplicity of 7 (&)™~ in M (&)™ is one. On the other hand m? (&, £)
tells us about the “signed multiplicity” of (&) T in M (£)T. We investigate m? (&, €) further before
comparing the two multiplicities.

Proposition 7.3. Suppose & € 2(VO,VGLY)? and 7(&) is the generic subrepresentation of M(€)
(Lemma 7.2). Then

m? (€9, €) = (—1)! OO+ (€0)=1) (&) (154)

Proof. We see from (152) that the proposition is equivalent to
VP19(\/§7\/€0)(1) - 1.

This equation follows from Proposition 4.17 once we establish that V&, is the unique maximal
parameter in the block of 7(¥¢) in the (dual) Bruhat order. This is equivalent to establishing that
&o is the unique minimal parameter in the block of 7(&y) ((88), [Vog82]*Theorem 1.15). We use
[ABV92]*Proposition 1.11 to convert the Bruhat order for the representations of GLy(R) into a
closure relation between YGLy-orbits of X (YO, YGLY,). Moreover, this proposition implies that
the minimality of &, = (S, 1) is equivalent to the ¥ GLy-orbit Sy € X (YO, YGLY) being maximal
and therefore open. The uniqueness of the generic parameter follows from the fact that there is a
unique open orbit in each component of X(YO,VGLY) (¢f. [ABV92]*p. 19). O

The signed multiplicities m?(¢',€) of Atlas extensions may be compared to the multiplicities
of Whittaker extensions when there is a representation in the block for which the two extensions
agree. This is the case when the block contains a v¥-fixed principal series (Lemma 7.1). Under
these circumstances, we obtain a formula for the signs in (150).

Proposition 7.4. Suppose £ € Z(VO, VGLR,)ﬂ and m(&y) is the generic representations of Lemma
7.2. If 7(&) ™ occurs in the decomposition of a principal series representation M (E,)" € KII(YO,GLy (R), )
then
M(&)~(9) = (~1)" O~ a1 (6)*(9)
and

7(€)~(0) = (=" OBE 7(e)* ().

Proof. Suppose that &, € 2(VO, VGT)? is the complete geometric parameter of a ¥-stable principal
series representation M (&,)" as in the hypothesis. It is straightforward to show 17 (¢,) = I5(&,) = 0.
By Lemma 7.1, (65) and (154)

M(&)™ =mi (. &) m(&)T + > mi(E &))"
§'#&o

= (~)VELE) r(gg)t + 3 ml(€,g) (€T
&'#&o
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According to (153), with & = §,, and the observations immediately preceding Lemma 7.2, this
equation implies

(—1)!" €=t (g0)+ (9) = (&)™ (). (155)

Thus, the proposition holds for & = &.
It remains to prove that the proposition holds when £ # &. We compute, using (154) and
(155), that

MET =Y ml(&, ) mE)T +m) (o, (&))"

&'#&o

= Z mf(&’)g) 71-(5’)-"- + (_1)l1(f)—l{9(5)+ll(€0)—l{9(§0) 7r(§0)+
&' #&o

=3 ml(€, ) m(E) + ()" OO r(g)
&' #&o

This equation and the observations before Lemma 7.2 imply

(1) OLOn(g0)~ (9) = M(E)* () n(eo)-

Combining this equation with (153), we see in turn that
Iipy g1 ~ ~
(=1 O OME T (O)r(ey) = 7(€0)™ () = M(E)™(9)n(e0)

and (—1 )11(5)*1119( IM(E)T(9) = M(€)~(0). By taking Langlands quotients of the last equation we
obtain (—1)!' =15 () (9) = m(€)™(¥). -

Proposition 7.4 describes the sign appearing in (150) explicitly. Unfortunately, the hypotheses
of the Proposition do not always hold. It is not true that every generic representation (&)™
appears in the decomposition of a 1J-stable principal series representation. This may already be
seen for GLs. It is instructive to examine and remedy this special case.

For every positive integer m let indg%ﬂi)(mwm be the principal series representation with

m-1)/2 g | . |(~m=1)/2
S { | @1 ) m even (156)

|- ‘(mfl)/2 ® sgn(-)] - |f(m71)/27 m odd

Let D,, be the relative (limit of) discrete series representation which is the unique subrepresentation

of mdg%ﬁ)(m M-
For even m both D,, and indg%ﬂé)(mwm are 1-stable. This may be seen by computing that the
GL2(R)

linear map on the space of ind B(R) Tm defined by

f(@) = f(0(z)), weO0(2), (157)

intertwines (mdg%ﬁ)(R) Tm) © ¥ with indg%ﬂg)(mﬂ'm. Thus, for even m we have an obvious embedding

of D,, into a ¥-stable principal series representation exhibited by an explicit intertwining operator.

For odd m the map (157) intertwines (de]aé)(R) m) o ¥ with mdg%ﬁ)(m (mm 0 ¥), where
T 00 = sgn(-)] - |(m71)/2 ®- |f(m71)/2.
Unfortunately, for odd m > 1 the representation ind I(“)(R) (mmo?) is not equivalent to indg%ﬂi)(mﬂm.
This may be deduced from the uniqueness statement in the Langlands Classification. Consequently,
instead of embedding D,, into a J-stable principal series representation, we must seek another
means of finding an operator which intertwines D,,, o ¢ with D,,. For this we look to facts about
the discrete series of SLa(R).

Lemma 7.5. Suppose m is a positive integer. Then D,, is U-stable and D}, = D\ .
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Proof. Tt is well-known that the restriction of D,, to SLa(R) decomposes as a direct sum D, &
D,,,— of irreducible (limits of) discrete series representations ([Kna86]*pp. 471-472). In this de-
composition D, is the unique representation which is generic with respect to (UNSLy(R), x). Let
w4 be its Whittaker functional. The representatlon D,, is equivalent to the tensor product of the

SLa (%)D +- The direct sum D + ® D,,_ also occurs
(R)

as the unique subrepresentation of the principal series representation ind>k BHSLQ ®) ((ﬂ'm)| HQSL2(R))

trivial central character 1z(qr,(®)) with ind>

([Kna86]*(2.19)). It is easily verified that this principal series representation is 9J-stable. Lemma
7.1 and Proposition 7.4 apply equally well for representations of SLo(R) and so we conclude that
Dy is ¥-stable with Dy, = DJr Let w be the linear functional on the space of D,, obtained
by composing w4 with the orthogonal projection P, onto the space of D,,;. We compute that for
allu e UR) and f = (1— Py)f + Py f in the space of D,,

W(Drm(u)f) = Wi (Pr (D (u)(1 = Py) f + Dy (u) Py f))
+ (Do (u) Py f)

(v) wi (P4 f)

(u)w(f)-

w
w
=X
X
This proves that w is a Whittaker functional for D,,, and implies

~ . SLE(R) ~n~
Dm = 1Z(GL2(R)) (24 lndSLz(gR))Dm-‘r'
The lemma now follows from

~ ~ R) ~
D> = 1Z(GL2( ® lndSL (R) D

m

R
= 1(GLa(ey) @ indg? <§R>)D+
~ pt

in which we appeal to [AV15]*(20) for the construction of D}, and use [KV95]*Proposition 2.77
for the induction of finite index. O

In the following two lemmas we see that although a ¥J-stable irreducible generic representation
need not be a subrepresentation of a ¥-stable principal series representation, it is at worst a
subrepresentation of a ¥-stable standard representation which is essentially induced from D,,,. We
deal with the tempered representations first.

Lemma 7.6. Suppose Tgen is a U-stable irreducible tempered representation of GLy(R) with inte-
gral infinitesimal character A € Vb chosen as in (32) i.e.

YN =X and (\Va)e{1,2,---}, a € R"(GLx, H).
(a) Relative to the standard basis of the diagonal Lie algebra by, A has coordinates of the form

(A1se oy ANy, —ANy2, -0, — A1)
when N is even, and of the form
Ay Av=1)/2,0, =A(n=1)/25 - - s — A1)
when N is odd. The coordinates appear in strictly decreasing order.

(b) Suppose N is odd. Then the coordinates \; are all integers, and Tgen, embeds into a V-stable
principal series representation.

(c) Suppose N is even. Then the coordinates \; are either all integers or all half-integers (el-
ements in Z + %) In the latter case, Tgen embeds into a V-stable principal series represen-
tation. In the former case, Tgen embeds into a ¥-stable principal series representation when
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N is divisible by 4. When N is not divisible by 4 in the former case, Tgen embeds into the
representation w which is parabolically induced from the representation

BRI INE ® Doy jpt1 @] - Mg (158)
The representation 7 is ¥-stable and 7~ = 7.
Proof. The first assertion is an immediate consequence of
A =9(\) = —Ad(J)(N).
Let aq,...,an_1 be the simple roots of GLy relative to the Borel subgroup B.

Suppose first that N is odd. Then

A VYan—1y2) = Av—1)2 — 0

is a positive integer by the integrality hypothesis. The remaining A; for j < (N — 1)/2 are then
seen to be positive integers by applying the integrality hypothesis to (A, Va;) successively.

Our strategy in showing that 7z, embeds into a ¥-stable principal series representation is to
EXPress Mgen in terms of its Atlas parameter (Corollary 2.4) and to apply Cayley transforms and
cross actions to its Atlas parameter [AV15]*Section 7. The resulting parameters correspond to
¥-stable standard representations in the block of mgen ([Vog82]*Definition 1.14, [Vog82]*Theorem
8.8, [AV15]*Section 7). For GLy(R), Tgen is the unique irreducible generic representation in its
block (Lemma 7.2). Furthermore, every standard representation in the block contains the irre-
ducible generic representation mgen, as its unique irreducible subrepresentation ([Vog78]*Theorem
6.2, [Vog78]*Corollary 6.7, [CS98]*Theorem 6.2). In consequence, it suffices to find Cayley trans-
forms and cross actions which carry the Atlas parameter of mgen to a ¥-stable principal series
representation.

By Corollary 2.4, the representation mgen corresponds to an element w € W(GLy, H) satisfying
wdp(w) = (wwp)? = 1 ((33), (35)). Such Weyl group elements are called do-twisted involutions
[AV15]*Section 3. We begin by determining the dp-twisted involution w € W (GLy, H) attached
t0 Tgen. The Jo-twisted involution w € W(GLy, H) determines an involutive automorphism wdy
on H ([AV15]*(14e)). This automorphism also acts on Vh, and the integral length (60) of Tgen is
equal to

—% ({o € R*(GLy, H) : wéy - o € R (GLy, H)}| + dim(H")) . (159)
By [Vog82]*Lemma 12.10 and the arguments of the proof of Proposition 7.3, the length of 7y, is
minimal among the lengths of all representations in its block. It is not difficult to see that (159)
is minimized at w = 1. Moreover, there exists a representation in the block of 7z, corresponding
to w = 1 ([Vog82|*Theorem 8.8 and [AdC09]*Section 14). It follows that mge, is in fact this
representation and that the dp-twisted involution w for mgey is trivial.

According to [Car72]*Lemma 5, there are orthogonal positive roots, 31, ... B, such that

S8, 8B, = WWo = Wo-

From this we compute 81 = a1 + - +any-1, fo=az+ - +an-2, ..., Bn-1)/2 = ¥N-1)/2 T
a(nt1)/2 and m = (N — 1)/2. By Corollary 2.4 there is an element y € VA" """ = VX" and
an element x € Xplv such that J(x,y, \) = Tgen.

Before listing Cayley transforms and cross actions to apply to the parameter (x,y), it is worth-
while to describe the dp-twisted involution w’ € W(GLy, H) attached to a principal series repre-
sentation. A principal series representation is parabolically induced from a real Borel subgroup. In
the Atlas parameterization this is equivalent to the automorphism w’dy carrying all positive roots
of R(GLy, H) to negative roots, making B a real Borel subgroup ([KV95]*Proposition 4.76). Since
0o preserves the set of positive roots, this forces w’ = wy, the long Weyl group element.

We wish to apply Cayley transforms and cross actions to the parameter (z,y) € X plv x Ve
in order to arrive at a parameter (z’,y’) € X;‘C) x VX! and a ¥-stable representation (z',y’) =
J(2',y’,\) (Corollary 2.4). Recall from Section 4.5 that Cayley transforms and cross actions are
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made relative to ¥-orbits of simple roots x (84). A Cayley transform ¢, applied to a parameter
in X% x VX" produces parameters in X;”fw x vV a=ree (JAdCO9)*Definition 14.1), where wy,
is prescribed in (85). A cross action kx applied to a parameter in X% x VX0 results in a

parameter in Xpui“ww“ " Ve Hwo ([AdC09]*(9.11f)). In short, Cayley transforms left-multiply
a dg-twisted involution w by w,, and cross actions conjugate w by w,. We wish to move from the
do-twisted involution 1 to the &y-twisted involution wg = sg, - - SB(n_1y,» USING these operations.
We first describe how to move from 1 to sg,. We define the symbol ~» to mean “takes a
parameter in the set on the left to parameters in the set on the right”. Let x; be the ¥-orbit of
a;. It is straightforward to verify (using the Atlas of Lie Groups and Representations software)

Cr(N-1)/2
VNS

1 V pwo B  V 15Bm WO
vax X va x YAy

R(N=3)/2%X 1,58, _ SBy_1 WO
-~ vamlx\/X)\ml

R(N=5)/2% 1,58, 5Byn—2 W0
- Om-z o \/X)\ 2 (160)

A X Vamte,
To move from sg, to sg, sz, we repeat this procedure, but terminating with "23. Repeating this
procedure in the obvious fashion, we arrive to wy = sg, - as desired. This proves part
(b).

We now continue under the assumption that N is even. By the integrality hypothesis

T SBN—1)/27

(A Vanse) = Anjz — (—Anj2) = 2An)2

is a positive integer. Therefore Ay /o € %Z. If Anyjo € Z+% then the integrality of (X, Vo(ny/2)-1) =
A(N/2)—1 — Any2 implies A\(n/2)—1 € Z + % Similar computations with the remaining simple roots
Q(N/2)—1,---,1 then imply that all A; are half-integers. If Ay is an integer then the same
argument proves that all A; are integers.

The approach to embedding mge, into standard representations for even NN is the same as in
the odd case. In particular, mge, = J(x,y, \) where (z,y) € Xplv x VX", We wish to apply Cayley
transforms and cross actions to (z,y) in order to arrive to standard representations of the desired
form. There are three cases to consider.

In the case that all coordinates of A are half-integers the Cayley transform ¢y, = ca,, may
be used to replace ¢y _,,, in (160) in order to obtain the same conclusion.

However, in the case that all coefficients of A are integers the Cayley transform cq,, does not
yield parameters which are ¥-stable and must therefore be ignored (ay/s is a root of type 1i2s in
[AV15]*Tables 1-2). In the special case of GL4(R) one may circumvent this obstacle as follows

XL x Ve T g tes s Vg Tt

Ka X ){.‘90{2‘90{1s%sa2 VXsazsalsagsazw()
v X 2

~

Ck S S S S S S S S S S S S w ( )
1 aySagSagSaySazSag \V ajSazSagSay SagSagWo

DA x VXY

_ pSB1582 vV pl
=&y x VX5

More generally, if N is divisible by four one may replace the first step of (160) with the appropriate
analogue of (161) and then continue by performing cross actions as in (160) to arrive at a parameter
in Xp851552 X VX;MSQQ “°_ Tterating this process, one arrives at a parameter in Xp“éo X VXAI which
corresponds to a v¥-stable principal series representation.

In the last case where the coordinates of \ are integers and N has remainder two when di-
vided by four one may only iterate the process just described to arrive at a parameter (z’,y’) €

BTN )1 v SN /2
A

v . The involution corresponding to this parameter acts on roots by

Sp e Sﬂ(N/z)—150 = —Sapn/2- (162)
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In the Atlas parameterization this implies that o/, is an imaginary root and all simple roots
orthogonal to a/p are real. Let us again identify the -stable representation

m=mn(z',y') = J(' Y, \)

with its underlying (g, K)-module ([AV15]*(20)). In the language of [KV95]*Section 11 this
module is the unique irreducible quotient of

Iy, K
M2, y') = “Rgﬂ‘mKZ(b).
Here, b = bh @& n is the upper-triangular Borel subalgebra, K = K,
§ = exp(16Y p) Ty tan_y ~Ua%71+a%+1(50

([AV15]*Proposition 3.2), and Z(b) = C(y’, \) ® A°P(n) as in [AV15]*(20). By [KV95]*Corollary
11.86, we may write

up 8y, K up 8y, K u JKNM w8y, K
Rg,ﬁmxz(b) = Rg,?’mK R:lﬁmTHﬂKZ(b) = Rg,ﬁ'mKWM (163)
where p = m@u D b is the parabolic subalgebra corresponding to a2, and 7y = “R?mﬁm;éKZ(b)

The induction functor “Rg [Rj[é{ ¢ on the right may be identified with parabolic induction ([KV95]*Proposition
11.57) and 7, is the underlying module of (158) ([KV95]*Theorem 11.178).

It remains to prove that the Whittaker extension of 7 equals its Atlas extension. Using the
formula for the Whittaker functional of a parabolically induced representation ([Sha81]*Proposition

3.2), we have
ws 8ln, K ~ w0l K ~ w8y, K x(0 ~
(RN Z(0)™ = (“RENTE o man)™ = "RENTOLT) o

By definition of the Atlas extension (40)

u I, K u [N, K

("R dinwZ(0))" = "Ry Nrw (Z(6)T)
and so using induction by stages as in (163) we have

w [N, K _u [, K X(0) u L(KNM)x(9) _u [n K X (9)
( Rg,meZ(b))Jr = Rg,évaK)wm R?ﬂm,(HﬁK)x(ﬂ)Z(b)+ = Rg,éVMmK)xw)WJJ\F/I' (164)

Therefore, if 7T]J\r/[ = 7}y then it follows that
up 8y, K up 8y, K ~
( Rg,%mKZ(b))—F = ( RE,?IOKZ([])) )

i.e. the Atlas extension and Whittaker extensions are equal.
For the proof of 7T‘]J\r/[ = 7y, we may assume without loss of generality that M = GLs and
wym = Dy, and appeal to Lemma 7.5. O

The next lemma is a generalization of the previous one to include generic representations with
non-integral infinitesimal characters.

Lemma 7.7. Suppose Tgen is a U-stable irreducible generic representation of GLy(R) with in-
finitesimal character satisfying (32). Then Tgen embeds into a V-stable standard representation
M(&), & € 2(VO,VGLY)Y such that M(&,)~ = M(&,)*.

Proof. According to [Vog78]*Theorem 6.2, Tgen is infinitesimally equivalent to a parabolically in-
duced representation indg?ng)(R) (7" @ e”). Here, P(R) is a cuspidal standard parabolic subgroup
whose Levi subgroup M (R) has Langlands decomposition M(R) = M!'A ([Kna86]*Section V.5),
7’ is a (limit of) discrete series representation of M1, and v lies in the complex Lie algebra a of A.

Since P(R) is standard and cuspidal the Levi subgroup M (R) decomposes diagonally into blocks

M(R) = Mi(R) x -+ x My(R)
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in which each block M;(R) is isomorphic to either GL2(R) or GL;(R). Accordingly,
M' = M} x - x M}, (165)

where M} is isomorphic to SLE(R) or {£1}; and

! / !/
T :7T1®"’®7T£,

where 7’ is equivalent to Dy, = (ij)\SLg:(R) (cf. (156)) when M = SLF(R), and is equivalent

to 1 or sgn when Mj1 >~ {+1}. In addition,

a=a1P---Dag (166)
and v = vy + -+ + 1. One should expect that the ¥-stability of mgen = indgag)(m (7' ® e”) would

put constraints on the constituent representations 7 ® e of M;(R). This is indeed so, and we
now prove that the 9¥-stability yields a partition of the set

{m®e, ..., mpe"} (167)

into either pairs of the form {D;, ®e"7, D], ®e~"7} or singletons of the form {D;,_ @€’} = {Dm, }-
The ¥-stability implies that the distribution character of mgey is equal to the distribution char-
acter of

Tgen 0 U = (indg?ﬂg)(m (7' ® e”)) o) indg(LpN(gg (r"ov®e’").

By the Langlands Disjointness Theorem ([Lan89]*pp. 149-150, c¢f. [Kna86]*Theorem 14.90), there
exists g € O(N) such that

Int(g) o9(M') = M* | TInt(g) o¥(A) = A, (168)
7 odoInt(g")=a’ , and 9-(Ad(g  )v)=vr.
Recall that 9 is the composition of Int(j ) and inverse-transpose. The inverse-transpose automor-
phism stabilizes M! and A. Since inverse-transpose acts on SLy(R) as the inner automorphism
Int ([% §]), and acts trivially on {#1}, it is easy to see that inverse-transpose stabilizes ©’. The
value of the differential of inverse-transpose at v is —v. Taking these facts into consideration, we
may read (168) as

Int(gy)(M') = M' , Int(g1)(A) = A,
7 olnt(g; ') =2n’ , and Ad(g;')v = —v,

where g1 = gJ € O(N). After possibly multiplying by an element in M' N O(N), we may assume
that Int(g;) fixes a representative A’ € Ym of the infinitesimal character of #’. The infinitesimal
character of 7’ decomposes as

N =X+ + N,

where \; € Ym;. If M; = GLy then \} determines 7’ = Dy, up to equivalence. Since g1 normalizes
M" and fixes X', Int(g1)(M}) = M} for some 1 < k < ¢, and Ad(g1)(N}) = A}, In particular, if
M; = GLy then 7 = m = D, . If M; = GL; then Int(g)‘M} is the unique isomorphism of
M} = {£1} onto M} = {#1} and so 7; = m,. If k = j in either of these two cases then
—vj = Ad(g9; 1) (vj) = vj and v; = 0. In this manner, the element g; specifies the singletons for the
partition of (167). The pairs in the partition of (167) become evident once we establish that g; acts
involutively on the factors of (165) and (166). For this, we observe that Ad(g?) fixes both X" and
v and so fixes a representative of the infinitesimal character of mgen ([Kna86]*Proposition 8.22).
As we are assuming that the infinitesimal character is regular, g2 belongs to the Cartan subgroup
determined by A" and v, which is a subgroup of M(R). Thus, Int(g?)(M}) = M}, Ad(g7)a; = aj,
which proves the desired involutive action of ¢;.

The distribution character, and therefore the infinitesimal equivalence class, of the irreducible

representation indgi“ﬂg)(R) (7' ®e") is independent of the choice of parabolic subgroup and is invariant

under conjugation by elements in GLy(R). This allows us to permute the factors of M, n’ and
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v. In view of our partition of (167) into pairs and singletons, we may choose a permutation such
that, without loss of generality,

TR =(w) @)@ @ (w) ®e)
® (W41 ©€) @+ @ (w), ® ”)
® (W1 ©e”) @ @ (w; @)
® (W @e )@ - @ (w) ®e™).

(169)

The factors w} here have the same form as the 7r§-. What is different in this decomposition of
7’ ® e” is that we are separating the factors into three groups. The first group is comprised of the
first and fourth lines of (169). This group corresponds to the pairs in the partition of (167). The
second and third groups encompass the singletons, which are essentially (limits of) discrete series.
The group in the second line is taken to be those singletons in the partition whose infinitesimal
characters in Vil all have half-integral entries (elements in Z + %) The group in the third line is
comprised of the singletons whose infinitesimal characters all have integral entries.

It is not difficult to realize representations in the first and second groups as subquotients of a
principal series representation. For example, letting By be the upper-triangular Borel subgroup in
GL,, the representation

(D!, ® 1) @ (D), ® e~"1)

embeds into

s GL2(R)xGL2(R m— —(m— 4 m— —(m— —v)
ind a0 0 (- 102 @ sgn()] - |2 @ et )@ ((sgn()] - (D2 @ | [T @ e )
(170)

if m is odd, and embeds into

lndgf‘&gig?gig)(ﬁ@ ((| . I(m—l)/2 ® ‘ . |—(m—1)/2) ® eyi) ® (‘ . |(m—1)/2 ® | i |—(m—1)/2) ® e—v{) (171)

if m is even (c¢f. (156)). More generally, one may parabolically induce
(Foehe a@warh) e (@t e o @ ae™)

to a representation 7y of GLy, (R) x GL,, (R), where n; is the sum of the block sizes of the first k
blocks. By induction in stages, one may show that m; embeds into a principal series representation
of GL,, (R) x GL,, (R).
The representation
(@41 ©€) © - ® (w), ® )

in the second group of (169) is equal to

(Dpy, @) @@ (D), ®e)
where nyy1,...,ny, are all even integers, and without loss of generality, ng41 > ngye > -+ > np.
This places us in the context of Lemma 7.6 ([Kna86]*Theorem 14.91), but it is easy to write things
out explicitly here again. By (156), each factor embeds into a principal series representation of
GL2(R). One may parabolically induce (@}, ® €”) ® --- ® (@}, ® €”) to a representation 7y of
GL,,(R), where ng = 2(h — (k+ 1)) is the sum of the block sizes from k4 1 to h. Using induction
in stages, one may show that 7y embeds into a principal series representation of GL,, (R). After
conjugating by an element in GL,,(R), the principal series representation may be taken to be
induced from the upper-triangular Borel subgroup with the quasicharacter

|- |(nk+1—1)/2 ®|- |(nk+z—1)/2 Q- ®|- |(nh—1)/2

(172)
Q|7 V2 g. . @ |22 g | [T (1= 1)/2

This brings us to the representation (wj,_; ® €?) ® --- ® (w; ® €°) in the third group of (169).
It too may be parabolically induced to a representation my;; of GL,,(R) where ng is the sum of
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the block sizes from h + 1 to i. This induced representation must be irreducible, as otherwise, by

induction in stages, mdg?ﬂé\’) IR{)( '®e”) = Tgen would be reducible. It follows from [Kna86]*Theorem

14.91 that 77;7 is tempered. In addition, the ¥-stability of mdP(R)( (7' ® €¥) combined with the
Langlands Disjointness Theorem imply that mrr; is a ¥-stable representation of GL,,(R). By
Lemma 7.6, w777 appears as a subquotient of either a v-stable principal series representation of
GL,,, (R) or of a representation parabolically induced from a representation of the form (158).
Taking the tensor product of 7y, m;; and 777, we obtain a representation of a block-diagonal

Levi subgroup L of GLy(R) such that
L(R) = GL,, (R) x GL,, (R) x GL,,(R) x GL,, (R).

By construction
dE®

T @7 @7y = ind pop) ) (7 ® "),
and appears as a subquotient of either a principal series representation of L(R), or a representation
described by (158) which is nearly in the principal series.
Suppose first that 7; ® 777 ® 7777 is a subquotient of a principal series representation of L(R)
and let @) be a parabolic subgroup of GLy with L as its Levi subgroup. Then

Tgen _de%N)(R)( '®e") 1ndg%ﬂg)( )nd(L}gi)L)(R)(ﬂ/@e ) 2 ind (R)( )(7r1®7rn®7r1u)

appears as a subquotient of a principal series representation ind B(]Ig)( )7'('0 of GLx(R). We are free
to conjugate this principal series representation by an element of GLx (R) in order to permute the
GL;(R) factors of my. The factors of mp are given by (170), (171) and (172) (¢f. Lemma 7.6 for
the factors coming from 7;; and myyr). Clearly, the factors of 7y are paired off so that the tensor
product of some permutation of them is fixed under ¢. Taking 7 to be this ¥-fixed tensor product
allows us to conclude that g, is infinitesimally equivalent to a subquotient of a 1J-stable principal

series representation 1ndG( ~(B) o mo. The principal series 1ndG( ~ (R )7r0 is represented by M (€,) where

& € 2(VO,VGLY)? is as in Lemma 7.1 and so M(&,)~ = M(fp)ﬂL

Fmally, suppose that 7; ® 777 @ 7wy is infinitesimally equivalent to a subquotient of an induced
representation which is described by (158). Then we may argue as in the previous paragraph,
except that now exactly one of the factors of 7, stemming from 77, is a relative discrete series
representation Dgj11 of GLa(R) for a positive integer j. After possibly permuting the factors of o,
the factor Dgj;y1 may be assumed to occupy the middle block of GLy (IV is even by Lemma 7.6).
The remaining factors of 7y are quasicharacters of GL; (R) which are paired off as before, so that we
may assume that 7y is ¥-stable (Lemma 7.5). The representation of GLy (R) which is parabolically
induced from 7y using a standard parabolic subgroup, is then ¥-stable. This representation may
be represented by M(&,) for some &, € Z(YO,VGLY)? or as M(x,y) for the equivalent Atlas
parameter (Lemma 2.2). The representation M (z,y) has the same form as (163), with x = 2/,
mo replacing s, y replacing 3/, and the infinitesimal character of 7y replacing A\. The arguments
following (163) apply equally well to M (z,y) and so we conclude that

M(&p)~ = M(z,y)~ = M(z,y)" = M(&)".

Proposition 7.8. Suppose & € 2(YO,VGLY)”. Then
M(&)™(9) = (~1)" OO a1 (6)*(9)

and

7(€)~(0) = (~)" OHE 7(e)*+ ().

Proof. Let mgen = m(&o) be the generic representation of Lemma 7.2 and let £, be as in Lemma 7.7.
Then the proof follows the proof of Proposition 7.4 exactly, although it is not as straightforward
to show that I7(&,) = I1(&,) when M(&,) is not a principal series representation. Let (z,y) be the
Atlas parameter equivalent to §,. When M (§,) is not a principal series representation it was noted
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in the proof of Lemma 7.7 that N is even and that the Cartan involution corresponding to z = '
acts on 10ots as —sa,,, (see (162)). From (60), (61) and the fact that o/, is also simple root of
type 1 in Ry(GLy, H) (see (84)), we compute

(&) = 3 (|{o € B* () s, 0(0) € REO)| +dim (17702

1

= 5 (Ha € RO : —saa(0) € ROV} +dim ((7)*v2))
21119(517)~
O

It is worth observing that Theorem 3.5 now has the following simple form, reminiscent of
Theorem 3.1.

Corollary 7.9. The pairing (62), defined by (63), satisfies
(M(&)~, u(€)T) = e

and
(&)™, PEN)Y) = (=1)"O) 5¢ ¢
for &,6 € Z2(VOVGLY)?. Equivalently,

my(€,€) = ()"0 1el(e ¢, (173)
where mY (€',€) is defined by the decomposition
ME~= Y myEnE) (174)

§/€(2(0.YGLY))?
in KT(O, GLy(R),9).

Proof. The first assertion is an immediate consequence of Proposition 7.8. For the second assertion,
we return to decomposition (65). Substituting the Whittaker extensions of Proposition 7.8 into
this decomposition and comparing with (174), we deduce that

Toery_ gl pery_(qloey_ g1 ~
m?(¢,€) = (—1)F E)=hE=E@=LO) (¢! €.

Substituting this expression into the identity of Proposition 3.7 we see that the first assertion is
equivalent to

~ I gl et
my(€,€) = ()" OO (e, ¢).
This identity is equivalent to (173), as

1'(€) —d(&) =1"(¢") - d(¢)

is a constant independent of ¢,£" € Z(0,VGLY)? (Proposition B.1 [AMR17]). O
Another consequence of Proposition 7.8 is that the endoscopic lifting map Liftg (132) is equal
to the endoscopic transfer map TraunsngN*“9 used in Arthur’s definition (5) of 77{22. This is a crucial

step in the comparison of 77{22 and 77;2‘2\/.

Corollary 7.10. Suppose G is a simple twisted endoscopic group as in Section 5.2. Suppose further
that S € X(VOgq,VGY) is a VG-orbit and let ¢(Sq) € X(VO,VGLY) be the VGLy-orbit of the
image of Sg under € (113). Then

(a)
Lifto (1155 (0)(84)) = M(e(Sc), 1),
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(b)

Lifty = TransgLN X
on K@H(VOG, G(R, (Sq))St.

Proof. The first assertion is an immediate consequence of Propositions 5.3 and 7.8. The second
assertion follows from the identity

Transg™™ " (1/$5(5,)) = M(e(Sc), 1)

G

([AMR18]*(1.0.3), [Mez16]) and the fact that the stable virtual characters 1< (d,) form a basis for
KcIl(YOg, G(R,§,))*t as Sg runs over the ¥G-orbits in X(¥Og, VGT). O

8 The comparison of II,,, and IT}"V for regular infinitesimal

character
In this section we prove the main results comparing 7%, with 732V ((19), (20)). We shall work
under the assumptions of Section 5.2. In particular, ¥g and ¥ = € o ¢g are A-parameters with
respective infinitesimal characters ¥ Og and V. The assumption on the infinitesimal characters is
that they are regular with respect to GLy. This assumption shall be removed in the next section.

The definition of nfzé was outlined in (5). Let us provide a few more details from [Art13]. The
key lemma is

Lemma 8.1. Let S, € X(YO,VGLY,) be the Y GLy-orbit corresponding to ¢y ([ABV9I2]*Proposition
6.17, (26)).

(a) There exist integers ng such that
7(Sy, 1)~ = > ng M(S,1)~ (175)
(S,1)eE(VO,YGLp)?
in KII(VO,GLy (R),9).

(b) Moreover, for every S such that ng # 0 in (175) there emists a unique ¥V G-orbit Sg C
X(VOgq, VG which is carried to S under .

(c) Writing
S = E(SG)

for the orbits in part (b), we have

m(Sy, 1)~ = ’HansgLNw (Z Ne(Sq) 77}55);(5«;))
Sa

— Lifto (Z Ne(Sa) n?§(5q)> :

Sa

(176)

Proof. By virtue of Proposition 7.8, (175) is equivalent to a decomposition

7(Sy, 1)t = > nls M(S,1)*
(S,1)eE(VO,VGLy)?

of Atlas extensions. The latter decomposition follows from (65) and Lemma 3.6. The existence
of the orbit S¢ in part (b) is established on the first page of the proof of [Art13]*Lemma 2.2.2.
The uniqueness of the orbit follows from Proposition 5.2. Part (c¢) is a consequence of Corollary
7.10. ¥
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Arthur’s definition of 77;22 is easiest to state when the endoscopic group G is not equal to SOy
for even N. In this case, the group G has no outer automorphisms and the defining equation (5)
is the same as (176). It follows that

771?2 = Z Ne(Sa) 77}5('); (611) € K(CH(VOGa GUR’ 5q))5t (177)
Sa

(¢f. [Art13]*(2.2.12)). By definition, the A-packet H$é consists of those irreducible characters
in II(YOg, G(R, d4)) which occur with non-zero multiplicity when (177) is expressed as a linear
combination in the basis of irreducible characters.

In the case that N is even and G = SOy, the stable virtual character nf/}é is defined to
be invariant under the action of the outer automorphisms induced by the orthogonal group Oy
([Art13]*pp. 12, 41). Fix

w € Oy —SOp. (178)

The orthogonal group acts on geometric parameters in X (¥ Og, YG") in a straightforward manner,
sending them to geometric parameters in X (0 - VOg, VGY). The stable virtual character

1 ) . s
5(77.19(’); (511) + nqlg-CSG (6Q)) € K(CH(VOG7 G(R, (Sq))St @ KCH(w : VOG? G(R7 6q)) i

is On-invariant by design. Extending the domain of TransgLN 9

tions (5) and (176) imply

to the space on the right, equa-

r Ne(s oc oc
mi, = D~ 0 (055 (54) + ml8s (50)).
Sa

This is a virtual character in KcII(YOgq, G(R,6,))** @ Kcll(w - VO, G(R, §,))%* and the A-packet
Il consists of the irreducible characters in its support.

Theorem 8.2. (a) If G is not isomorphic to SOy for even N then
Mo = Mg (0) =i and  TLJ =TIV
(b) If N is even and G = SOy then

1 mi mi 1
e = ) (ngc(éq) + nlntc(ﬂ))owg (5q)) = ) (WQGBV + ﬂﬁ?(\qu)owc)

and

Ar _ 1TABV ABV
Iy =100 U Miycta)oe

where the union is disjoint.
Proof. This just involves putting together the pieces. Let £ = (Sy,1) as in Corollary 6.4.
Lifto (1 (8,)) = Lifto (7(0)(8,))  (by (138))
= (—1)11(5)4{9(5)#(5)+ (Corollary 6.4)

=m(§)~ (Proposition 7.8)
=7(Sy, 1)~

= Transg"V *” <Z Ne(Se) NSS (5q)> (Lemma8.1)
Sa

= Liftg (nﬁé) (Corollary 7.10(b)).

The equality of the stable virtual characters follows from the injectivity of Lifty (Proposition 5.4).
The equality of packets follows immediately.
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For part (b), identical reasoning leads to the identity

Lifto (775(d,)) = Transg ™ *? (Z Ne(se) (NS5 (8q) + 1150 <5q>>> = Lifto (1735
Sa

The first assertion of part (b) follows from the injectivity of Liftg as before. The irreducible charac-
ters in the support of > Se The( Sc)nlsog (04) are those in the packet Hfzgv. These irreducible characters
lie in I1(YOg, G(R, d,)). Similarly the irreducible characters in the support of 3 Ne(se)Melse (8q)
are those in Hﬁl]?(\:z;)o s These irreducible characters lie in I(w - YOga,G(R,d,)). The regularity
of the infinitesimal character ¥Og implies YOg N (w - YOg) = 0, otherwise there exists g € VSO
and A € YOg N VhY such that Ad(iwg)\ = X. This would imply wg € VHY C VSO, contradicting
the definition of w. In consequence,

(YO, G(R,6,)) NII(@ - ¥ Og, G(R, 6,)) = 0

and
ABV ABV
H'@DG n HInt(’lD)O-’LZ)G = @

This proves the final assertion. O

9 The comparison of II;, and H@gv for singular infinitesimal
character

To conclude our comparison of stable virtual characters, we retain the setup of the previous section,
but without the hypothesis of regularity on the infinitesimal character. In other words, the orbits
VO and VOg are now allowed to be orbits of singular infinitesimal characters and the reader
should think of them as such. In order to prove something like Theorem 8.2 for singular YO,
we must extend the pairing of Theorem 3.5 and extend the twisted endoscopic lifting (132) to
include representations with singular infinitesimal character. The main tool for this extension is
the Jantzen-Zuckerman translation principle, which we refer to simply as translation. In essence
the Jantzen-Zuckerman translation principle allows one to transfer results for regular infinitesimal
character to results for singular infinitesimal character. Applying this principle to the results of the
previous section will allow us to compare IL;, with HﬁGBV with no restriction on the infinitesimal
character.

The reader is assumed to have some familiarity with then Jantzen-Zuckerman translation prin-
ciple, which for us begins with the existence of a regular orbit VO’ C Vgly and a translation datum
T from VO to VO (JABV92]*Definition 8.6, Lemma 8.7). A key feature of the translation datum
is that if YO is the YGLy-orbit of A € Vh then YO’ is the YGL y-orbit of

N =X+ €h (179)

where A\; € X, (H) is regular and dominant with respect to the positive system of R*(GLy, H).
We may and shall take \; to be the sum of the positive roots. In this way, each of A, A; and X
are fixed by ¥. The translation datum 7 induces a v GL y-equivariant morphism

fr:X(MO',VaLy) = x(V0,VGLY) (180)

of geometric parameters ([ABV92]*Proposition 8.8). The morphism has connected fibres of fixed
dimension, a fact we shall use when comparing orbit dimensions. The ¥ GL y-equivariance of (180)
is tantamount to a coset map commuting with left-multiplication by YGLy ([ABV92]*(6.10)(b)).
Since both A and X are fixed by 9, it is just as easy to see that the action of ¥ commutes with the
same coset map. We leave this exercise to the reader, taking for granted the resulting (¥ GLy x (9))-
equivariance of (180).

According to [ABV92]*Proposition 7.15, the morphism f7 induces an inclusion

fr:2(V0,YGLY) — E(VO',VGLY) (181)
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of complete geometric parameters. The ¥-equivariance of (180) implies that this inclusion restricts
to an inclusion (denoted by the same symbol)

20, VGLY)? — E(VO',VGLY)".
The (Jantzen-Zuckerman) translation functor (J[AvLTV20]*(17.8j))
T3 =Ty,

is an exact functor on a category of Harish-Chandra modules, which we shall often regard as a
homomorphism

T/(\+/\1 s KII(YO', GLN(R) % (9)) — KII(YO,GLN (R) x (9)) (182)

of Grothendieck groups. It is surjective ([AvLTV20]*Corollary 17.9.8). This translation functor is
an extended version of the usual translation functor ([AvLTV20]*(16.8f)), which we also denote
by

T3, : KI(YO',GLy(R)) — KTI(YO, GLy (R)). (183)

Let us take a moment to make (182) more precise. The sum of the positive roots A; is the
infinitesimal character of a finite-dimensional representation of GLy(R). Therefore, A\ is the
differential of a ¥-fixed quasicharacter A; of the split real diagonal torus H(R), which matches
the weight of this finite-dimensional representation. The quasicharacter A; may be extended to a
quasicharacter A} of the semi-direct product H(R) x () by setting

AT () = 1. (184)

We define translation in the extended setting of (182) using this representation of the extended
group. Since the extension is evident here we continue to write 7% ', instead of T;‘+ At
1
In the ordinary setting of (183) we have

m(€) =Ty, (7(f7(9)),
M(€) = Ta, (M(£7(9), €€E(V0,YGLY)

([AvLTV20]*Corollary 16.9.4, 16.9.7 and 16.9.8, or [ABV92]* Theorem 16.4 and Proposition 16.6).
We define the Atlas extensions of m(€¢) and M(€), with € € 2(VO,YGLY)?, by

m(€)T =T, (r(fF(E)T)
MY =T\, (M(f5E)).

(To be careful, one should verify that this definition does not conflict with Section 2.5 when YO
is regular. This amounts to the observation that the translate of the (b, (H N Ks) % (9¥))-module
underlying an Atlas extension remains trivial on . Justification for this observation is given in
proof of Proposition 9.1).

With the definition of Atlas extensions in place, the discussion of Section 2.7 is valid, and
we see that T)%\J!‘)\l factors to a homomorphism of KII(VO, GLx(R), ) (see (44)). We use the
same notation 7' )f‘ '), to denote the functor of Harish-Chandra modules, and either of the earlier
homomorphisms. The reader will be reminded of the context when it is important.

The definition of a Whittaker extension does not depend on the regularity of the infinitesi-
mal character. The following proposition shows that translation sends Whittaker extensions to
Whittaker extensions.

Proposition 9.1. Suppose £ € Z(VO, VGLR,)”. Then (as Harish-Chandra modules)

TRon, (M(f(€)™) = M(§)~,

and

T, (m(f7(€)™) = (&)™
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Proof. Lemma 7.2 does not require VO to be regular, and so we may choose & € ZE(VO, VGLR,)19
to be the unique parameter such that 7(&y) is generic and embeds as a subrepresentation of M (€).
(Here, we are implicitly assuming that we are working with actual admissible representations (or
Harish-Chandra modules) rather than equivalence classes.) Since the orbit S¢, € X (YO, YGLY)
of &y is open (see the proof of Proposition 7.3), it is an immediate consequence of the definition of
[ (JABV92]*(7.16)(b)) that f7(Sg,) is open and therefore that m(f7- (o)) is generic.

According to Lemma 7.7, 7(f+(&)) embeds into a standard representation M (¢,) for some §, €
2(VO',VGLY)?, which satisfies M(&)~ = M(&)". Furthermore, m(f5(&)) occurs as a subrep-
resentation with multiplicity one, and 7(f5(£o))™ is a subrepresentation of M(£},)~ (Lemma 7.2).
Applying the exact functor T3, ,  (of Harish-Chandra modules), we see that T3, \ (7(f3(£0))™)
is a subrepresentation of T3, (M (&,)~).

Suppose first that M (51’0) is a principal series representation. By [AvLTV20]*Corollary 17.9.7
Ty, (M(€,)™) is an extension of a principal series representation. Indeed, M (€)™~ = M(¢,)"
(Lemma 7.1) and is parabolically induced from a quasicharacter of a split Cartan subgroup extended
by (¥)—the value of this quasicharacter on ¢ being one (Section 2.5). [AvLTV20]*Corollary 17.9.7
tells us that T)f‘ " (M (fz’))N) is parabolically induced from the tensor product of the aforementioned
quasicharacter with the inverse of Af as in (184) (J[AvLTV20]*Theorem 17.7.5). This justifies
T/(\ ' (M (f;)’“) being an extended principal series representation, but more can be said. In view
of (184), translation by (A])~! does not affect the value of the quasicharacter on 9. Consequently
its value on 4 is still one. The arguments of Lemma 7.1 therefore apply to T§\+/\1 (M({;,)N) as they
do for M(&,)~ and we deduce

w=woTRyy, (M(E)™) () (185)

for the Whittaker functional w defined by (151).

If M (},) is not a principal series representation then it is of the form (164), which is a parabol-
ically induced representation, essentially from a relative discrete series representation on GLy(R).
Such a representation may still be regarded as being induced, albeit not parabolically induced, from
a quasicharacter of a non-split Cartan subgroup. The earlier arguments from [AvLTV20]* Corol-
lary 17.9.7 apply. We leave it to the reader, to verify that (185) holds in any case. In consequence
of (185) and the exactness of T}, , ,

wo TRy, (T(f7(60)™) (V) = wo TRy, (M(§)™) (Din(e) = w-

This proves that T>/\\+>\1 (m(f7(&0))™) is the Whittaker extension of

TR a, (7 (f5(€0)) = 7(&),
that is
Ty, (T(f7(€0)™) = m(&)™. (186)

To complete the proposition we embed 7(f7(£))™ as a subrepresentation of M (f7(£))™ using
Lemma 7.2. Applying the exact functor T3, , (of Harish-Chandra modules), we see that (186) is

a subrepresentation of T/<\+/\1 (M(f7(&£))~). Since a Whittaker functional w of T)%\J!‘)\l (M(f7(€))) =
M (&) restricts to a non-zero Whittaker functional wi,(e,) on 7(§) and

Cw=wo T>’\\+,\1 (M(f7(£)7) (9)

for ¢ = £1, we deduce in succession that

cWin(ee) = w0 TRya, (M(FH(€))™) (9 iney) = w o ()™ (¥) = Win(ey)s
c=1 and
w=wo Ty, (M(f7(€)) ().
The final equation implies
Tin, (M(f7(€)™) = M(€)™.
Since 7(f7(£))~ and m(§)™ are the unique irreducible quotients of M (f7-(£))~ and M (€)™ respec-
tively, and T X\ ', 18 exact (on Harish-Chandra modules), the proposition follows. O
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Our translation datum T for GLy is defined by (179), in which both A and A’ are fixed by the
endoscopic datum Int(s) o). For this reason (179) also determines a translation datum 7¢ from
Y G-orbits YOgq to VO for the twisted endoscopic group G ([ABV92]*Definition 8.6 (e)). Just as
for GLy, we have maps

fre : X(VO',VGY) = X(Y0,YGY)
[, i E(VO,VGY) = 2(VO",VGT)

and the translation functor Ti‘ '\, Which satisfies

(&) =TRya, (7(f7,(€), €€E(Y0q,VGY)

([ABV92]*Proposition 16.6, [AvLTV20]*Section 16).

The translation data 7 and 7g allow us to transport properties of our pairings at regular
infinitesimal character (Proposition 7.9) to the same properties for pairings at singular infinitesimal
character.

Proposition 9.2. Define the pairing

(-,-): KII(YO,GLy(R),¥) x KX(YO,VGLY,0) = Z (187)
by

(M), 1(E)") =deer-
Then
(m(€)™, P(E)) = ()" b¢.e

where £, € 2(Y0O,YGLY)?.
Proof. We first sketch the proof for the ordinary pairing of Theorem 3.1 in [ABV92], which does
not involve twisting by 1. This will allow us to point out the portions of the proof that must be

modified in the twisted setting. In the ordinary case there are no Whittaker or Atlas extensions,
and the identity to be proven is (53)

mp(€1,&) = (—1)MEAE) ¢ (g5 1), £,6 € 2(V0O,VGY)

for the possibly singular orbit ¥O. The idea of the proof is to show that both sides of (53) are
invariant under translation. Starting with the right-hand side of (53), we use [ABV92]*Proposition
8.8 (b), which provides an exact functor from P(X (VO,vG")) to P(X(VO’,VG")) satisfying

P(&) = P(f7,(6))

and
co(fr. (&), [, (&) = ¢o(&1, &), &,& € E(V0O,VGY). (188)
The invariance of the left-hand side of (53)

mr(f’;ic(él)a f’;ic;(éé)) — mT(§17£2)7 €17£2 S E(\/Oa\/GF)a

is given by [ABV92]*Proposition 16.6 and (16.5)(d), which rely on the translation functor ([ABV92]*(16.3)).
All that is now needed to prove (53) for the possibly singular orbit VO is to line up the equations
mr(fb €2) = mT(f’;K’G (gl)a f’}k’G (52))
= (-1 NI ¢ (1, (62), F1,(€1))
— (_1)(d(£1)—d)—(d(§z)—d) 09(52,51)
= (—1)HE ) ¢ (&, &).

In the third equation, we have used [ABV92]* (7.16)(b) and the dimension d of the connected fibres
of f7.. to describe the orbit dimensions.

(189)
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Let us repeat the preceding proof in the twisted setting. The desired analogue of (188) is

co(F3 (&) a, (&) 4) = cg(&1x,&0n),  &1,& € E(YO,VGLY)? (190)

(see (66)). As before, [ABV92]*Proposition 8.8 (b) ensures this as long as
PE)* = P(f7(&)", £€E(Y0,YGLy)" (191)

([ABV92]*Proposition 7.15 (b)). This may be seen as follows. The complete geometric parameter
[3(€) determines a (YGLy x ())-equivariant local system, and the perverse sheaf P(£)™ is mapped
to the intermediate extension of this local system (to its ¥ GLy-orbit closure) ([ABV92]*(7.10)(d),
[BBD82|*p. 110). Let us call the resulting perverse sheaf PT. We would like PT = P(f5(£))"
and this holds when the (YGLy x (9))-equivariant irreducible constructible sheaf u(f5(£))" occurs
in the decomposition of P* (¢f. (66)). The latter property is true, for P and pu(f5(£))" are
obtained from the same (YGLy % (9))-equivariant local system by intermediate extension and
extension by zero respectively (c¢f. [ABV92]*(7.11)(b)). This justifies (191) and therefore also
(190). By definition (67) and (190)

ey (f7(60), fr (&) = ¢ (61, 62),  &1,6 € (Y0, VGLY)". (192)

Moving to the representation-theoretic multiplicities, we appeal to the translation functor TA)‘ '
for GLy x (9). In KII(VO', GLy(R),¥) we have

M(f5(&))~ = Yoo my (&), (&) T(£7 (&)™ (193)
fleE(VO,VGLF\,)T’
+ ) my(E (&) w(E)”
7

where ¢’ are those parameters in (¥, VGLY)? which do not lie in the image of (181). Applying
T}, to (193) has the effect of annihilating the second sum on the right ([AvLTV20]*Corollary
17.9.4 and 17.9.8). By Proposition 9.1, the remaining terms are

M(&)™ = > my (f7 (&), f7(§2)) m(&1)™

£1€2(VO,VGLY)?

and this equation implies

my (f7(€0), 7 (&2)) = mY (61, &), &,& € E(Y0,YGLY)". (194)
Using equations (192) and (194), and replacing m, and ¢, with m}" and cg respectively in (189),
we deduce that (173) holds for the possibly singular orbit ¥ O. O

Proposition 9.2 is the final version of the twisted pairing, and we use it to extend the definition
of endoscopic lifting Lifty to include singular infinitesimal characters ((131), (132)). In fact, all
of the remaining results used in Section 8 easily carry over to the more general setting, except
for the injectivity of Lifty (Proposition 5.4). In particular, using the pairing (187) in the proof of
Proposition 5.3, we see that for any VG-orbit Sg C X (YOg,YGY) we still have

Lifto (15 (0)(5,)) = M(e(Sc), )™,

Tt is explained in [Art13]*p. 31 that Liftg is injective when G is not isomorphic to SOy for even
N. However, when G = SOy for even NV, the endoscopic lifting map is only injective on O y-orbits
[Art13]*pp. 12, 31). That is to say,

Lifto (n$°(d4)) = Lifto (n$5(d4))

for VG-orbits of complete geometric parameters if and only if Sy = @ - S} for w as in (178). One
might hope to retain injectivity by restricting the infinitesimal character of S; to lie in VOg, but
this too fails as it is not difficult to construct singular examples in which YOg = w - VOg.
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Recall decomposition (175)

7(Sy, 1)~ = > ns M(S,1)~.
(S,1)eE(YO,VGLL)?

As in the previous section, for each VGLy-orbit S with ng # 0 there exists a YG-orbit Sg C
X(YOgq,VGT) such that €(Sg) = S. The difference now is that when G is an even special orthogonal
group the orbit Sg may not be uniquely determined in X (VOg,VGY). The lack of uniqueness forces
us to weaken Theorem 8.2 in this context in that the ABV-packets in part (b) below are no longer
necessarily disjoint.

Theorem 9.3. (a) If G is not isomorphic to SOy for even N then
Ar mic ABV Ar ABV
Tpe = Mg (9g) = Tpe and ch = H'l/)c :
(b) If N is even and G =2 SOy then

1 mic mic 1 ABV ABV
Moo = 5 (M08 + M ayons (00)) = 5 (732Y + 13 )

and

Ar ABV ABV
ye = Wy U Moy -

Proof. The proof of the first assertion is completely the same as the proof of Theorem 8.2(a), since
the injectivity of Liftqg holds. Suppose therefore that N is even and G = SOpy. As in the proof of
Theorem 8.2 we have

Litto (13 (3,) + M ayou () ) = 27(S, 1)

= Z 2ng M(S,1)~

J

= Lifto (Z Ne(se) (5g (9q) + Miss (5q))> :

Sa

Since Lifty is injective on Op-orbits of stable virtual characters, the second assertion follows. [

10 The comparison of Problems B-E

Theorem 9.3 is a comparison of the solutions to Problem A of Arthur and Adams-Barbasch-Vogan.
Let us compare the remaining problems of the introduction.

Problem E, concerning the unitarity of the representations in the A-packets, stands apart
from Problems B-D. It is also easy to dispense with. Arthur proves that Il consists of unitary
representations ([Art13]*Theorem 2.2.1 (b)), and so by Theorem 9.3, every packet Hﬁgv also
consists of unitary representations.

For problems B-D, we review Arthur’s approach first. The stable virtual character nfzé is
written

Mt =Y <Sypg,0>0 (195)
O'Ein

as in [Art13]*(7.1.2). Here, iwc is a finite set of non-negative integral linear combinations
o= Z m(o,m) T
m€unit (G(R))

of irreducible unitary characters of G(R) = G(R, d,). Furthermore, there is an injective map from
Yy into the set of those quasicharacters of

ATZ)G = vaG/(deJc)O

G
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which are trivial on the centre of VG. The injection is denoted by

o< 0>

(i)

in Ay,. The element sy, is clearly of order two. It is easy to rewrite (195) as

The element sy, is the image of

me = > mlom) < spg.o>| T (196)

m€llyg \oely,

(¢f. [Art13]*Proposition 7.4.3 and (7.4.1)). By defining a finite-dimensional representation

Tye (T) = EB m(o,m) < -0 >, (197)
€Sy,
equation (196) becomes
Mo = Y Tr (e (M) (506)) 7 (198)
mElly

The finite-dimensional representations defined in (197) provide a solution to Problem B. Equation
(198) is close to a complete resolution of Problem C. We also need to show that the quasicharacters
< -,0 > occurring in a given Ty (m) have the same value e, at sy,. In this way the trace
Tr (T (1) (4 ) would reduce to e - dim(7y (7)) as expected. We return to this point when we
compare with 77{22\/ = 7721;(; (64) (49) below.

Problem D concerns endoscopic lifting from an endoscopic group G’ of G. The endoscopic
group G’ is defined to be a quasisplit form of a complex reductive group whose dual VG’ is the
identity component of the centralizer in VG of a semisimple element s € VG (¢f. Section 5 and
[Art13]*Theorem 2.2.1(b)). Furthermore, the element s is taken to centralize the image of ¢, and
there is a natural embedding ¢ : V(G')T' < VGT. Arthur’s solution to Problem D tells us that if

Ve =€ ot
for an A-parameter ¥)g: then there exists a stable virtual character 7y, on G’(R) such that

Transgs (ye,) = Y Tr (Tye (m)(sy68)) m (199)

Ar
WEHwG

([Art13]*Theorem 2.2.1). Here, 5 € Ay, is the coset of s, and Transg, denotes the standard
endoscopic lifting of Shelstad ([She83]). Observe that (198) is obtained from (199) by taking s = 1.
Now let us look at Problems B-D from the perspective of [ABV92]. Each 7 € HﬁGBV is of the
form 7(§) for a unique complete geometric parameter £ = (S¢, 7¢). Using this, we set
ARV () — 72 (P(¢))

as in (133). This is a solution to Problem B. The solution to Problem C is then given by (139),
which we may write as

A=Y () dim (2 (0)
weﬂﬁgv

where d(m) = d(Se) for m = 7(§) as above. The solution to Problem D is given by [ABV92]*Theorem
26.25. Translated into the setting of (199), it reads as

Liftd (n;jf)’) = 3 (1)) Ty (rABY () (5)) « (200)

ABV
WGHwG
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[ABV92]*Definition 24.15 and (26.17)(f). Here, LiftS is the standard endoscopic lifting map of
[ABV92]*Definition 26.18, which is defined on the stable virtual characters of G'(R) and take
values in the virtual characters of G(R).

We wish to compare Arthur’s solutions to Problems B-D with those of [ABV92]. This amounts
to comparing (199) with (200). For this comparison, we shall, for the sake of simplicity, assume
that

G =SO0p, N odd

from now on. This assumption avoids the irksome complications arising from even special orthog-
onal groups in Theorem 9.3 (b). Under our assumption Theorem 9.3 tells us that the solutions of
Arthur and Adams-Barbasch-Vogan to Problem A are identical.

In comparing (199) with (200), we must choose our endoscopic groups judiciously. Recall that
Ay, is the component group of the centralizer in VG of the image of 9. The explicit description
of this centralizer in [Art13]*(1.4.8) makes it clear that every element § € A, has a diagonal
representative $ in the centralizer with eigenvalues +1. The endoscopic group G’($) determined by
§ is a direct product G’ ($) x G5($) in which each of the two factors is a special orthogonal group
of odd rank ([Art13]*pp. 13-14). The A-parameter v () decomposes accordingly as a product
Ve (s) X Yay(s) of A-parameters ([Art13]*pp. 31, 36). Similarly, Arthur’s stable virtual character
Nyer s 18 defined as the tensor product Mooy ) © My o) ([Art13]*Remark 2 of Theorem 2.2.1).

Hence, a particular instance of (199) reads as

TransG (1o, o) @ ogy ) = 3 Tt (g (1) (300 . (201)
WEHwG

We now turn to rewriting the left-hand side of (201) so as to match it with the left-hand side of
(200). First, it is noted on [ABV92]*p. 289 that Trans$, = LiftS. Second, using the arguments in
the proof of Corollary 6.2, we see that

ABV _ _ABV ABV
Mperesy = WG,() nwg,()

Third, since G (%) and G5($) are both odd rank special orthogonal groups, Theorem 9.3 (a) tells
us that

_ ABV _
an’() Mg ) J=12

Taking these three observations together we conclude

TransS, (nwc,( )) = Lift§ (nﬁé,(é) ® T]f?,;, © )
= Lift§ (n{;B,V( ® nﬁf,v(s))
= Lifef ()2 ).

It is now immediate from (199) and (200) that

Y Te(rue(m(sped)m= Y (~1)™ 1) Tr (753 (n)(5)) =

TrEHwG WGHIPG

for any § € Ay. By the linear independence of characters on G(R)

Tt (74 (1) (8465)) = (=1) 1T~ ve) Tr (r3BV (1) (3))

for any 5 € A,. This may be regarded as an equality between virtual (quasi)characters on Ay (cf.
(197)). By appealing to the linear independence of these (quasi)characters we conclude that

Ty (M) (Sype) = (—1)d(”)—d(5wc)

and
Ty () = 7oV ().
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The former equation gives a complete solution to Arthur’s approach to Problem C.

This completes our solution of Problems B-D for odd rank special orthogonal groups. A similar
argument holds for symplectic and even orthogonal groups, keeping in mind the element w of
Theorem 9.3 (b) when comparing virtual characters on G(R) or G'(R). We leave the details to the
interested reader.
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