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1. Introduction.

Suppose Gg is a semisimple Lie group. The philosophy of coadjoint orbits, as pro-
pounded by Kirillov and Kostant, suggests that unitary representations of Gr are closely
related to the orbits of Gr on the dual 9r of the Lie algebra gg of Gr. One knows how
to attach representations to semisimple orbits, but the methods used (which rely on the
existence of nice “polarizing subalgebras” of 8) cannot be applied to most nilpotent orbits.

One notion that is available for all representations is that of “associated variety.” Let
Kr be a maximal compact subgroup of Gr, and K its complexification. Write g for the
complexification of gg. Attached to any admissible representation of Gr (for example, to
any irreducible unitary representation) is a Harish-Chandra module X , which carries an
algebraic actiont of X and a Lie algebra representation of g. If the original representation
has finite length, as we assume from now on, then X is finitely generated as a U/ (g)-module.
Choose a finite-dimensional X-invariant generating subspace X, of X, and set

Xn =Ua(g)- Xo : (1.1)(a)

Here as usual Un(g) is the (finite-dimensional) subspace of U(g) spanned by products of

at most n elements of g. This defines a K-invariant increasing filtration on X, which is
compatible with the standard filtration of IJ. {g) in the sense that

UP(Q) ’ Xq C Xp+q (1‘1)(5)

It follows that the associated graded space gr X is a module over gr U(g). By the Poincaré-
Birkhoff-Witt theorem, this last ring is naturally isomorphic to the symmetric algebra
S(g). Because the filtration of X is -invariant, K acts on gr X as well. Because of the
compatibility of the X and g actions on X » the action of the Lie algebra ¢ also preserves
the filtration of X. Tt follows that the ideal generated by € in S(g) annihilates gr.X.
Consequently gr X may be regarded as an S(g/%)-module, equipped with a compatible
action of K. Condition (1.1)(a) guarantees that gr X is generated by Xo; in particular, it
is finitely generated.

* Supported in part by NSF grant DMS-8805665.
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Recall that the associated variety V(M) of a module M over a commutative ring K is
defined to be the set of all prime ideals containing Ann M. (When R is a finitely generated
algebra over C, V(M) is a closed subvariety of the affine algebraic variety Spec R.) In the
setting of the preceding paragraph, it is easy to check that the associated variety of gr X
is independent of the choice of Xg; we will recall the argument in section 2. It is called
the associated variety of X, and written V(X).

If V is any complex vector space, then the symmetric algebra S{V) may be regarded
as the algebra of polynomial functions on the dual vector space V*. Evaluation at A in
V* defines a homomorphism from S{V') to C, and therefore a maximal ideal in S(V). All
maximal ideals in S(V'} arise in this way, so the maximal spectrum of S(V') (the closed
points of Spec S(V')) may be identified with V*. Using these identifications (and speaking
a little loosely), we may therefore write

vxycg (1.2)(a)

Explicitly,
V(X)={X€g"|p()) =0 whenever p € Ann(gr X} }. (1.2)(6)

Because the elements of ¢ annihilate gr X, they must be zero at elements of V(.X'}. Conse-

quently |
V(X) c(a/8)". (1.2){c)

Because of the compatibility of the K action and the module structure on gr X, V(.Y') is a
K -invariant subvariety of g* (or of (g/€)"). It turns out in fact that V(X)) is a union of a
finite number of nilpotent orbits of K (Corollary 5.23).

We have therefore attached to any admissible representation of Gg of finite length a
finite union of nilpotent K-orbits on (g/#)*. Our original intention was to relate repre-
sentations to nilpotent orbits of Ggr on gy. However, Sekiguchi has shown that there 1s a
close formal relationship between these two kinds of orbits. We will recall his results in
section 6, and related results of Schwartz in section 7. For now, it is sufficient to say that
one can hope to pursue the philosophy of coadjoint orbits by investigating the relationship
between a Harish-Chandra module and its associated variety. (A more precise formulation
of this statement may be found in section 8.) Several natural questions arise at once.

1. Is V(X) the closure of a single orbit of K7

9. Is the closure of every nilpotent K-orbit on (g/€)* the associated variety of an irre-
ducible unitary representation of Gr?

3. Is X uniquely determined by V(X)?

4, Can the structure of X (global character, multiplicities of representations of Ix) be

read off from V(X)?

In a sense these questions are easy: the answer to each is no. The purpose of this
paper is to establish some positive results along the lines suggested by the questions. Qur
inspiration comes from the (closely related) theory of characteristic varieties of D-modules.
(We will have no need to be precise about what D is, or to define characteristic varieties; the
expert reader can supply appropriate hypotheses.) There Kashiwara-Kawai, Gabber. and
others have established deep and powerful results on what the characteristic variety of an
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irreducible regular holonomic D-module can look like, the extra structure it carries, and the
extent to which a D-module can be recovered from its characteristic variety. For example,
the characteristic variety of a simple D-module need not be irreducible. But Kashiwara
- and Kawai have shown that the irreducible components form a single equivalence class
under the relation “intersect in codimension 17; that is, they cannot be too far apart. We
prove a weaker related result for associated varieties in section 4. Here is part of it.

Theorem 1.3. Suppose X is an irreducible Harish-Chandra module, and Oy o K-
orbit of mazimal dimension in V(X). Suppose that the complement of Og has codimension
at least two in Og. Then V(X) = O,.

‘The proof uses a filtration of X different from (1.1){a), but still satisfying (1.1)(b).
Although it is entirely elementary, it is suggested by the non-commutative localization
used by Gabber and Kashiwara-Kawai.

The codimension condition is satisfied in many interesting cases (for example, for
representations attached to most “non-induced” orbits). In this paper, however, we will
apply Theorem 1.3 only to prove the theorem of Borho-Brylinski and Joseph that the
associated variety of a primitive ideal is irreducible (Corollary 4.7).

We turn now to the other questions listed above. In one way or another, they ask how
X is related to V(X). To understand that, we must first understand how gr X is related
to V(X). Very roughly speaking, a finitely generated module over a finitely generated
C-algebra looks like the space of sections of a vector bundle over its associated variety.
That 15, gr X is approximately the space of sections of a (K-equivariant) vector bundle
on Y(X). Now we have seen that V(X) is approximately a homogeneous space K/H. A
K-equivariant vector bundle on K/H is (by passage to the isotropy action at the identity
coset) the same thing as a representation of H. The corresponding space of sections is
then an induced representation of K.

This suggests that we should be able to attach to X not only the variety V(X), but also
representations of appropriate subgroups of K. This can be done without much difficulty
(Definition 2.12). The resulting structure is analogous to the “characteristic cycle” for
D-modules; the dimensions of the representations are the analogues of the multiplicities in
the cycle. Under appropriate hypotheses on the annihilator of X , it turns out to be possible
to place very strong constraints on the possibilities for the representations (Theorem 8.7
below). This is analogous to the fact that the smooth part of the characteristic variety
of a D-module carries a natural local system. In some cases (considered for example
in [Schwartz]) these constraints cannot be satisfied at all; we get in this way a partial
understanding of the negative answer to the second question above. In general we find
that, as a representation of X, X must be {approximately) induced from a very special
representation of a very special subgroup. This provides some information about the fourth
question above. In particular, we formulate in section 12 a precise conjecture (together with
strong evidence) about the restrictions to K of a large class of unipotent representations.

The theory of associated varieties of primitive ideals is perhaps a little more familiar
to some readers, so we recall briefly how it is related to these ideas. More details may
be found in section 4. Suppose I is any two- sided ideal in U (g). Then the quotient
ring U(g)/I is a finitely generated U(g)-module, so we may define an associated graded
S(g)-module grU(g)/I ~ S(g)/grI. The annihilator of this module is obviously gr I, so
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its associated variety (generally written V(1)) is
V(I)={A€g"|{p(A) =0 whenever p€ gr I} }. (1.4)

{Notice that this notation is inconsistent with that of (1.2): we should really call this
V(U(g)/I).) Because I is a two-sided ideal, the quotient ring U(g)/I) inherits the action
of the adjoint group G4 of g. It follows that V(I) is a G,4-invariant subvariety of g*.

Now suppose that I is the annihilator in U(g) of a Harish-Chandra module X. It is
immediate from the definitions that

grAnn(X) C Ann(gr X). (1.5)(a)
Comparing (1.2) with (1.4) therefore gives
V(X) ¢ V(Ann(X)) N (g/8)". (1.5)(8)

It turns out that this containment is almost (but not quite) an equality; a precise statement
appears in Theorem 8.4.

2. Associated varieties: elementary properties.

We continue now the discussion of associated varieties begun in the introduction. The
results of this section are all easy and well-known, although in a few cases it is difficult to
find good references. We have therefore included more proofs than the experts will need.

It is convenient and instructive to work in a slightly greater degree of generality. We
continue to assume that g is a complex reductive Lie algebra. Let K be an algebraic group
equipped with an action Ad on g (by automorphisms). We assume also that we are given
an injective map on Lie algebras

1:t—g

compatible with the differential of Ad. (We will use ¢ to regard € as a subalgebra of g, and
generally drop it from the notation. The reader may wonder why we do not simply require
K to be a subgroup of some algebraic group & with Lie algebra g. The reason is that in
the setting of the introduction, this will not be possible if Gr is not a linear group.)

A module X for g is called a (g, K)-module if it is equipped with an algebraic repre-
sentation 7 of K satisfying the two conditions

m(k)(u-z) = (Ad(k)u) -n(k)e (ke K,uel(g),z€X)

(2.1(a)
dn(ZYe =27 -2 (ZetzeX).
An increasing filtration of X indexed by Z is called compatible if it satisfies
Ug)- X, C X
P( ) q Py (2'1)(5)

m(K)Xn C X,
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The first condition allows one to define on grX = Znez Xn/Xa1 the structure of a
graded 5(g)-module. (The nth summand will sometimes be called gr,(X).) The second
condition provides a graded algebraic action {still called 7) of K on grX. These two
structures satisfy

m(k)(p-m) = (Ad(k)p) - n(k)m (k€ K,pe S(g), megrX)

2.1
Z-m=10 (Z €t megrX). (2-1)(e)
An S(g)-module carrying a representation of K satisfying (2.1)(c) is called an {S(g), K )-
module. A comnpatible filtration of X is called 900d if Npez X = 0, Upez Xn = X, and gr X
is a finitely generated S(g)-module. This amounts to four conditions on the filtration:

Xn=0 (all n sufficiently large);
UnEZXn = X;
2.1)(d
dim X, < oc; (2.1)(d)

Up(9)  Xg = Xp4y (all ¢ sufficiently large, all p > 0).

The existence of a good filtration evidently implies that X is finitely generated (by
X for large enough ¢, say.) Conversely, if X is finitely generated, then we can construct a
good filtration of X as in (1.1). The first problem is that X will have many different good
filtrations; in order to extract well-defined invariants from the (S(g), K)-module structure
on gr X, we must investigate the dependence of this structure on the filtration. Here and
at many points below we will therefore need to consider several different filtrations at the
same time, and the subscript notation for them becomes inconvenient. In these cases we
may say that F is a filtration of X, and write F,,(X) and gr(X, F) instead of X, and gr X,

Proposition 2.2. Suppose X is a (g, K)-module, and F and G are good filirations of
X.
a) There are integers s and t so that for every integer p,

Gp-s(X) C Fp(X) C Gppe(X).
b) There are finite filtrations
0=gr(X,F)1 Cgr(X,F)o C-- Cgr(X,Flopt = gr(X,F)

0=gr(X,G)_1 Cgr(X,8)0 C+ Cgr(X,0)sst = gr(X, )

by graded (S(g), K)-submodules, with the property that the corresponding subguotients
are 1somorphic;

g (X, F)i/er(X, Flj-1 2 gr(X,6);/gv(X,G)jmr (0S5 <s+1).

(The isomorphism shifts the grading of the Jth subquotient by j —s.)

Proof. The assertion in (a) is a consequence of the properties of good filtrations listed
in (2.1)(d). We first choose n so large that Fp(X) = Up_n(g) - Fa(X), for all p > n. Next,
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we choose ¢ so large that F,(.X) C Gp4o(X) for all p < n; there are essentially only Snitely
many values of p to consider. For p > n, we have

Fp(X) = Upn(@) - FalX) C Upan(8) * Gns ol X) C Gpie X).

{The last step uses the compatibility condition (2.1}(b) on G.) This establishes the second
containment in (a); the first follows by reversing the roles of F and G.

For (b), we will construct the required filtration very explicitly. We want to define
a graded submodule gr(X, F);. We define its component in degree n to be the image of

FaNGntjs in gr (X, F). That is,
grn(Xaf)j = (-Fn N gn+j«~s)/(fn_1 M gn+j._,).

That this actually defines an (S(g), K)-submodule of gr(X, F) follows from the compat-
ibility of the filtration G. By (a), the submodule is zero if j < 0, and is all of gr(X, F)
if j 2 s +¢ Computing the subquotient modules is easy: the nth graded piece of
gr( X, F)j/er(X, F)j-1 is

(fn N gn+jws)/(Fnu1 N gn-l»-j—.s “i“fn N gn+j—a—1)

Except for the shift from n to n + j — s, this formula is symmetric in F and §. This
provides the isomorphism in (b). Q.E.D.
Recall that a map d from an abelian category to an abelian semigroup is called additive

if whenever
00— A—-B-C=20

is a short exact sequence, we have d(B) = d(4) + d(C). If d is such a map and 4 is
an object in the category with a finite filtration 0 = A_; C 49 C -+ C A = A, then
d(A) = Z?—_-o d(A;/A;-1) If B is another object admitting a filtration with subquotients
isomorphic to those of A4, then d(A) = d(B). Proposition 2.2 therefore guarantees that
any additive map on the category of finitely generated (S(g), K )-modules will give a well-
defined (in fact additive} map on the category of (g, K)-modules.

Here are two important examples. Any finitely generated S{g)-module A has a Krull
dimension dim A which is a non-negative integer. (It is often convenient to say that
the zero module has Krull dimension -1.) For a short exact sequence as above, we have
dim B = max(dim 4,dim B). This map is additive if we make the integers into a semi-
group by defining the “sum” of two integers to be their maximum. We therefore get a
corresponding invariant for a finitely generated U(g)-modules; it is the Gelfand-Kirillov
dimenstion, usually written Dim X.

Next, recall from the introduction that the associated variety V{(A) for an S(g)-module
is the set of prime ideals containing the annihilator of A. We can make the collection of sets
of prime ideals in S{g) into a semigroup with the union operation; then V is an additive
map. (The reason is that given a short exact sequence as above, we must have

(Ann A)(Ann C) C Ann B C (Ann A) N {Ann C).
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Any prime ideal containing Ann B must contain the first term, and therefore must contain
either AnnA or AnnC. Conversely, any prime ideal containing either Ann A or Ann ¢
contains their intersection, and therefore contains Ann B.) We can therefore define the
associated variety V(X.) for a finitely generated U(g)-module, as was claimed in the intro-
duction. By the Nullstellensatz, this amounts to the assertion that the radical \/Ann(gr X)
is independent of the choice of good filtration.

We want now to introduce some refinements of these invariants. We begin by recalling
a little commutative algebra. Suppose M is a module for the commutative ring R. In
addition to the associated variety, there are two other important sets of prime ideals
attached to M. The support Supp M is defined to be the set of all prime ideals P in R
for which the localization Mp is non-zero. The set of associated primes Ass M consists of
those prime ideals which are annihilators of elements of M. It is easy to see that

V(M) D Supp M D Ass M.

If M is finitely generated, then V(M) = Supp M (see for example [Matsumura), pp.25-26).
If in addition R is Noetherian, then Ass M is a finite set including the minimal elements of
V(M) ([Matsumura], Theorem 6.5). It follows that V(M) is the Zariski closure of Ass M.

Suppose now that R is Noetherian and M is finitely generated. Let Py,...,P. be
the set of minimal elements in V(MY); that is, the set of minimal primes containing the
annihilator of M. (Each P; corresponds to an irreducible component V(P;} of V(M)
regarded as an algebraic variety.) We are going to define the characteristic cycle of M to
be a certain formal sum of these prime ideals {(with positive integer multiplicities). Roughly
speaking, the coefficient of V(P;) will measure how many copies of R/ P; are contained in
M.

Theorem 6.4 of [Matsumura] guarantees that we can find a finite filtration of M by
R-submodules so that each subquotient M. 5/M;_; is isomorphic to R/Qj, with Q; in V()
a prime ideal. We will define the coefficient of V(F;) to be the number of values of ] for
which P; = Q;. We have to check that this definition is independent of the choice of the
filtration of M. This requires a little care. The set of prime ideals occurring among the
Q; does depend on the choice of filtration; but the minimal elements have well-defined
multiplicities. To see this, we can compare each of two filirations of M to a commeon
refinement of them, using formal arguments and the following easy lemma.

Lemma 2.3. Suppose P is a prime ideal in o commautative ring R. Regard 4 = R/ P
a3 an R-module, and fiz a finite filtration of A with subgquotients Aj/Aj-1 of the form
R/Q;, with Q; a prime ideal in R. Then Q1 = P, and every other @Q; properly contains
P.

We leave the remaining details to the reader. We have now shown that the following
definition makes sense.

Definition 2.4. Suppose R is a commutative Noetherian ring and M is a finitely
generated R-module. Let P, ..., P, be the minimal prime ideals containing the annihilator
of M. The characteristic cycle of M is the formal sum

Ch(M) =" m(P, M)P;,
fe=1
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where m(P;, M) is a positive integer defined as follows. Choose a finite filtration of M so
that each subquotient M;/M;_, is of the form R/Q;, with @, a prime ideal in R. Then
m(P;, M) is the number of values of j for which P; = Q;.

Sometimes it is useful to define m(Q, M) when @Q is a prime ideal not among the {P;}.
If Q) contains the annihilator of M but not minimally, we set m(@Q, M) = co. If Q does
not contain the annihilator of M, then m{Q, M) = 0. In terms of the local ring Rp at a
prime ideal P, and the stalk Mp = M @r Rp of M at a prime ideal P, it is not difficult
to check that in every case

m{P, M) = length of Mp as an Rp-module.

Finally, we want to see that Ch is an additive map. To do that, we have to define a
semigroup structure on its range. We take the range to be the set of finite formal sums
Yoio1 miP; (of prime ideals with positive integer coefficients) subject to the condition that
there should be no containments among the P;. To add two such expressions, we first
throw away terms for ideals properly contained in other ideals, then add coeflicients. Now
the additivity is elementary.

As a consequence, we can define the characteristic cycle Ch(X) of a (g, K'}-module;
it consists of a positive integer weight attached to each irreducible component of V(X).
Obviously this invariant refines the associated variety. Since the Gelfand-Kirillov dimension
is just the dimension of V(X), the characteristic cycle contains that information as well.

One weakness of the characteristic cycle is that it contains no information about the
action of K. In order to remedy this, we need some other ways to calculate the multiplicities
in the characteristic cycle. Although our main results can be formulated strictly in terms
of modules and ideals, it is very convenient to use the language of sheaves of modules
along the way. For this we refer to [Hartshorne|, chapter II, or [Shafarevich], Chapter V1.
In particular, we use (for a commutative ring R) the equivalence between the category of
R-modules and the category of quasi-coherent sheaves of modules on Spec R.

Proposition 2.5. Suppose P is a prime ideal in the commutative Noetherian ring R,
and M is a finitely generated R-module annihilated by P. Then there i3 an element f of
R, not belonging to P, with the property that the localization My i3 a free (R/P);-module.
(That 13, M 13 free on the open set f # 0 in SpecR/P). Iis rank i3 the multiplicity
m{P, M) of P in the characteristic cycle of M. .

The first assertion may be found for example in [Shafarevich], Proposition VI.3.1. The
second is an immediate consequence of Definition 2.4 and the exactness of localization.

Corollary 2.6. In the setting of Proposition 2.5, suppose (J i3 any prime ideal con-
taining P but not containing f. Then the stalk Mg of M at Q i3 a free Rq/PRg-module
of rank equal to m(P, M). In particular, this multiplicity is equal to the dimension of the
vector space Mq/QMq over the quotient field Rq/QRq of R/Q.

Corollary 2.7. In the setting of Proposition 2.5, suppose m is any mazimal ideal
contasning P but not containing f. Then

m(P, M) = dim M /mM,
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the dimension is taken over the field R/m.

Corollary 2.8. Suppose R is ¢ finitely generated commutative algebra over C, and M
is ¢ finitely generated R-module. Choose g finite filtration of M so that each subquotient
18 annihilated by some prime ideal in V(M). Fiz one of the minimal primes P in V(M).
Then there 13 an open dense subset U of Spec R/ P (which we regard as g subset of Spec R)
30 that if m is any mazimal ideal in U, the multiplicity of P 1s

m(P,M) = )" dime M;/(mM; + M;_,).
J

It is tempting to try to omit the filtration of M in the last corollary; the formula would
still make sense, and it would give the right answer for M = R/Q whenever Q is prime.
The difficulty is that the resulting function on modules is not additive. A simple example is
R = Clz], M = R/(z®). Then V(M) consists of just the maximal ideal m = (z) in R, which
has multiplicity two. Nevertheless, one calculates tmmediately that dim M /mM = 1.

Despite the possibility of such problems, we are going to need to calculate multiplicities
using filtrations satisfying somewhat weaker conditions than the one in Corollary 2.8. This
can be done using the following elementary extension of Proposition 2.5.

Proposition 2.9. Suppoese P is o prime ideal in the commutative Noetherian ring R,
and M is a finitely generated R-module. The following conditions are equivalent,
a) There is an ideal I of R, not contained in P, such that M is annihilated by IP.
b) There is an element g of R, not contained in P, such that g M is annihilated by P.
c¢) There is an element b of R, not contained in P, such that My is annihilated by P.
d) There is an element f of R, not belonging to P, with the property that My is anni-
hilated by P, and defines a free (R/P)s-module. (That is, M is free on the open set
f#0in SpecR/P).
In the setting (d), the rank of My is the multiplicity m(P, M) of P in the characteristic
cycle of M.

When the conditions (a)-(d) in the proposition are satisfied, we say that M is gener-
tcally reduced along P. (Analogously, we might say that M is reduced along P when P
annihilates M.) Notice that these are conditions only on the annihilator a of M. We may
also say that the ideal a is generically reduced along P if the R-module R/ais. This notion
in the case of ideals is considered further in Lemmas 10.16 and 10.17.

Proof. We will show that (a) = (b) = (¢) = (d) = (a). Assume (a), and choose g
in I not in P; then (b) is immediate. Next, suppose g is as in (b); then (¢) follows with
h = g. Suppose (c) holds. Apply Proposition 2.5 to the prime ideal PR, in R}, obtaining
an element fo = A="f; of R;; here f1isin R. It is easy to verify that the element = fik
has the properties we require (since Ry is naturally isomorphic to (Rr)g,-

Suppose f is as in (d). Choose generators (my,...,m,) for M and (p1,...,ps) for P.
The assumption that P annihilates M s means that for each 7, j there is a positive integer
N(i,7) so that fNG.I) . (p,. m;} = 0. Taking N to be the maximum of the N(z,7), we get
¥ (P.M)=0. We can take I to be the ideal generated by fV in (a).
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Finally, we prove the assertion about multiplicities. Fix f as in (d), and let § be
the submodule of M annihilated by P. As we just saw, the action of f maps M into
S. It follows that P does not contain the annihilator of M/S, so m(P,M/S) = 0, and
consequently m(P, M} = m(P, 5). By the exactness of localization, My = S;. Proposition
2.5 applied to S therefore gives the result. Q.E.D.

Corollary 2.10. Suppose R i3 a finitely generated commutative algebra over C, and
M i3 a finitely generated R-module. Fiz one of the minimal primes P in V(M). Choose a
finite filtration of M so that each subquotient is generically reduced along P. Then there
is an open dense subset U of Spec R/ P (which we regard as a subset of Spec R) so that if
m 13 any mazimal ideal in U, the multiplicity of P is

m(P,M) = _ dime M;/(mM; + Mj-1).
b

We are going to define a refinement of the characteristic cycle that reflects some of
the action of K. We will make no attempt to define it in very great generality. Recall
that a wirtual character of an algebraic group H is a finite formal integer combination
of irreducible (finite-dimensional algebraic) representations of H. The set of all virtual
characters is a free abelian group with basis the set of irreducible representations of H. A
character is called genuine if the coefficients are non-negative; that is, if it is the character
of a (finite-dimensional reducible algebraic) representation = of H. We write ©(r) for the
character of m. The connection with more classical terminology in representation theory
is that we may identify ©(x) with the function on H (also denoted ©(n)) sending A to
tr (k). Passing to differences, we can attach such a function to any virtual character. This
identifies the lattice of virtual characters of H with a certain space of conjugation-invariant
regular functions on H. Because the unipotent radical U of H acts by unipotent operators
in any algebraic representation, these functions must be constant on U. Consequently they
descend to H/U. The theory of characters is really therefore a theory about reductive
groups.

In order to define the refined characteristic cycle, we need one more fact.

Lemma 2.11. Suppose M is o finitely generated (S(g), K)-module. Then there is a
finite filtration of M by (S(g), K)-submodules with the property that every subguotient is
generically reduced along every minimal prime n V(M).

Proof. If M is zero, V(M) is empty and there is nothing to prove. Otherwise we
proceed by induction on the dimension of V(M ), and then by induction on the sum of the
multiplicities of the components of largest dimension. So fix a minimal prime ideal P; in
V(M), with R/ P; of maximal dimension. The action of K on 5(g) evidently permutes the
prime ideals in V(M), and therefore the (finitely many) minimal primes. List the minimal
primes in V(M) and the K orbit of Py as Py,..., P,. Define M; to be the submodule of M
annihilated by the intersection J of all of these ideals. Because J is K-invariant, M is an
(S(g), K)-submodule. Since P, is an associated prime of M, Py has non-zero multiplicity
in Mjy; so the inductive hypothesis applies to the quotient M/M;. So we need only prove
that M, is generically reduced along every minimal prime P in V(M). If P is not one of
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the P;, then P does not contain J: so condition (a) of Proposition 2.9 may be satisfied (in
a trivial way) by taking I equal to J. If P is one of the Pj, take I equal to the intersection
of the remaining ones. Then [P is contained in J » which annihilates M; so condition (a})
of Proposition 2.9 is again satisfied. Q.E.D.

Definition 2.12. Suppose M is a finitely generated (5(g), K)-module, and P is
a minimal prime ideal in V(M) (so that V(P) is a component of V(M)). Assume that
for some A € g* the K-orbit of A contains a dense open subset of V(P). Write K()\)
for the isotropy group of the action of K at A, and m(A) for the maximal ideal in S {g)
corresponding to A. We want to attach to M a finite-dimensional representation of K ().
If N is any (S(g), K )-module, then K (A) acts algebraically on the finite-dimensional vector
space N/m(A)N. Choose a finite filtration of M by (5(g), K )-submodules M;, so that the
subquotients are generically reduced along P (Lemma 2.11). The character of M at A is
the (genuine) virtual character

X(A M) = 3" M; /(m(\M; + M;_y)
J

of K(A). (We will explain in a moment why this is independent of choices.} By Corollary
2.10,
dim x(A, M) = m{P, M).

There is no difficulty in extending this definition to the setting of a coherent sheaf of
modules with K-action over an algebraic variety Z on which K acts. f Z = K/H is a
homogeneous space, then such a sheaf M must be the sheaf of sections of a vector bundle
on which K acts. Such a vector bundle in turn js given by a representation m of K. In this
case x(eH, M) is the virtual representation of H represented by 7. The definition (like
that of the characteristic cycle) gives precision to the idea that a modile is more or less
the space of sections of a vector bundle over its support.

To see that x(A, M) is well-defined, one can imitate the proof of Proposition 2.2. At
various points in the argument one encounters short exact sequences

0A—-B—-C—=0.

These give rise to right exact sequences
A/m(A)A - B/m(\)B — C/m(A)C — 0

which must be shown to be exact. But the last formula in Definition 2.12 will guarantee
the additivity of dimensions in this sequence, and the exactness follows. (This argument
is the reason we needed Corollary 2.10.) Once we know that x(A, M) is well-defined. its
additivity is obviocus.

If the element A of Proposition 2.2 is replaced by some k- A, with k € K, then A'()A)
and x(A, M) are replaced by their conjugates under k. In this sense the choice of A is
immaterial. We could in fact even manage without the hypothesis that some X orbit
meet V(P) in a dense set: in any case there is a dense open set in V(P) on which the
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isotropy groups of K belong to a single conjugacy class, and (on a slightly smaller open

set) the same definition as above will yield a well-defined conjugacy class of genuine virtual

representations of this class of subgroups. We will have no need for this generality, however.
The next theorem summarizes some of what we have established in this section.

Theorem 2.13. Suppose X is a finitely generated (g, K)-module, and V(X) C g*
1$ 113 associated variety. Assume that K has o finite number of orbits on V(X). List the
mazimal orbits (those not contained in the closures of others) as Oy,...,0,, and choose
a representative A; € O; for each orbit. Write K for the isotropy group of K at A;. Then
there is attached to X a non-zero genuine virtual representation x; = x(A\i, X) of K.

In light of the remarks after Definition 2.12, this theorem says that X has something
to do with sections of the vector bundles K x g, xi. We will make this more precise in
Theorem 4.2.

3. Associated varieties: microlocal properties

In this section we will consider properties of associated varieties that are suggested by
the “microlocalization” techniques of Sato-Kashiwara-Kawai and Gabber (see [Ginsburg],
[Gabber], [Springer], and [SKK]). First we frame some of the definitions of section 2 more
generally, beginning with a filtered algebra 4 (with a unit) over C. (Often A will be the
universal enveloping algebra U(g) or a quotient of it.} This means that A is equipped with
an increasing filtration by subspaces indexed by Z:

v CAGCACA T, ApAq C Apygq. _ (3.1)(a)

(Occasionally it will be convenient to index a filtration by bZ for some fraction b: this
causes no difficulties.) We can then define an associated graded ring

R=grd=)> R", R"=An[An1. (3.1)(b)
nel

We will assume for convenience that R is commutative, although some of the preliminary
formalism requires much less. Of course if 4 is U(g), then R is 5(g). Suppose X is an
A-module. A compatible filtration on X is an increasing family of subspaces of X indexed
by Z {or, occasionally, by a + bZ), satisfying

Ay X, C Xppqr (3.1)(c)
In this case we can define an associated graded module

M=gX=3 M" M"=Xu/Xn, | (3.1)(d)
nel
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a graded R-module. When we want the notation to allow for several filtrations, we write
Fa(X) and gr( X, F) instead of X,, and gr X. We will need our filtrations to be ezhaustive:

Udn=4, [Jx.=x (3.1)(e)

(The dual requirements that Na4n =0and N X, =0 will appear eventually, but they
are not needed for the general formal development.)

The notation of (3.1) will be in force throughout this section.

The notion of good filtration is a little subtle in general (see [Ginsburg], Proposition
1.2.2). We will need it only in the special case when A_; = 0, Then it is given by the
obvious analogue of (2.1)(d), and Proposition 2.2 carries over immediately.

The theory of microlocalization constructs certain (noncommutative) filtered local-
izations As of A related to graded localizations of R. Tensoring with these localizations
gives a localization theory for A-modules; that is, a way of mapping an A-module X into
larger, “smoother”objects X5. A compatible filtration F on X induces one Fs on Xs as
well. We can then pull Fs back to X, getting a new and “smoother” compatible filtration
F(S) on X. From the existence of these improved filtrations, one can hope to deduce in-
teresting results about X. One problem with this program is that it appears to require an
understanding of microlocalization. What we propose to do is construct the new filtrations
directly, without explicit use of 45. The price is of course a loss in conceptual power; the
present paragraph is intended to alleviate that loss.

What we cannot avoid is commutative localization, and we recall now a little about
that. Recall that R is a graded commutative ring. A closed cone in Spec R is any subvariety
defined by a homogeneous ideal in R, and an open cone is the complement of a closed cone.
If fisin R, write D(f) C Spec R for the set of prime ideals not containing f. An open
cone is a union of such sets, for various homogeneous elements f. Let us make this explicit
in the case of 5(g). Suppose U is an open cone in g*. The complement of I/ is a closed
cone, which is therefore the set of simultanecus zeros of a finite set S of homogeneous
polynomials. The usual “identification” of Spec S(g) with g* identifies D( f) with the
subset of g* at which the polynomial f does not vanish. Hence

U={XAeg"|f(A) #0 for some fin §}
= {J D).

feS

In general, whenever S is a subset of a commutative ring R, we will write

Us = | J D(f) (3.2){(a)

fes

for the set of prime ideals not containing S, and
Zs={P¢€SpecR|SCP)} (3.2){(b)
for its complement. Of course Zg is just the variety of S, a closed subset of Spec R.
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Suppose M is an R-module. Recall (say from [Hartshorne]) that A defines a sheaf of
modules (which we denote by M) on Spec R. By definition, M(D(f)} is the localization
My of M at £. A typical element of this localization is of the form f~"m, with n a non-

negative integer and m € M. Two such elements f™"m and f ~"'m/ are equal if f¥""m is
equal to f¥~"m! in M for all large N. If f is homogeneous of degree p, we can therefore
grade M by defining '
M} =" frhurte, (3.2)(c)
kEN

Notice that this grading may have negative terms even if the one on M does not.

Next, we want to compute the value of the sheaf M on the open cone Ug defined by
a set S of homogeneous elements. If f and ¢ belong to S, then there is a natural map ¢y,
from My to My, (sending f~"m to (fg)~"(¢"m)). The module M(Us) is contained in
the direct product over § of the various localizations My; it is defined to be

fes

M(Us) = { m=(mys) € [] M5 | ds5(ms) = dg,1(my), all f, g€ 5} . (3.2)(d)

‘The maps ¢y, preserve degrees in the gradings of the previous paragraph. If R is noethe-
rian (so that § may be taken to be finite) then it follows that M(Us) is spanned by
elements (my) in which all coordinates have the same degree:

MUs)" = {m=(ms) € [ M} | $15(ms) = ¢55(my), all f g€ S} (3.2)e)
fes

In this way M(Us) acquires a grading; again it may have negative terms. As an immediate
consequence of this description, we get the following lemma.

Lemma 3.3. Suppose R i3 ¢ graded commutative ring, S ts a homogeneous subset of
R, and Us 1s the open cone (3.2)(a). Then the kernel of the natural map M — M (Us) 1

{me M| for all f € § there is some N = N(f,m) so that f¥m =01},

The support of this kernel i3 contained in the closed cone Zgs defined by S.

Definition 3.4. In the setting of {3.1), suppose F is a compatible filtration of the
A-module X, and § is a homogeneous subset of R = gr A. List the elements of S as
{fi}icr; say fi has degree p;. Choose a set & = {¢;}:es of representatives of S in A:

‘IsiGAPH gr‘)si:fi-
Suppose J = (i1,...,in) € IV is an ordered N-tuple of elements of I. Define
N N N
PJ:ZPi,-, fJ:Hfi,- € RF/, ¢J=H¢i,- € Ap,.
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Notice that ¢ depends on the order in which the product is taken.
The S-localization of F is a new fltration F (5) on X, defined as follows:

F(S)a(X) = {z € X | for all N sufficiently large, and all J € IN, $7-2 € Frpp (X))

When the set S and the filtration F are understood, it will be convenient to write X[n) in
place of F(5),(X). We will then write [gr] X for the associated graded ob ject.

In order to work conveniently with this definition, we need to extend its notation
somewhat.

Definition 3.5 In the setting of (3.1)(a) and (3.1)(b), fix aset T = {¢;}ses of elements
of A; say ¢; € Ap,. Define ¢y, p; as in Definition 3.4 By a product of type (N, r, ) we will
mean (roughly) a product 7 of elements of A of degrees adding up to r, with at least N
of the factors in . (When T is understood, we may simply say a product of type (N,r).)
A little more precisely, we mean that there are elements (b0,...,bn) of A, with by € 4,
and a sequence J = (i;) € IV, so that

N
T =bodibi bbby,  r=pr+ Y g;.

7=0

Notice that a product of type (N, r) belongs to A,.

Lemma 3.6. In the setting of Definitions 3.4 and 3.5, Xiny = F(S)a(X) is a vector
subspace of X containing X, = F,(X). Suppose that z is an element of X[nj- Then there
is a positive integer Ny (depending on z) having the following property: if 7 is a product
of type (N,r) and N > Ny, then 7 -z € Xpyr.

If we could rearrange the product 7 to put all the terms in % on the right , then
the result would be obvious. By Definition 3.4, the ¢; factor would take z into KXnip,
(if N is large enough); and the remaining factor (which lies in A,_,,) would take Kritps
into Xp4r. The difficulty is that A is not commutative, so we are not completely free to
rearrange the product. What saves us is the commutativity of R = gr 4. This says that
we can rearrange products up to error terms of lower order: if ¢ € A, and b € A, then
there is a ¢ € 4,441 such that ¢b = bo + . Repeating this argument, we see that any
product 7 of type (N, r) may be rewritten as

™ = bp s + (sum of products of type (¥ — 1,r — 1)) (3.7)

with b € A,_p,. (What is critical for this is that gr A be commutative, or at least that the
elements gr ¢; be central in it.) a

Lemma 3.8. In the setting of Definitions 8.4 and 3.5, fizx integers N, s, and t,
with 0 < s,t <N, and s+t < N+ 1. Then any product m of type (N,r) is equal to o
sum of terms of two forms. The first form is cgy, with J € I* and ¢ o product of type
(N=s—m,r—pr—m) (with0 <m < t— 1). The second form is just products of type
(N —t,r—1t).
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Notice that a term of the first form in the lemma is a special kind of product of type
(N —~m,r —m). The simplest case of the lemma is N = 1,5 = ¢ = 1. In that case it
says that if ¢ € 4,0 € Ay, and b’ € 4y (so that the r of the lemma is p + ¢ + ¢'), then
Vb =cd+c', withc € Ay, and ¢/ € Apyqsep—1. The term c¢ is of the first form in the
lemma (with m = 0 = t — 1) and the term ¢’ is of the second form. Of course we may take
c=0b¢ =V (db~bo).

Proof of Lemma 3.8, We proceed by induction on N. If t+ = 0, then the result is
trivial (since 7 is already of the second form allowed in the conclusion). If ¢ = 1, then
the conclusion of the lemma follows from (3.7). So suppose ¢t > 1. It follows that N is
positive, and that s < N — 1. Therefore we can find b € 44,6 € 4, N T | and a product
7' of type (N — 1,7 — p — ¢), so that m = b¢n'. We apply the inductive hypothesis to
{(r',N —1,s,t — 1), and multiply the resulting expansion of 7 by b¢. The only difficulty
arises from terms 7" of type (N ~ 1)~ (£ = 1),r —p— g —t + 1) in the expansion of «'.
After multiplication by 8¢, such a term is of type (N —t + 1,r — ¢ + 1). Applying the
inductive hypothesis to (bén'', N — ¢t 4+ 1,5,1) gives the conclusion of the lemma. Q.E.D.

Proof of Lemma 3.6. The first assertion of the lemma is obvious. For the rest, choose
s so large that for all all J € I*, ¢ -z € X,4p, (Definition 3.4). Since the filtration of
X is exhaustive, there is a positive integer ¢ such that z € X, 4, Set Ny = s+t — 1.
Suppose N > Ny, and 7 is a product of type (N,r). We must show that 7.z € X,,.
By Lemma 3.8, we may replace 7 by a sum of terms of two forms. If ¢¢ s is a term of the
first form, then ¢y -z € X,4p, and ¢ € Ar_p, . It follows that cds -z € Xpypom (with
m 2> 0). If ' is of the second form, then it belongs to A,-:. Since z € X, 4., it follows
that =’ -z & X(n-{»t)—}-(rwt)- QED

Corollary 3.9. In the setting of Definition 3.4, the localized filtration F(S) may be
described as

F(S)n(X)={z e X | for ali N large, and all 7 of type (N,r), 7 -z € Fpir(X) }.

It i3 a compatible ezhaustive filtration of X, depending only on the set S (and not on the
choice of representatives X in A).

Proof. Write X, for F(S)n(X). The description of X{,) is immediate from Lemma
3.6. Since X, C Xin), the localized filtration is exhaustive (cf. (3.1)(e)). To check the
compatibility, suppose z € Xi,) and b € Ay. We want to show that b- z € X[;,;5. We use
the description just established for the filtration. If 7 is a product of type (N, r), then 7 -8
15 a product of type (I¥,r + ¢). It follows that if NV is large enough, 7 - (b-z) € Xpniriq.
That is, b - z satisfies our new criterion for belonging to Xjn44-

To see that F(S) is independent of the choice of T, suppose T’ = {¢’}icr is another
such set. We can write ¢} = ¢; + vi, with v; € 4,,_1. If J € IV, then clearly ¢/, is equal
to ¢ pius a sum of products of various types (N — s,py — 8), with 1 < s < N; these
are obtained from ¢ by replacing s of the ¢; factors by v;. Now it follows from Lemma
3.6 that if ¢ € X[ and N is large enough, then ¢'; - £ € Xjn4,,). This shows that the
filtration defined using ' contains the one defined using £. Q.E.D.

A similar argument shows that F(S5) is unaffected by adding to S any finite homoge-
neous subset of the ideal generated by S. A consequence is
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Corollary 3.10. In the setting of Definition 3.4, suppose S 13 finite, and that §' is
another finite homogeneous set generating the same ideal in R. Then F(S) = F(S).

With a little more effort, one sees that only the radical of the ideal matters, Since we
will not use this fact, we omit a detailed proof,

Proposition 3.11. In the setting of Definition 3.4, write Us for the open cone in
Spec R whose complement is defined by S. Then there is a natural map of R-modules

o(S) : g (X, F(S)) - M(Us)
gwing rise to a commutative diagram

gr(?f,f) — 5r(X,lf'(5))
M —— M(Us).

Here the first vertical arrow is the isomorphism defining M, the upper horizontal arrow
comes from the inclusion Fo(X) C F(S)n(X) of Lemma 8.6, and the lower horizontal
arrow is restriction of sections (cf. Lemma 9.9).

If § is finite, then o(S) is injective.

Proof. Write o, : X, — M™ for the quotient map defining M. We may construct
o(S) as a family of (symbol) maps
o(8)n : F(S)a(X) = M(Us)" (3.12)(a)

trivial on F(S)n1j(X). As usual it is convenient to write X(n] for F(S)a(X). Then we
write opp for o(5)a:
Tn} : .X[n] - M{Ug)". (3.12)(a)

Fix an element z € Xin)- Choose Ny as in Lemma 3.6, and fix N > Ny. We want to

define an element )
I(a)(z) = m = (mi)ier € M(Us) (3.12)(d)

(cf. (3.2)(d)), with m; € M. By Lemma 3.6, (6:)Y - z € Xpi1np,. Write
m; = ontnp((80)7 - 2),  myi=(£)"Vm]. (3.12)(e)

The first problem is to show that (m;) actually belongs to M(Us). By (3.2)(d), this is
equivalent to showing that for ¢, € I we have N -ml=fN - in the localized module
My, 5. Of course it suffices to prove the equality in M. By inspection of the definitions,
we see that it amounts to

)V -2 = (3:)($;)Y 3 (mod Xnt Npi+Np;—1). (%)

Now since gr A is commutative, it is easy to check that (6, )Y ()N is equal to CHMED
modulo products of type (2N — 2, Np; + N pj — 1). Lemma 3.6 guarantees that such
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products map z into Xn4nNp;+Np;—1, Proving (*). A similar argument shows that a{S)
respects the action of R. If ¢ € X, then m/ is equal to (£;)™ (2 + Xn-1). It follows that
m is the natural image of o(z} in M(Us), proving the commutativity of the diagram in
the proposition.

It remains to prove (assuming S is finite) the injectivity of o(S); that is, that the
kernel of o[y is precisely X[,_1}. So suppose z € X(n}» and o[n)(z) = 0. This means that
for every i € I, the element m; of My, must be zero. By the remarks before (3.2)(c), this
means that £V . m] = 0 (as an element of M) for all large N. By the definition of m;, this
means that there is a positive integer N; such that

(6:)V 2 € Xntwipict- NES)

We want to deduce from this that z € Xin-1]- We use the criterion of Definition 3.4.
Suppose NV is larger than the cardinality of S times the maximum of the various ¥;, and
also larger than Ng; and that J € I¥, We claim that ¢7-z € Xnyp,-1. This will complete
the proof. Clearly there is an 3 that occurs at least NV; times among the @i; . Write J' for
what is left after V; ¢’s are removed from J (so that py = py + Nipi). Then ¢ is equal
to qﬁjrgéfv" plus a sum of products of type (N —1,p; — 1). Since N — 1 is at least Ny, the
second kind of product maps x into Xpyp,-1. By (=), the first term has this property as
well. Q.E.D.

To see that the localized filtration F(S) still captures much of the structure of X, we
need a simple definition and a condition on X.

Definition 3.13 In the setting of (3.1), set

Ao ={V4n,  Xoco={]|Xn

When we wish to emphasize the filtration, we may write F_,{X). In the simplified notation
at the end of Definition 3.4, we write X|_oq) for F(5)_oo(X).

Notice that X _, is automatically an A-submodule of X. (This uses only the compati-
bility of the filtration and the assumption that the filtration of 4 is exhaustive.) Combining
Proposition 3.11 with Lemma 3.3, we get

Corollary 3.14. In the setting of Definition 8.4, suppose S is finite. Then the
restriction of the original filiration F to F(S)_oo(X) = X[_o] defines an injection of
gr(Xj—oo)) inte a submodule of M supported on the closed cone Zg defined by S (cf
(3.2)(b).

Suppose in particular that A_y =0, R i3 Noetherian, and F is a good filtration of X.
Then the characteristic variety of X|_o) is contained in Zs. '

When X is irreducible and Zg does not contain its characteristic variety (or even under
various weaker conditions) Corollary 3.14 will allow us to deduce that X|_..) must be zero,
and therefore that the localized filtration “sees” all of the structure of X. The reason
we cannot easily get a great deal of information from this is that the localized module
M(Us) need not be finitely generated (over R), and therefore the localized filtration need
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not be good. In the next section we will see how it is sometimes possible to circumvent
this problem in the case of (g, K )-modules, using the extra rigidity imposed by the action
of K.

4. Microlocalization for (g, K)-modules

In this section we will apply the results of section 3 to associated varieties of (g, K)-
modules. The main problem will be to find conditions under which the module M (Us) of
(3.2) is finitely generated over S(g). Before considering this, we give a simpler application.
Recall from after Corollary 2.10 the notion of virtual characters of an algebraic group H.
Suppose O is such a virtual character, and 7 is a finite-dimensional representation of H,
We can find a finite set of distinct irreducible representations {pi} of H and integers m;
so that ©@ = 3 mip;i, and # = J_ n;p; (as a virtual representation). Define the guotient
multiplicity of © in 7 to be

(©: 7] quo = Z m;dim Hompy (7, pi). (4.1)(a)

(We may drop the H if this causes no confusion.) Similarly, the submodule multiplicity of .
Qi wis

[0 : mla,sub = »_ m;dim Hompy (pi, 7). (4.1)(b)
Finally, the multiplicity of © in = is
©:7)g = ngni. (4.1)(e)

If v is completely reducible (for example, if H is reductive) then the three definitions
coincide; we may drop the subscripts sub and quo from the notation in that case. These
definitions may be extended to the case when r is any rational representation (possibly
infinite-dimensional); in that case we need to require either that © be genuine, or that 7
have finite multiplicities, to avoid the appearance of co — co. If © is the character of some
representation 7, then

[©:7] > [0 : 7]quo = dim Hompy (=, 7) ' (4.1)(d)

with equality whenever = and r are completely reducible. Of course there is an analogous
inequality for submodule multiplicities.

Theorem 4.2. Suppose X is an irreducible (g, K)-module (cf. (2.1}), A € g*, and
that the K -orbit
O=K - A=K/K()\)

of A is dense in some irreducible component of the associated variety V(X). Define a
genuine virtual representation x(A, X) of K(A) as in section 2. If r is any representation
of K, then

dim Homg(r, X) < {x(z\',X) : T k() quo-
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Because of Frobenius reciprocity, this theorem can be regarded as a precise version
of the remarks after Theorem 2.13. (The proof should make this clearer.) We are most
interested in the case when K is reductive and 7 is irreducible. Then the left side is the
multiplicity of 7 as a K-type of X. A somewhat surprising feature of the result is that one
needs only a single component of V(X) to control all of the K-types of X.

Proof. Fix a good filtration F of X, and write M = grX as in sections 2 and 3.
Necessarily O is open in V(X), so its complement in V(X) is a closed cone in g*. Choose
a finite homogeneous set S in S(g) defining this complement: in the notation of {3.2)(b),

V(X)=0U Zs,

a disjoint union. We may assume that the ideal generated by S (or even the lLinear span
of S) is K-invariant. The open cone Us (c¢f. (3.2)(a)) meets V(X) precisely in @. Let
F(S) be the localized filtration of X (Definition 3.4); this will be K-invariant by Corollary
3.10. (The proof of that corollary becomes almost trivial when S and S’ have the same
linear span, which is the only case we need.) Then Xl—oo] 18 a (g, K)-submodule of X,
with characteristic variety contained in Zg (Corollary 3.14). Since V(X) is not contained
in Zs, X{_] is a proper submodule; so it is zero by the irreducibility of X. Proposition

3.11 gives an embedding [gr] X «— M(Ug), and it follows that
dim Homg(7, X) < dim Homg (7, [gr] X) < dim Homg(r, M(Us)). (4.3)(a)

_Now choose a finite flltration of M as in Lemma 2.11. The functor taking a module N
to N(Us) is left exact, as is clear from (3.2) and the exactness of localization. Consequently

dim Homy (r, M(Us)) < Zdim Hom g (7, (M; /M;—1 )(Us)). (4.3)(b)

But Us meets V(X)) only in the orbit O, which may be identified with the homogeneous
space K/K(A). The assumption that M;/M;_; is generically reduced along O implies by
K -invariance that it is reduced everywhere on O; so the restriction of the sheaf M;/M,._,
to Us may be identified with a K-equivariant sheaf of modules on the homogeneous space
K/K(A). Such a sheaf of modules is necessarily the equivariant vector bundle induced by
the (fiber) representation of K{A) on E; = M;/(m(A\)M; + M;_,). By Frobenius reciprocity,

dim Homg(r, (M;m,-_i)(Us)) = dim Homgny(7, E;). (4.3)(¢)

By (4.1)(d), this is bounded above by the quotient multiplicity of E; in .

Now the sum of the various E; is x(A, X'} (Definition 2.12); so the inequalities in (4.3)
give the conclusion of the theorem. Q.E.D.

In order to decide when a localized filtration is good, we need to know when the

R-module M(Us) is finitely generated.

Theorem 4.4 ([Grothendieck], Proposition 5.11.1). Suppose R is a finitely generated
commautative algebra over o field k, M is o finitely generated R-module, and U is an open
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set in Spec R. Write Z for the complement of U in Spec R. Then the R-module ;‘v]r(L"') i8
finitely generated if and only if for every prime ideal P € U U Ass M, the closure Y of P
in Spec R satisfies

- YN Z has codimension at least 2 in Y.

Needless to say, Grothendieck actually proves a much more general result.
To check the condition in this theorem, we will use the following easy lemma.

Lemma 4.5. Suppose M is a finitely generated (S(g), K)-module. Then K (through
its action on S(g)) permutes the set of associated primes of M; and the wdentity component
Ko preserves each associated prime.

Proof. The first claim is obvious. Since Ass M is finite, the stabilizer in K of each
associated prime must be a closed subgroup of K of finite index. Such a subgroup contains
the identity component. Q.E.D.

Theorem 4.6, In the setting of (2.1), suppose X is a finitely generated (g, K')-module.
Fiz A € g* belonging to V(X), and assume that
1) the closure of O = K - A contains an irreducible component of V(X); and
u) if X' is a non-zero (g, K)-submodule of X, then V(X') > .
Define 8O to be the complement of © in its closure ®. Then there are two (non-
ezclusive) possibilities: either
a) V(X) is equal to O; or
b) 80 has codimension one in O,

Proof. Choose a good filtration F of X, and write M = gr X as usual. Define Z to be
the complement of O in V(X). Then Z is a closed cone in g*, and ZN O = HO. Choose
a finite homogeneous subset § of S(g) defining Z, and construct the localized fliration
F(S) as in section 3. By Corollary 3.9, this is a compatible exhaustive filtration of X, By
Corollary 3.14 and hypothesis (ii) of the theorem, Xj_.q = 0.

Suppose for the rest of the proof that conclusion (b) of the theorem fails; that is,
that Z N O has codimension at least two in O, Theorem 4.4 implies that M(U's) is
finitely generated. To see that, suppose P is an associated prime of M not belonging to
Z. By Lemma 4.5, the associated variety ¥ of P meets O in a Kp-invariant subset ¥s.
Consequently Y isopenin @, 50 ZNY ¢ ZN 3 has codimension at least two in Y.

Now Proposition 3.11 implies that gr(X, F(S)) is finitely generated. By the definition
at (2.1), it follows that F(S) is a good fltration of X. Now it is easy to check that the
associated primes of M(U) must belong to U; so in our case the associated primes of
gr(X, F(S)) must correspond to the connected components of 0. Since the associated
primes are dense in the characteristic variety, we get V(X) = &. Q.E.D.

Corollary 4.7 ([Borbo-Brylinski], (Joseph]). Suppose g is a reductive Lie algebra,
and I C U(g) is a primitive ideal. Then the associated vartety V(I) (defined using the
Poincaré-Birkhoff- Witt theorem to be the vartety in g* corresponding to the ideal grl in
S(g)) is the closure of a single nilpotent coadjoint orbit in g~
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Proof. The expert will recognize this as almost an immediate consequence of Theorem
4.8; but then the expert already knew the result. For the benefit of other readers, we will
give a more complete argument, including sketches of proofs for some standard intermediate
results. To begin, we need some auxiliary definitions.

Suppose G is a connected reductive algebraic group with Lie algebra g. The adjoint
action Ad of G on g extends to an algebraic action (still denoted Ad) of G on U (g) by
algebra automorphisms. The differential of this action, denoted ad, sends an element ¥ & g

to the derivation
(ad Y1) = Yu ~uY (v € U{g)). (4.8)(a)

Because [ is a two-sided ideal, ad(g) preserves I. Since G is connected, Ad(G) preserves [ as
well. We therefore get an action (still called Ad) of G on U(g)/I by algebra automorphisms.
The differential of this action is given by a formula like (4.8)(a).

On the other hand, the Lie algebra g x g acts on U{(g) by

(Y1,Y2) - u = Yiu — ul; (ueUlg),Y; €g. {4.8)(b)

The defining relations of U(g) show that this action is a Lie algebra representation. Again
the fact that I is a two-sided ideal implies that the action factors to U(g)/I. The diagonal
embedding of g in g x g now provides the structure considered in (2.1), and (4.8)(a) and
(b) make U(g)/I into a (g x g, G)-module. We express this by saying that U(g}/I is a °
Harish-Chandra bimodule. We sometimes write ga C g x g for the diagonal subalgebra,
which will play the role of &
Restriction of linear functionals to the first factor provides a G-equivariant isomor-
phism
(g xg/ga)" — g {4.8)(c)

which we use to identify V(U(g)/I) (defined by (1.2)) with the associated variety V(I)
defined in the statement of the corollary. (The main point is that the standard filtration of
U(g) defines by passage to the quotient a good filtration of the (g x g, G)-module U(g)/I.)

Write
3(g) = center of U(g); (4.9)

this is the subalgebra of U(g) on which the adjoint action of G is trivial. Because I is
primitive, it contains a maximal ideal 7 in 3(g). It follows at once that the (g x g, G)-
module U(g)/I is annihilated by the maximal ideal

g ®I+I®3(g)C 3(gxg)

Consequently the Harish-Chandra bimodule U(g)/I is finitely generated and annihilated
by an ideal of finite codimension in the center of the enveloping algebra. By one of Harish-
Chandra’s basic finiteness theorems, it follows that U(g)/I has finite length as a bimodule.
In particular, it satisfies ACC and DCC on two-sided ideals. Following [Duflo], we can
therefore choose a minimal two-sided ideal J properly containing I. Because [ is prime,
J is unique. It follows that every non-zero submodule X' of U'(g)/I must contain J/I. In
particular, we must have

V(X') > W(J/T). (4.10)
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We will use this in a moment to deduce hypothesis (ii) in Theorem 4.6,

The finiteness under the center of the enveloping algebra also guarantees that (for any
subquotient X of U(g)/I) V(X) consists of nilpotent elements (see Corollary 5.4 below).
Since G has only a finite number of nilpotent coadjoint orbits (Theorem 5.8 below) V(X)
must be a finite union of these, of dimensions bounded above by Dim X. Now the additivity
of associated varieties implies that

V(U()/I) =V{U(g)/ Ty u V(J/I).

On the other hand, J properly contains the prime ideal I. By a theorem in {Borho-Kraft],
it follows that DimU(g)/I > DimU(g)/J. Assembling these observations, we find that
V(J/I) must contain a G-orbit O of dimension equal to the Gelfand-Kirillov dimension
of U(g)/I, and that the closure of @ will in that case be an irreducible component of
V(U(g)/I). In conjunction with (4.10), this establishes the hypotheses for Theorem 4.6.
To complete the argument, recall that any coadjoint orbit of a Lie group carries a
natural symplectic structure, and is therefore even-dimensional. The boundary of O {as
a finite union of nilpotent coadjoint orbits} must therefore have even codimension in the
closure of 0. This rules out conclusion (b) of Theorem 4.6; and {a} is what we wished to

show. Q.E.D.
As a final application, we return to the problem of K ~multiplicities,

Theorem 4.11. In the setting of (2.1), suppose X 1is a finitely generated (g, K)-
module. Fiz A € g* belonging to V(X), and define

O=K - A=K/K()\), 80=0-0.

Assume that

i) O contains an irreducible component of V(X);
u) if X' i3 a non-zero (9, K)-submodule of X, then V(X') D O; and
1) 00 has codimension at least two in O,

Define a genuine virtual representation x(\, X) of K(A) as in section 2, and choose a
completely reducible representation V(A, X) of K(A) representing x(A, X). Then ihere is
a finitely generated (S(g), K)-module Q) supported on 00, with the property that

X = Indfg(,\)(V(,\,X)) -Q

a3 virtual representations of K. If K is reductive, ihis means that the multiplicity in X of
any irreducible representation T of K is

dim Homg (7, X) = dim Hom g(3)(7 |2y, V(A X)) ~ dim Homg(r, Q).

This follows from the argument given for Theorem 4.2, in conjunction with Theorem
4.4. Because the details are a little delicate, and we will use this result (in section 12) only
as evidence for a conjecture, we omit the details.
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5. Associated varieties for (g, K)-modules

In this section we recall those basic facts about associated varieties for (g, K)-modules
that depend on the structure theory of reductive Lie groups. The main result is Corollary
5.23; Corollary 5.20 will also be crucial for the proof of Theorem 8.7.

For this section, we will assume that

g is an algebraic Lie algebra. (5.1){a)

As in (4.8) and (4.9), it is often convenient to fix a connected algebraic group G with Lie
algebra g. Then & acts by Ad on the algebra S(g) of polynomial functions on g*; we write

S(g)° (5.1)(b)

for the algebra of Ad(G)-invariant polynomials, and

3(g) = U(g)° (5.1)(c)

for the algebra of G-invariants in U(g). (If G is connected, 3(g) is the center of U(g).)
Lemma 5.2. Filter 3(g) by the restriction of the standard filtration of U(g). Then

gr3(g) ~ S(9)°.

Proof. Obviously the symbol maps

o Un(g)/Un-1(g) — S"(g)

of the Poincaré-Birkhoff-Witt theorem restrict to an inclusion

o gr3(g) — S(g)°.

We must prove that o is surjective. The symmetrization map S provides a degree-
preserving Ad(G)-equivariant map from S{g) to U(g). When restricted to homogeneous
polynomials, 8 is a one-sided inverse for the symbol maps. That is, if p is a homogeneous
polynomial of degree n, then o,(f(p)) = p. Since § respects the adjoint action, it maps
S(g)C into 3(g). The surjectivity of ¢ follows immediately. Q.E.D.

Corollary 5.3. Suppose T ts a proper ideal of finite codimension in 3{g). Then grZ
is @ proper graded ideal of finite codimension in S(g)®. Is radical is the ideal ST(g)% of
invariant polynomials without constant term.

Proof. Only the last assertion requires comment. The radical will be the intersection
of the maximal ideals containing grZ. These must form a cone (since grZ is graded) and
a finite set (since grZ has finite codimension). A set of maximal ideals in an N-graded
C-algebra with these two properties corresponds to maximal ideals in the degree zero
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subalgebra. In our case this subalgebra, is reduced to the constants, so the only maximai
ideal involved is $7(g)¢. Q.E.D.

Corollary 3.4. Suppose X is a g-module of finite length. Then the associated variety
V(X) 15 contained in the cone N'* defined by St(g)v:

N*={Xeg"|p) =0, alpe SH(g)%}.

Proof. Any irreducible g-module is annihilated by a maximal ideal in 3(g); so any
g-module of finite length is annihilated by the product of a finite number of maximal ideals.
Such a product is of finite codimension in 3(g). Now apply Corollary 5.3 and {1.2). Q.E.D.

Because of Corollary 5.4, we turn our attention now to the cone A*. Write Ad* for
the coadjoint action of G on g*. For any A € g*, define

GA)={g€GlAd"(g)(N) =4},  g(A) = Lie(G(\). (5.5)(a)

More generally, if H is a Lie group acting by automorphisms on g, we will define & (A)
analogously; this notation will be applied particularly with H = K in the setting of (2.1),
and with H = Gr (a real Lie group with complexified Lie algebra g} in the setting of the
introduction. It is an elementary exercise to verify that

glA) ={zeg| forally € g, \[z,y]) = 0}. (5.5)(8)
We say that A is nilpotent if its restriction to the subalgebra g(\) is zero; that is, if
Az, 8]) = 0= Az) =0. (5.5)(c)

When G is reductive, we are going to see that A™* is precisely the cone of nilpotent elements
(and that this definition of nilpotent agrees with more familiar ones). Here is a preliminary
step.

Lemma 5.6. In the setting of (5.5), identify the tangent space Th(G - ) at with o
subspace of the ambient vector space g*. Then

TAG-N)={ueg | plygn=0}.

Proof. By general results on homogeneous spaces, the tangent space in question may
be obtained by applying the differentiated (coadjoint) action of G to A. A typical element
is therefore of the form ad*(z)(A). We check that such an element satisfies the condition
in the lemma. Fix y in g(\). Then

ad”™(2)(A)(y) = ~Aad(z)(¥)) = M[y, z]) = 0,

25



the last equality coming from (5.5)(b). On the other hand, both spaces in the lemma have
dimension equal to the codimension of g(A) in g. The containment we have just proved
therefore implies their equality. Q.E.D.

Theorem 5.7. Suppose G is a complez connected algebraic group with Lie algebra g,
and A € g*. The following conditions are equivalent.
a) A is nilpotent; that is, A | 5= 0.
b) A e (G- A)
¢) There is an element z € g such that ad™(z)) = A
d) For all non-zero complez numbers t, th € G- A.
e) For infinitely many complex numbers ¢, tA € G- A.

If in addition G 13 reductive, these are also equivalent to

f) There is a Borel subalgebra b of g such that A lp=0
g)0eG-A
k) A € N*; that is, every G-invariant polynomial without constant term vanishes at A,

Proof. We first prove the equivalence of (a)-(e). The equivalence of (a) and (b) is
Lemma 5.6, and that of (b) and (c) is formal (see the proof of Lemma 5.6). Exponentiating
(¢) gives

Ad*(exp(sz))A = e® - },

which implies (d); and (e) follows from (d) . Conversely, assume (e). The set of complex
numbers for which the condition in (e) holds is automatically a subgroup of C*. It therefore
contains a sequence converging to 1, and (c) follows.

Next, we show that (c) implies (f). By the definition of ad”*, (c) is equivalent to

A |im(1+ad )= 0.

The image in question (call it 5) contains all of the generalized eigenspaces of ad z except
that for the eigenvalue -1. On the other hand, the sum of all the generalized eigenspaces
of adz corresponding to eigenvalues with non-negative real part is always a parabolic
subalgebra of g. (Here we are using for the first time the assumption that g is reductive.)
It follows that 5 contains a parabolic subalgebra, and hence a Borel subalgebra. This is

(). :

To see that (f) implies (g}, suppose B is the Borel subgroup of G corresponding to
b. There is an element h of B such that Ad*(h) has only real eigenvalues strictly smaller
than one on (g/b)*. It follows that limn—..o Ad(R™)(A) = 0, which implies (g). That (g)
implies (h) is easy {since G-invariant polynomials are constant on orbit closures).

To complete the proof, it is enough to show that (h) implies (e). This seems to be
deeper than the rest of the argument. We will use the following result of Kostant.

Theorem 5.8 ([Kostant]). If G is reductive, the cone N* (Corollary 5.4) is the union
of a finite number of orbits of G.

Assume now that A € A*. Since N™* is a cone, all multiples of A belong to it as well.
By Theorem 5.8, we can find infinitely many in a single G-orbit. If one of these is tA,
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then multiplying by t~! gives infinitely many multiples of A in the orbit of A, as required.
Q.E.D.

Although we will make every effort to avoid doing so, it is occasionally convenient to
use an identification of g* with g.

Lemma 5.9, Suppose G is a reductive Lie group with Lie algebra g. Then there
18 a mon-degenerate symmetric G-invariant bilinear form (,) on g. Ifp is any parabolic
subalgebra of @, with nil radical n, then

pt = radical of {,} |p=n.

This is standard and easy: one can add to the Killing form any non-degenerate sym-
metric form on the center. Such a form gives a G-equivariant identification

g°~g, A~z (5.10)

Because G is an algebraic group, there is a notion of semisimple and nilpotent elements
in:g (and a Jordan decomposition), In any algebraic Lie algebra, an element z is nilpotent
if and only if it belongs to the nil radical of some Borel subalgebra. (This is not quite
the definition, but it follows immediately from the fact every element belongs to a Borel
subalgebra.)

Corollary 5.11 In the setting of Theorem 3.7, suppose G is reductive. Then the
isomorphism of (5.10) identifies N'* with the cone A of nilpotent elements in g.

Proof. Suppose A € g* corresponds to zy € g. If b is a Borel subalgebra (or indeed any
subspace of g) then A |p= 0 if and only if 2, € b+. Now apply condition (f) of Theorem
5.7, Lemma 5.9, and the remarks preceding the corollary. Q.E.D.

Except under special additional hypotheses on the module X (as in the proof of
Corollary 4.7, for example) there is no reason for the group G to act on an associated
variety V(X). The basic finiteness result in Theorem 5.8 is therefore insufficient for us.
We first recall the additional structure used in section 2.

Definition 5.12 A pair is a pair (G, K) of algebraic groups endowed with
i) an inclusion of Lie algebras i : ¢ — g; and
ii) an algebraic action Ad of K on g by automorphisms, compatible with i.
Since the conditions (i) and (i) refer only to g, we may also speak of the pair (g, K).
Define the nilpotent cone for the pair by

N ={AeN" | A jp=0}
=N"nN(g/8)".

From Corollary 5.4 and (1.2)(c) we get at once

Corollary 5.13. Suppose X is o (g, K)-module of finite length. Then the associated
vartety V(X) is a union of K -orbits contained in the cone N¢ of Definition 5.182.
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We must therefore study the orbits of X on A, Many of our results are most
conveniently phrased in terms of the symplectic structure on a coadjoint orbit, which we
therefore recall. For details the reader may consult for example [Guillemin-Sternberg]. Fix
a G-orbit

Ocg (5.14)(a)
For each A € O, define a skew-symmetric bilinear form wy, on g by
wi(z,y) = Allz, y)). (5.14)(b)
The radical of wi is g(A) (by (5.5)(b)), so wx defines a non-degenerate symplectic form
wa on g/g(N) = TA(O). (5.14)(¢)

Evidently these forms fit together to define a smooth algebraic 2-form w on @. One checks
fairly easily that w is closed, so O is in a natural G-invariant way a complex symplectic
manifold. (In particular, the dimension of O is even; recall that this was critical to the
proof of Corollary 4.7.) Write Sp(w,) for the group of linear transformations of 7’ WO)
preserving the form wy. Then the isotropy action at A gives a natural homomorphism

G(A) — Sp(wa ). (5.14)(d)

A somewhat different construction of wy, emphasizing the “Poisson structure,” is implicit
in sections 10 and 11 (see (11.13)).

A submanifold Y of a symplectic manifold (Z,w) is called isotropic if the symplectic
form restricts to zero on each tangent space; that is, if

Ty (Y)* D Ty(Y) (5.15)(a)

for every y € Y. (Here we identify T,(Y") with a subspace of T,,(Z), and form the perpen-
dicular with respect to the symplectic form wy. We say that ¥ is coisotropic if

T(Y)" C T,(Y), (5.15)(b)
and Lagrangian if it is both isotropic and coisotropic; that is, if
T,(Y )Y = T,(Y). (5.15)(c)

If Z is algebraic, we could make these definitions for arbitrary subvarieties, or even sub-
schemes, using the Zariski tangent space. This leads to a conflict with standard terminol-
ogy, however: a subvariety is usually called Lagrangian if its smooth locus is Lagrangian.
Such a subvariety will satisfy (5.15)(b) but not (5.15)(c) at singular points y. We will
therefore try to avoid the terminology in the singular case.

Proposition 5.16. Suppese (G,K) is a pair (Definition 5.12), A € (g/8)*. and
O =G - A 13 a coadjoint orbit of dimension 2n. Define

O! = O 0 (g/é)*$
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which we regard as a subscheme of the algebraic variety O,
a) The orbit K -\ is a smooth isotropic subvariety of O (cf. (5.15)(a)), contained in Oy,
In particular, dim K - A < n.
b} The subscheme Oy of @ is cosotropic, in the sense that its Zarisks tangent space at
each (closed) point \ satisfies (5.15)(b). In particular, the dimension of each such
tangent space 18 at least n.

In (b), we do not claim that ®p has dimension at least n; this scheme could be non-
reduced, and so could have no smooth poiats. I know of no example where this happens,
however.

Proof. The orbit K - A is smooth because it is homogeneous. Its tangent space at A is
8/8()A). If z and y are elements of & (representing tangent vectors) then [z, y] also belongs
to & Since A is assumed to vanish on g, it follows that

wi(z,y) = Az, y]) = 0.

This is (a).
For (b), we compute first that

DK - ={y+a()) € g/a(X) | wr(y,®) =0}
. Lemma 5.6 allows us to identify this with a subspace of g*, namely

{# €™ | 1 lesgn= 0}
={ne€g" lulyn=0}n{peg lul=0}
=Ta(G - A) N Tal(g/8)").
Now the Zariski tangent space of an intersection is the intersection of the tangent spaces.

(Here it is essential to take scheme-theoretic intersection; this assertion would not be true
in general if we considered only the underlying variety.) We have therefore shown that

K - \*: =Ty (G- An(g/e)"). (5.17)

Now (b) follows from (a). Q.E.D.

Corollary 5.18. In the setting of Proposition 5.16, the following are equivalent.
2) dimK - A =n.
b) K - A is a Lagrangian subvariety of G - \.
¢) The interseciion G- AN (g/8)* is reduced at A, and K - A is open in it.
Proposition 5.19 ([Kostant-Rallis]). In the setting of Proposition 5.16, assume that
E is the algebra of fized points of an involutive automorphism 8 of g. Then the conditions
of Corollary 5.18 are satisfied.

Proof. Write p for the -1 eigenspace of § on g, and p(A) for its intersection with g(A).
If z and y belong to p, then

8lz,y]) = [6(2),6(v)]} = [~2, -y] = [z, y];
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so [z,y] belongs to &, The argument for Proposition 5.16(a) shows that p/p(A) is an
isotropic subspace of Th(G - A). Since g = £ +p, T2\(G - A) is spanned by the two isotropic
subspaces €/¢(A) and p/p(A). By linear algebra, the sum must be direct and the subspaces
of dimension n. Q.E.D.

Corollary 5.20 ([Kostant-Rallis]). Suppoese (G,K) is a pair (Definition 5.12), and
A€ g*. Assume that ¢ is the algebra of fized points of an involutive automorphism 8 of g.
Then the intersection G - AN (g/8)* is a finite union of K -orbits. It is a smooth reduced
Lagrangion subvariety of G- A.

Only the finiteness of the number of K -orbits requires comment; and this follows from
the fact that each is open in the intersection.

Definition 5.21 A reductive symmetric pair is a pair (G, K) of reductive algebraic
groups as in Definition 5.12, endowed in addition with
iii) an involutive automorphism 6 of g, commuting with Ad K, with fixed point set €.
We say that (G, K) is of Harish-Chandra class if the automorphisms in Ad X are inner.
(This is automatic if X is connected.) We may again speak of the pair (g, K).

Corollary 5.22 ([Kostant-Rallis]). Suppose (g, K) is a reductive symmetric pair.
Then the cone N of Definition 5.12 is a finite union of K -orbits.

Corollary 5.23. Suppose (9, K) is a reductive symmetric pair, and X is a (g, K)-
module of finite length. Then the associated variety V(X) is a finite union of K -orbits in

N,

6. Connection with real nilpotent orbits.

In this section we recall results of Kostant-Rallis and Sekiguchi relating the nilpotent
K orbits considered in section 5 with real nilpotent orbits. The ultimate goal, about which
we will say more in section 7, is to make some philosophical connections between associated
varieties and the method of coadjoint orbits.

Definition 6.1. A real reductive Lie group Gr is one with the following three properties:
Gr has a finite number of connected components; the Lie algebra gg is reductive: and the
center of the derived group of the identity component is finite. Such a group has a maximal
compact subgroup Kr, unique up to conjugacy by Gr, and a Cartan involution 8 with
fixed point group Kr. The complexification K of KR is a complex algebraic group, which
acts on the complexification g of gr. Consequently (g, K) is a reductive symmetric pair.
Conversely, it can be shown that every reductive symmetric pair arises in this. manner from
a real reductive group.

Given a real reductive group Gr, we identify g* with the space of R-linear maps
from gr to C. This is a complex vector space containing as a real form the space gf of
real-valued linear functionals on gg. Taking the real part defines a restriction map

Re:g" — gg
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analogous to the restriction map {rom g* to &* used in section 5. The analogue of (g/#)*
is then the space glj of purely imaginary-valued linear functionals on gr. The analogue
of Ny is the imaginary nilpotent cone

Of course multiplication by i defines a GRr-equivariant isomorphism from {for example)
gir onto gp. We could therefore equally well consider the real nilpotent cone, and it is
traditional to do this. The aesthetic advantages of Ay (such as the improved analogy
with A}y') were pointed out to me by H. Matumoto. For the monent, notice only that the
GRr-orbits on gl are a very natural setting for the method of coadjoint orbits.

Theorem 6.2 ([Sekiguchi]). Suppose that Gr s a real reductive group (Definition 6.1)
with mazimal compact subgroup K. Then there is o natural one-to-one correspondence
between the (finite) set of Gr-orbits on the imaginary nilpotent cone Ny and the K-
orbits on N (Definition 5.12), implemented by Theorem 6.4 below. Suppose that in this
correspondence the orbit of \;g € Ny corresponds to that of Ae € N, Let G be any

complez group with Lie algebra g.
a) The G-orbits of Ay and \ip coincide.
b) dimp Gr - \ir =2.dimc K- X = dim¢c G - Ay.
¢) The mazimal compact subgroups of the isotropy groups K(Ae) and Ga(Mr) are iso-
morphic (canonically, up to inner automorphism ).

We recall the outline of Sekiguchi’s argument (since we need most of it just to write
down the correspondence). Unfortunately we must begin by choosing a non-degenerate
symmetric real bilinear form on gr, which is invariant under Gr and 6, negative definite
on fr, and positive definite on the —1-eigenspace pr of 8. Such a form exists and is unique
up to a positive real scalar on each simple factor of gr. We use it to identify .\'% with
Nir (the cone of purely imaginary nilpotent elements of the complexified Lie algebra) and
Ny with A, (the cone of nilpotent elements in the —1-eigenspace of 8). In this way the
theorem becomes one about nilpotent Lie algebra elements. (The identification of elements
made here depends on the choice of the form, but the identification of orbits does not. The
reason is that multiplication by a positive real scalar on each simple factor sends a nilpotent
element to a conjugate one.)

Write o for the complex conjugation on g defining the real form Gr. Then ¢ commutes
with 6, and the involution 7 = o8 of g is a Cartan involution for the complex Lie algebra.
After the reduction of the previous paragraph, Theorem 6.2 describes a relationship be-
tween nilpotent elements in the —1-eigenspaces of ¢ and 6 on g. We are going to define
it by reduction to the case of s{(2,R). It is convenient to consider the three (commuting)
involutive automorphisms of 5l(2) analogous to 8, ¢, and 7. Recall first that 5{(2) consists
of the two by two complex matrices of trace zero. Then for z € 51(2), set

for = =tz oo = I 0T = —'Z. (6.3)

Then 6y is a complexified Cartan involution for the real form s{(2,R); o is the com-
plex conjugation for 5{(2,R); and 7y is a Cartan involution for si(2). (Equivalently. rq is
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the complex conjugation for a compact real form of sl(2). With this notation, we may
reformulate the bijection in Sekiguchi’s result as follows.

Theorem 6.4. Suppose Gr is ¢ real reductive group (Definition 6.1) with Cartan
involution & and mazimal compact subgroup Kp. Write o for the complez conjugation on
g defining gr, and K for the complezification of Kq. Then the following sets are in natural
one-to-one correspondence.

a) Gr-orbits on the cone Nig of purely imaginary nilpotent elements in g.

b) Gr-conjugacy classes of homomorphisms ¢:r from s(2) to g, intertwining og with .
(That is, we require o(d;ir(z)) = ¢ir(co(z)}.)

¢) Kr-conjugacy classes of homomorphisms dime from si(2) to g, intertwining o with
o and 8y with 8.

d) K-conjugacy classes of homomorphisms ¢e from si(2) to g, intertwining 8y with 8.

e) K-orbits on the cone Ny of nilpotent elements in the -1-eigenspace of 6.

Here the bijections from (c) to (b) and (d) are given by the obvious inclusions; that from

(b) to (a) sends (the conjugacy class of) ir to (the orbit of) dir (8 S), and that from

(d) to (e) sends dp to ¢ (_13//22 :;g)

Sketch of proof. Fix a nilpotent element z;n € Mr. By the Jacobson-Morozov theorem
(applied to the real Lie algebra gr) we can find elements y;g € Mg and Air € gr satisfying

[hir, zim] = 2238, [hir,wiR]) = ~2yir,  [TiR, ¥iR] = hiR (6.5)(a)

TR = —TiR, OV¥iR = —¥iR, Ohir = hin. (6.5)(d)

The elements y;r and kg are unique up to conjugation by the centralizer of z;g in Gr. The
three elements span the complexification of a real subalgebra sg of gr, which is obviously
a homomorphic image of sl(2,R). Explicitly, we can define a homomorphism ¢;g by

(,25,'“ (: fa> = ah,'g - ibl‘iR + icym. (65)(C)

Because of (6.5)(b), the homomorphism ¢;r intertwines the complex conjugation oy for
si(2,R) with o. This gives the correspondence between (a) and (b) in Theorem 6.4.

To go from (b) to (c), we must conjugate ¢;p by an element of Gp to make it intertwine
Cartan involutions. The standard Cartan involution 8 for s{(2,R) (negative transpose)
is mapped to a certain automorphism 8} of the image. On the other hand, it is known
that any Cartan involution of a semisimple subalgebra of gg must extend to one on all
of gr. Consequently &) is the restriction of some Cartan involution & of gr. Clearly ¢:r
intertwines 8y with #'. Now (by the uniqueness of Cartan involutions) # must differ from
8 by conjugation by some element g of (the identity component of) Gg. Write

dirr = Ad(g) o diR. (6.6)
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Then iR, intertwines 8 with 8 and o, with o. Sekiguchi shows ([Sekiguchi], Lemma 1.5)
that this property (together with the specified GRr-conjugacy class of ¢:ir) determines ¢,g s
up to Kr-conjugacy. This gives the correspondence from (b) to {c).

Next, we show how to go from (e} to (d). We begin with a nilpotent element Ty € M.
As is shown in [Kostant-Rallis], we can find elements yt € My and ke € & 50 that

(he,ze] = 222,  [Re, o] = ~2us, [ze, ya] = ha. (6.7)(a)

63:! = —Ty, H'ya = -, eht == hc. (67)(6)

Again these three elements determine a homomorphism ¢; from s((2) to ¢, by the require-
ments

0 /2 —i/2 '

e (_z- 0) = hy, ¢ (“{/2 _1§2) =Zy, ¢ (://22 __2{?2) =y (6.7)c)
The homomorphism @ intertwines §, with §. This establishes the correspondence from
(e) to (d).

Suppose now that we are given ¢¢ as in (d) of Theorem 6.4. We wish to modify ¢, by
conjugation by an element of K so that it intertwines oo with . Of course it is equivalent
to have 7y intertwined with T. Now 7, is mapped by ¢¢ to a Cartan involution 74 of the
image. Now we use a slight refinement of the result about extending Cartan involutions
from subalgebras: that if the subalgebra is preserved by a fixed involutive automorphism
8, and the given Cartan involution on the subalgebra commutes with 4, then the extension
may be chosen to commute with 6 as well ([van Dijk], Proposition 2). We conclude that s
may be extended to a Cartan involution ' of g commuting with §. Now 7’ and 7 are two
Cartan involutions commuting with . Consequently they differ by conjugation by some
element k of (the identity component of) K¢ ([Loos], Chapter IV, Theorem 2.1). Write

$ir,t = Ad(k) o ¢s. (6.8)

Then ¢:g,s intertwines 8y with 8 and 7, with T; so it also intertwines oy with ¢. This is
the correspondence from (d) to (c); again we refer to [Sekiguchi] for the proof that it is
well-defined. Q.E.D.

We turn now to the rest of the proof of Theorem 6.2. That G- )\, is equal to G- \;p
i3 clear from the construction of the bijection in Theorem 6.4. We have already seen
(Corollary 5.20) that K - Ay may be regarded as a complex Lagrangian subvariety of G- Ap;
this proves the second equality of dimensions in (b). Suppose now that we regard G - \;g
as a real symplectic manifold, by considering only the real part of w),, {cf. (5.14)). Then
the assumption that \p is imaginary-valued forces the real submanifold GR - AR to be
isotropic; and the proof of Proposition 5.19 (with o replacing ) shows that it is actually
Lagrangian. This gives the first equality of dimensions in (b).

For Theorem 6.2(c), we need some additional notation based on (6.5). Write

Gr(zir) = centralizer in Gg of ZiR, (6.9)(a)
Gr(¢ir) = centralizer in Gg of Pir(sl(2)). (6.9)(8)
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The element h;r has integral eigenvalues in its adjoint action on g, and preserves gr(zig).
Whenever s is an ad(h;r )-stable subspace of g, we write

slk;hipl = slkl = {s € 5] [hir,s] = ks }. (6.9)(c)

By the representation theory of si(2}), the eigenvalues of ad(hig) on gr(zir) are non-
negative, and gr(4r) is precisely the zero eigenspace:

gr(éir) = gr(z:r)[0]. (6.9)(d)
Define ,
ur(zir) = D _ gr(zir)[k], (6.9)(e)
k>0

the sum of the positive eigenspaces of ad(hir) on gr(z:r). Then gr(zir) is evidently the
semidirect product of the reductive subalgebra gr(¢:r) by the nilpotent ideal ug(zr). We
want to get this decomposition on the group level. By putting h;g in a Cartan subalgebra
of gr, we see that ur(zr) is contained in a maximal nilpotent subalgebra of gg. It follows
that the corresponding connected subgroup

Ur(zir) = ezp(ur(zir)) (6.9)(f)

is a simply connected unipotent Lie group.

Lemma 6.10(cf. [Barbasch-Vogan], section 2, and {Kostant]). In the setting of
(6.9), the centralizer Ga(z:r) is the semidirect product of the reductive group Gr(ao.n) by
the unipotent normal subgroup Ur(zim). In particular, suppose that the image of o;r 1s
preserved by 8. Then the restriction of 8 to Gr(gir) 15 ¢ Cartan involution, so

Kr N Gr(éir)

is & mazimal compact subgroup of Ga(¢ir) or of Gr(zir).

‘The main point in the proof is to show that, given z;r, any two choices of y;r satisfying
(6.5)(a)-(b) must be conjugate by a (unique) element of Ur(zir). We omit the argument.

We can define exactly parallel notation for K based on (6.7). In that case we are
working with algebraic groups, and the analogue of Lemma 6.10 is precisely a Levi decom-
position.

Lemma 6.11. In the setting of (6.7) (and with notation analogous to (6.9)) the
centralizer K(z:) is the semidirect product of the reductive group K{(@s) by the unipotent
normal subgroup U{ze). In particular, suppose that the itmage of ¢p 13 preserved by the in-
volution v (defined before (6.8)). Then the restriction of v to K(¢s) is & Cartan involution,
S0

Kp N K{(¢e)

is a mazimal compact subgroup of K(¢s} or of K(zs).
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Corollary 6.12. In the setting of Theorem 6.4, suppose ¢ is a homomorphism from
s5l(2) to g, intertwining oy with o and 8, with 9. Define

T )

Then the centralizer in Kr of the image of ¢ is o mazimal compact subgroup of Gr(zir)
end of K{zs).

In light of Theorem 6.4, this establishes Theorem 6.2(c).

7. Admissible orbits

In this section we recall Duflo's notion of “admissible” (imaginary)} coadjoint orbits.
We then present a result of J. Schwartz (Theorem 7.14) describing which nilpotent K¢
orbits on Vg correspond (via Theorem 6.2) to admissible imaginary orbits.

Suppose to begin that Gg is any real Lie group, and

AR € gl | (7.1)(a)

is a purely imaginary-valued linear functional. Write Oir for the Gr-orbit of \;g. As in
(5.14) we can define an (imaginary-valued) symplectic form Wix.e On the tangent space

Taa(Oir) >~ ga/or{Air). (7.1)(b)

Write Sp(wx,) for the group of (real linear) symplectic linear transformations of this
tangent space. Then the isotropy action gives a natural homomorphism

Gr(Air) 1+ Sp(wase). (7.1)(c)

On the other hand, the real symplectic group has a natural two-fold covering group, the
metaplectic group:

1— {1,e} — Mp(“’?\fl) -+ Sp(wiig) — 1. (7.1}(d)

This covering may be pulled back via the homomorphism (7.1)(c) to give the metaplectic
double cover of the isotropy group:

1 — {1,¢} — Gr(rm) "2Y Gr(m). (7.1)(e)
Explicitly, this covering group is defined by
Gr(Air) = {(9,m) € Gr(A) x Mplwie) | 3(g) = p(m) }. (1.1(f)
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Definition 7.2 ([Duflo]). In the setting of (7.1), a representation x of Gr(\R) is
called genuine if x(e) = —I. (In [Vogan], chapter 10, such representations are called
metaplectic. Notice that if x is irreducible, x(e) is necessarily +1 or ~I.) We say that X
is admisstble if it is genuine, and the differential of x is a multiple of A\;g; that is, if

x(expz) = exp(Air(2)) - I

for all z € gr(Ar). (Here the exponential map on the left is the one for GRr, and the
one on the right is for complex numbers.) Notice that if Gr(Air) has a finite number of
connected components, an irreducible admissible representation of Gr(\r) is necessarily
unitarizable.

If admissible representations exist, we say that A (or the orbit O;r) is admissible. A
pair (AR, x) consisting of an element of g;r and an irreducible admissible representation

of éR(A,‘R) is called an admissible Gr-orbit datum. Two such are called equivalent if they
are conjugate by Gr.

Admissible orbit data are the raw material of the orbit method. Here is a rough
version of what one expects. (The words “nice” and “usually” below reflect my ignorance;
I do not know a more precise statement that is correct. }

Desideratum 7.3. Suppose Ggr is a nice type I Lie group, and D = (MR, x) is an
admissible orbit datum for Gr (Definition 7.2). Attached to the equivalence class of D
there should be a unitary representation (D) of Gr. This representation should be a
direct sum of a finite number (possibly zero) of irreducibles; and usually 7(D) itself should
be irreducible.

For more information about what can be proved in this direction, the reader may
consult for example [Duflo]; the case of reductive groups is discussed in (Vogan], chapter
10. Of course our primary concern here is with the case of nilpotent orbit data for reductive
groups. The condition of admissibility is very simple in this case.

Observation 7.4. In the setting of Definition 7.2, assume that AiR is nilpotent (cf.
(8.5)). Then a representation y of Gr(AiR) is admissible if and only if it is trivial on the
identity component, and x(e) = —I. (Here ¢ is the non-trivial element of the kernel of the
covering map p(A\;r).) In particular, \;g is admissible if and only if the preimage (under
p{AiR) of the identity component Gr(Air)o is disconnected. '

Example 7.5. Suppose GR is the group SO(3). The Lie algebra gp may be identified
with skew-symmetric three by three real matrices. Fix a non-zero real number t, and
let Air(t) denote the linear functional whose value at a matrix z is it times the (1,2)
entry of z. Then the isotropy group Gr(Ar(t)) is SO(2), embedded in Gg as the upper
left two by two block. The characters of § O(2) are parametrized by Z; we can arrange
the parametrization so that the nth character y, has differential Air(n) {restricted to
50(2})). The complexified isotropy action on g/g(\;r) has the two weights corresponding
to +1 and ~1. The symplectic group for a two-dimensional vector space is just SL(2,R).
It follows that the isotropy representation maps SO(2) isomorphically onto a maximal
compact subgroup of SL(2,R). Consequently the metaplectic double cover of S O(2) is the
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connected double cover; its genuine representations are again one-dimensional characters
X; parametrized by j € Z 4+ 1/2. We have therefore found admissible orbit data D(j) =
(Air(J), x;) for each j € Z + 1/2. It turns out that the D(j) and D(—j) are conjugate,
and that every admissible orbit datum except 7 = (0,C) is conjugate to some D(y).
(Here T stands for “trivial”; this orbit datum exists for every Ga, and 7(7) is the trivial
representation.) There are various ways to attach representations to the other orbit data;
the most natural all make #(D(;)) the irreducible representation of S O(3) of dimension 2.
Notice in particular that the trivial representation is attached both to 7 and to D(1/2).

In this example, only the orbit datum 7 is nilpotent. Before we consider some inter-
esting examples of nilpotent orbit data, it will be helpful to have a little more machinery.

Lemma 7.6. Suppose G is a real Lie group having a finite number of connected
components, K is a mazimal compact subgroup of G, and € is a central element of G
of finite order m. Fiz an mth root of unity (. Say that a representation of x of G 1is
admissible if it s trivial on the identity component of G, and x(¢) = (I; and define
admissible representations of K analogously. Then restriction to K tnduces a bijection
from admissible representations of G to admissible representations of K.

‘This is an immediate consequence of Mostow’s result that G is topologically the prod-
uct of K with a vector space. Because of this result (and Observation 7.4), the question
of admissibility for nilpotent orbit data can be studied on the level of maximal compact
subgroups. Suppose V is a real vector space carrying a non-degenerate imaginary-valued
symplectic form w. We can choose a complex structure and positive-definite Hermitian
form A on V so that w is the imaginary part of h. Write U (h) for the unitary group
of h; this is a maximal compact subgroup of § p(w). The complex determinant defines a

one-dimensional character
det : U(h) — C¥, (7.7)(a)

Using this homomorphism, we can pull back the connected double cover of C* to a double
cover of U(h): )
U(h) = {(g,2) € U{h) x C* | det(g) = 2* } (7.7)(3)

This is called the square root of the determinant covering, because projection on the second
factor defines a homomorphism

det'/?; U(h) — C*. (7.7)(e)

whose square is precisely det. It turns out that this (delightfully simple) covering is
precisely the one induced by the (delightfully complicated) metaplectic covering Mp(w).
The next lemma shows how to compute with such coverings.

Lemma 7.8, Suppose G i3 a real Lie group, and ~ is a one-dimensional character
of G. Let G denote the square root of v covering of G (cf. (7.7)), and € the non-trivial
element of the kernel of the covering map. Define an admissible representation y of G
to be one trivial on the identity component, satisfying x(e) = —1. Define a v-admissible
representation xo of G to be one whose differential is half the differential of v:

xo)(exp{z)) = y(exp(z/2))- I T €g)
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Then there is a natural bijection between admissible representations of G and v-admissible
representations of G.

Proof. We use the one-dimensional character y!/% of G (cf. (7.7)(c)). Tensoring
with !/? sends admissible representations of G to (the pullbacks to & of) y-admissible
representations of G. Q.E.D.

Corollary 7.9 ([Schwartz]). Suppose Gr 13 a real reductive Lie group, and A\ig € N
18 a purely imaginary nilpotent linear functional. Fiz o mezimal compact subgroup H of
the isotrapy group Gr(Air). Choose an H-invariant complexs structure and hermitian form
h on the symplectic vector space gr/gr(Air) @3 in (7.7); this is possible since the compact
subgroup p(Ar)(H) of the symplectic group must be contained in some mazimal compact
subgroup. Now define « to be the corresponding complez determinant character of H.
Then the admissible representations of Gr(\r) (Definition 7.2) are in natural one-to-one
correspondence with the y-admissible representations of H (Lemma 7.8). In particular,
AiR 18 admissible if and only if the restriction of v to the identity component Hy of H 13
the square of another character of Hy.

This follows at once from Lemmas 7.6 and 7.8, and Observation 7.4. It is still short
of complete information about admissibility, for the character v is difficult to compute
explicitly from this description. Nevertheless we can treat some illustrative examples.

Example 7.10 (see {Schwartz]). Suppose Gr is the symplectic group Sp(2n,R) for
the standard symplectic form w on R?*™® = R™ x R™: in terms of the usual dot product, this
18

w((wa y)1(m’ay,)) =x- y' —~Y z'

Then Gg consists of 2n x 2n matrices (é g) such that A'B and D*C are symmetric,
and A*D — B'C = I. Its Lie algebra consists of matrices ( }Z{ ij) with ¥ and Z
symmetric.

Fix non-negative integers p, ¢, and r such that p + ¢ + r = n. We are going to define
a nilpotent linear functional Air(p, ¢,r). With obvious notation for matrix entries, it is

X v P p+q
f\m(p,q,'r)(z _tx) =iy Yk —1 D Ukke
k=1 k=p+1

Using the explicit description of the group given above, it is not too hard to compute
the isotropy group GR({Mir(p, ¢,7)) explicitly. The answer is most conveniently expressed
in terms of the semidirect product decomposition (Lemma 6.10). The reductive factor is
O(p,q) x Sp(2r,R) (embedded in Sp(2n,R) in an “obvious” way which we encourage the
reader to untangle). The unipotent normal subgroup is two-step nilpotent; its Lie algebra

ur(Air(p, ¢, 7)) consists of matrices of the form ( é “9 A)’ subject to the conditions

agy =0 unless k>p+q,I<p+qC="C,andcy=0ifk,I>p+q.

38



Consequently the maximal compact subgroup H of the isotropy group is O(p)xO{g)xU(r).
To compute the character v, we need to understand something about the symplectic
vector space

V(pv 4, T) = QR/QR(AiR(p5 a4, T'))

‘The dimension of V(p, g, r) is easily computed from the description of the isotropy sub-
group; it is 2r(p +¢) + (p + ¢)(p + ¢ + 1). This formula suggests a description of V(p, ¢, )
as a symplectic representation of O(p,q) x § p(2r, R), which is not too difficult to verify:

V(p,q,r) = (R @ RPH) @ (SYRPH)) g SHRPHOY)

Here the first summand carries the tensor product of the symplectic form on the first
factor with the orthogonal form on the second; this is a symplectic form preserved by the
product of the groups of the small forms. The second summand js the sum of a group
representation and its dual; it therefore carries a natural group-invariant symplectic form.
(The Sp(2r,R) factor acts trivially on the second surmnmand. )

We can now express the character v of H (Corollary 7.9) in terms of the standard
determinant characters of the factors U(r), O(p), and O(q):

7 = (dety(n)PT ® (detogy))™ ! @ (detogy)™ .

On the identity component only the first factor is non-trivial, We conclude that A\ig(p,q,r)
is admissible if and only if either p + ¢ is even or r = 0. In this case (Corollary 7.9 again)
the number of irreducible admissible representations — that is, the number of inequivalent
orbit data - is 4 if p and ¢ are both non-zero, 2 if exactly one is non-zero, and 1 if both
are zero. (This last case corresponds to the trivial orbit datum.)

It turns out that all the linear functionals Air(p, q,7) are admissible for the metaplectic
covering Mp(2n,R). Schwartz gives many examples of nilpotent orbits for Sp(2n,R) that
are inadmissible for all coverings, however.

The next theorem relates the character ~ of Corollary 7.9 to the corresponding K -orbit
on Ny (Theorem 6.2).

Theorem 7.11 ([Schwartz]). In the seiting of Theorem 6.2, suppose that the element
At € N corresponds to A € Ng. Write vir for the character of the mazimal compact
subgroup of Gr(Mir) (Corollary 7.9). Define o character e of K(Xp) by

7e(k) = det(Ad(k)) I(E/B(A))‘ .
Then the restriction of v to the mazimal compact subgroup is identified (by the isomor-
phism of Theorem 6.2) with vin.

The character +¢ gives the action of K()) on top degree differential forms on K - Ag,
at the point Ay. Because of the symplectic structure, this is dual to the action on the top
exterior power of the conormal bundle T} , (G - Ae) of K- Ay in the (complex symplectic)
variety G - Ay, at the point Ae. By the proof of Proposition 5.19, this can be phrased as

‘)"g(k) = det(Ad(k)) I(p/p(.-\)) . (712)
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Before giving the proof of Theorem 7.11, we record a consequence. It is convenient to
make a definition parallel to Definition 7.2.

Definition 7.13. Suppose (g, K) is a reductive symmetric pair (Definition 5.21), and
Ae € Ny Define a character v of K(A¢) as in Theorem 7.11 and (7.12). An algebraic
representation x of K(Ae) is called admissible if its differential is half the differential of ~s;
that is, if
x(exp(z)) = ve(exp(z/2)) - T

for all z € &(Ay). If admissible representations exist, we say that Ay (or the orbit X - Ag)
is admissible. A pair (Ap, x) consisting of an element of Ny and an irreducible admissible
representation of K(A¢) is called a nilpotent admissible K-orbit datum. Two such are
equivalent if they are conjugate by K.

Theorem 7.14 ([Schwartz]). Suppose Gr is a real reductive Lie group, KR is a
mazimal compact subgroup, and K is its complezification. Then there is a natural bijec-
tion between equivalence classes of nilpotent admissible Gg-orbit data (Definition 7.2) and
equivalence classes of nilpotent admissible K -orbit data (Definition 7.13).

Proof. Fix a nilpotent linear functional A\;r € M, and let Ay € N, s be a corresponding
element (Theorem 6.2). We want to associate to each admissible representation xR of
Gr(A\R) an admissible representation K (At). Let H be a maximal compact subgroup of
Gr{Air). By Theorem 6.2, we may as well assume that H is also a maximal compact
subgroup of K(A). Let v be the character of H constructed in Corollary 7.9 (or, by
Theoremm 7.11, the restriction of ¢ to H). By Lemma 7.8, restriction to the preimage of H
and twisting by the “square root of 4” defines a bijection from admissible representations of
Gr{\ir) to y-admissible representations of H. An even simpler fact about algebraic groups
(essentially Weyl’s “unitarian trick”) guarantees that restriction to H is a bijection from
admissible representations of K(As} to y-admissible representations of H. (An admissible
representation of K(A:} is automatically trivial on the unipotent radical, so this is really
Just a statement about reductive groups.) The theorem follows. Q.E.D.

Proof of Theorem 7.11. Fix a nondegenerate symmetric real bilinear form b on gg,
invariant under Gr and 6, negative definite on g, and positive definite on pgr, as in the
proof of Theorem 6.2. Then the bilinear form

be(u,v) = b(8u,v) = b(u, fv) (7.15)(a)
is negative definite on gr. Define elements x;g and z, of g by the requirements
Ar(y) = b(zim,y)y Ae(y) = baw,y) o (T.15)(b)

for all y € g. By Theorem 6.4, we may as well assume that there is a homomorphism ¢
from 5{(2) to g, intertwining oo with ¢ and §; with 6, and satisfying

¢ (g 5) =ZiR, ¢ (55/22 :;ﬁ) = 1. (7.15)(c)
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In terms of ¢, we can give two descriptions of the compact group H:

H={g¢€Gr|Ad(g)(zir) = zir,09 = g }; (7.15)(d)
H={keK|Adk)(z)=ze,0k = k). (7.15)(e)

The symplectic structure w = w, .5 on V = gr/gr(2zim) is defined by
w(u,v) = dzir, [u, v]). (7.16)(a)
In order to calculate the character v;r, we must (according to Corollary 7.9) construct a

complex structure J on V; that is, a linear transformation satisfying J? = —I. In addition,
J must commute with the action of H, and satisfy

w(Ju,v) = w(Jv,u) (7.16)(b)

(1/Dw(Ju,u) > 0. (7.18)(¢)

This makes V into a complex vector space, and H acts by complex-linear transformations.
(Although we will not use it, the hermitian form h of (7.7) is

h(u,v) = (1/9)w(Ju,v) + wl(u,v). (7.16)(d)
The action of H is unitary for this hermitian form.) The character v;g is the determinant
of the action of H on this complex vector space. Equivalently, it is the determinant of the

action of H on the +i-eigenspace of J in Ve = g/g(z:n).
We begin now the construction of J. Define

qus(g é) F;¢(? g);—,—.eE. (7.17)(a)

These are elements of gr, and 1E = z;8. If T is a linear transformation of gR, write 7%
for its adjoint with respect to the negative definite form by of (7.15)(a):

be(Tu,v) = bg(u, T%).
Obviously 8 is self-adjoint, and
ad(z)? = —ad(8z). (T.17)(b)
Our first approximation to J is the linear transformation |
@=6cadE =—-adFoé. (7.17){¢)

Obviously the kernel of @ is precisely gr{z;r), and it follows from (7.17)(b) that Q is skew-
adjoint with respect to bp: Q% = —Q. A first consequence is that Q defines an invertible
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linear transformation Q on V. A second is that R = —Q? is a non-negative self-adjoint
linear transformation on gr. By (7.17)(c),

R=adFoadFE. (7.17)(d)
Clearly Q commutes with the action of H. By (7.16),
w(Qu,v) = b(iE, [[E,u],v]) = —ib(8(E,u}, [E,v]) = —ibs([E, u], [E,v}). (7.18)a)
From the last expression it follows that

w(Qu,v) = w(Qu,u), (1/4)w(Qu,u) 2 0. (7.18)(%)

These assertions correspond to the requirements (7.16)(b) and (¢} for J. The only difficulty
is that @2 is not —1I, but only the negative operator ~R. We correct this using a square
root in the usual way. Let S denote the non-negative self-adjoint square root of R. Then
S defines an invertible linear transformation S on V, and we set

J = (5)7'Q. (7.18)(c)

The correction factor commutes with all operators commuting with @, including Q itself
and the adjoint action of H; so J? = —I, and J commutes with H. Now (7.18)(b) implies
that w({—Q%u,v) = w(u, —Q%v). Considering this equation on each eigenspace of —Q?, we
deduce that

w(Su,v) = w(u, Sv).

Now a trivial formal argument gives (7.16)(b) and (c) from (7.18)(b).

In light of the remarks after (7.16)(d), and the construction just given for J, we find
that the character ;g of H may be described as the determinant of the adjoint action on
the span of the positive eigenspaces of

(1/i)Q = —6 0 ad(zir); (7.19)

this operator may be taken to act on all of g, or just on the quotient Vo = g/g(zir). (It is
a hermitian operator with respect to the hermitian form obtained from bg; this is another
way to understand the fact that it is diagonalizable, with real eigenvalues.) Qur next task
is to relate these positive eigenspaces to &/8(zy).

We begin by constructing a Cayley transform. Even though the homomorphism ¢
may not exponentiate to SL(2), its composition with ad does. Every element g of SL(2, C)
therefore gives rise to an automorphism of g, which we write as Ad(¢(g)) (even though
#(g) by itself is undefined). These automorphisms commute with the action of H. Set

¢ = (1/v3) (; j) . (7.20)(a)

By calculation in SL(2), we find that
Ad(g(c))(zir) = ze. (7.20)(b)
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Define
T'=Ad(g(c)) o (1/4)Q o Ad(¢(c))™". (7.20)(c)

Then T may be regarded as a linear transformation on gorong/g{ze). It is diagonalizable
with real eigenvalues, and the character v;g of H is the determinant of the adjoint action
on the span of the positive eigenspaces. To calculate T, we need to know how 8 acts on
Ad(é(c)). This can be computed from the fact that ¢ intertwines 8o and 6. Using (7.20)(b)
and (7.19), we find (after a little calculation in SL(2))

T = —60Ad(¢ ( ° 5":)) o ad(ze) = Ad(é ( ; 5)) o ad(ze) o 6. (7.20)(d)

Write W = g/g(zs), W+ for the sum of the positive eigenspaces of T on W, and W~
for the sum of the negative eigenspaces. We have

W=W*reW - =(Wnp)e(Wne. (7.21)(a)

The theorem we are trying to prove says that the determinants of the actions of ¥ on W+
and W N ¢ agree. Obviously it suffices to prove that

WH~Wnyp (7.21)(b)

as representations of H. In order to do this, we need another decomposition of W. Define
¢ = Ad(4(-1)), an involutive automorphism of g. Then ¢ commutes with 8, T, and the
image of ¢. It therefore lifts to a linear transformation of order 2 on W (still called ¢),
commuting with everything else. Write

W=W.oW, ‘ (7.21)(c)

for the decomposition into the +1 (“even”) and -1 (“odd”) eigenspaces of (. We use
analogous notation for other spaces and operators; thus for example W is the sum of
the positive eigenspaces of T,. The desired isomorphism (7.21)(b) would follow from two

separate isomorphisms
W ~W.np, (7.21)(d)

and
Wr~W,np. (7.21)(e)

These seem to require rather different treatments, and we will prove them separately.
First we consider (7.21)(d). It follows from (7.20)(d) that T and @ anticommute on
W.,:
T.8, = —8,T.. (7.22)(a)

Consequently 6, interchanges W and W, , and T, interchanges W, N & and W, N p. It

[
follows immediately that all four representations of H are isomorphic:

WrhraeW >W,.nexW.np. (7.22)(b)
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The first isomorphism is given by #.; the second by restricting to W, the projection
(I +6.)/2; and the third by T,. In particular, we get (7.21)(d).

For {7.21)(e), we need to decompose W further using the action ad o ¢ of s((2).
Fix a non-negative integer N (the highest weight), and write S(N) for the irreducible
representation of s((2) of dimension N + 1 (realized say on homogeneous polynomials of
degree IV in two variables). Define

g(IN) = sum of all copies of S(N) in g, (7.23)(a}

the corresponding isotypic subspace of g. We have

fo= > g(N) (7.23)(b)
N odd
Recall from (6.7)(c) the element
0 —i
The eigenvalues of (S BE) on S(N)are N,N—-2,...,~N+2,—N, each occurring once,

Write S(V)m for the m-eigenspace, and
g(V)m = m-eigenspace of ke in g(N). (7.23)(c)

We have
ad(ze) 1 g(N)m ~ g(N)mt2; (7.23)(d)

this map is an isomorphism unless m = N, in which case it is zero. Because it also
interchanges ¢ and p, and commutes with the action of H, we deduce that

(V) NE2g(N)my2Np (m#N), (7.23)(e)

and similarly with € and p exchanged. These facts pass at once to W. Writing W(N),
for the image of g(N )y, in W, we find that

W= W(N)m, W(N)mxg¥)m (N#m). (7.23)(f)
N#m

All of these spaces are preserved by 4, and
T:W(N)p = W(N)am-2. (7.23){g)

In particular, W(N) is T-invariant, so we may speak of W(N)* and W{(N)~. The isomor-
phism (7.21)(e) will follow if we can show that

W(NYt > W(N)Np (7.23)(R)
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for every odd non-negative integer N,
So fix such an integer NV = 27 + 1. We first compute the right side of (7.23)(h). Define

ANY=W(N)_1 N¢, (7.24)(a)
a representation of H. The bilinear form b induces a natural 1somorphism
(g(N)—1Np)" = g(N)1 N p. (7.24)(b)
Because of (7.23){e), it follows that
A(NY = W(N)_1 np, (7.24)(c)

In the same way we may compute all the spaces W(¥N),, N € and W(N)m NP in terms of
A(N) and A(N)*:

W(N)m Nt~ AN), W(N)m Np~ AN)* (m=-1 (mod4)) (7.24)(d)
W(N)m Nt A(N)*, W{(N)m Np ~ A(N) (m=1 (mod 4)). (7.24)(e)

In particular,

WN)Npx(AN)SANY @ AN)*  (N=1 (mod4)) (7.280)
> (AN)DANYY @AN)  (N=3 (mod4)) ‘

Next, we compute the left side of (7.23)(h). Fix m > —~1. Because of (7.23)(g), the
sum of the positive eigenspaces of T on W(N),, @ W(N)_,,~3 is isomorphic (by projection
on the first summand) to W(N),m. By (7.24), this space is isomorphic to A(N)® A(N).

Consequently _
WNY* = (AN) ® ANYY @ W(N)H,. (7.25)(a)

Recall now the formula (7.20)(d) for T. Comparing it with (7.24)(f) and (7.25)(a), we find
that the desired isomorphism (7.23)(h) follows from the fact that

(~17 Ad(s ( ° “5’:) )0 ad(ze)

acts by a positive scalar on W(N)_;. (This is an assertion about finite-dimensional repre-
sentations of 5{(2), and is easily verified by direct calculation.) This proves (7.23)(h)}, and
therefore (7.21)(e), and therefore (7.21)(b), and therefore the theorem. Q.E.D.

The proof has some useful consequences. Because W, and W, are perpendicular with
respect to the symplectic form w;, on W, each of them separately is a symplectic vector
space. This structure is preserved by H, so the determinant of H acting on W, is omne.
The isomorphisms (7.22)(b) imply that this determinant is the square of the determinant
on (say) W, N & This last determinant is therefore +1:

det{Ad{z)) on (W, Np) = £1. (7.26)(a)
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In particular, this determinant is trivial on the identity component of H. On the odd
part of W, the determinant characters of H on A(N) and A(N)* differ by the square of
a character. It therefore follows from (7.24)(f) that there is a character v; of H such that
(as characters of H)

det oAd on (W, Np) = [det 0Ad on (W.; Np)}m°. (7.26)(b)
In light of (7.26)(a), we can drop the subscript o on the identity component of H:

Yo |H,= [det oAd on (W_y N p)f[v1)2. (7.26)(c)

Corollary 7.27 ([Schwartz]). In the setting of (6.7), write H for a mazimal compact
subgroup of the centralizer K(zy). Then the nilpotent element z¢ is admissible (Definition
7.13) if and only if the determinant of the action of Hy on the —1-eigenspace of hy om p
18 the square of another character of Hy.

Recall that a nilpotent element is called even if the corresponding semisimple element
hy {or, equivalently, h;n) has only even eigenvalues. This means that the representation
ad o ¢ of 5[(2) has only odd-dimensional irreducible constituents. In the classical groups,
a nilpotent element is even if and only if all its Jordan block sizes have the same parity.
For an even nilpotent the space W_.; is zero, so we deduce

Corollary 7.28 ({Schwartz]). Every even nilpotent element is admissible. For such
an element, the character of Theorem 7.11 takes values in {31}.

8. Representations attached to admissible orbits.

Recall that one of our goals is a better understanding of what it means for a repre-
sentation of a reductive group Gr to be attached to a nilpotent imaginary orbit Ggr - Air.
We have asserted in section 7 that one should actually try to attach a representation to
a Gr-admissible orbit datum (Mg, xir). In section 6, we saw that A;g corresponds to a
nilpotent element Ae € (g/8)". In section 7, we saw that x;r corresponds to a represen-
tation xp of the isotropy group K():), having the following property. Write v for the
determinant character of K(As) on

T3 (K - de) 2 (8/8(Ae))™ 2 p/p(Ae). (8.1)(a)
Then we require
xe(e?) = () - I (8.1)(b)

for all x in the identity component of K{A:). On the other hand, suppose X is a (g, K)-
module of finite length. By Theorem 2.13 (and Corollary 5.23) one can associate to X a

certain finite set of K-orbits
K A,...,K- A, CNY (8.1)c)
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and (genuine virtual) representations y; of K(A;). It is therefore natural to impose the
following requirement on the (still undefined) process of attaching representations to nilpo-
tent orbits.

Desideratum 8.2, Suppose G is a real reductive group, with complexified maximal
compact subgroup XK. Suppose D = (\g, x:r) is a nilpotent admissible Gr-orbit datum,
and (Ae, xe) is a corresponding nilpotent admissible K-orbit datum. I X is a (g, K)-module
attached to D, then (A, x¢) should be (up to K-conjugacy) one of the pairs (\;, x;) attached
to X by Theorem 2.13 (cf. (8.1)(c)).

This is a rather weak requirement. In the case of the principal nilpotent orbit for a
quasisplit group, it allows whole translation families of fundamental series representations.
(According to Desideratum 7.3, there should be at most finitely many representations
attached to an orbit datum.) On the other hand, if Gg is semisimple, this requirement
alone correctly attaches only the trivial representation to the trivial orbit datum (0, C).
In general the requirement is stronger for smaller orbits. Since it is the representations
aftached to small orbits that are the most troublesome technically, it is worthwhile to
pursue Desideratum 8.2. We are therefore led to the problem that is the main concern of
this section.

Problem 8.3. Given an orbit X - A Ay, find conditions on a Harish-Chandra
module X guaranteeing that
a) K - A contains a component of V(X), and
b) the corresponding isotropy representation X(A, X} {Theorem 2.13) is admissible {Def-
inition 7.13).

Towards part (a) of Problem 8.3, we will prove only the following result.

Theorem 8.4. Suppose (G, K) is a reductive symmetric pair of Harish- Chandra class
(Definition 5.21), and X is an irreducible (g, K)-module. Write

J = Ana X C U(g),

a primitive weal in U(g). Let O C V(J) C g* be the dense nilpotent G-orbit (Corollary
4.7).
a) V(X)) CV(I)N (g/8)*.
b) ON(g/8)* is the union of a finite number of K -orbits O1,...,0,, eack of which has
dimension equal to half the dimension of ©.
¢) Some of the O; are contained in V(X); they are precisely the K-orbits of mazimal
dimension in V(X).

Proof. Part (a) is an immediate consequence of the definitions: elements of grJ
(defined using the standard filtration of U/(g)) obviously annihilate gr X, and therefore
constrain V(X) according to (1.2)(a). Part (b) follows from Corollary 5.20. Now {c) is
evidently equivalent to the assertion that the Gelfand-Kirillov dimension of X (section 2)
is at least half that of U(g)/J. Such a relationship holds for any faithful module for a
primitive algebra; a proof of the equality in this special case appears in [Voganl], Lemma
3.4. Q.ED,
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Part (a) of Problem 8.3 is therefore just slightly stronger than asking that
V(Ann(X)) = G-\ (8.5)

A great deal is known about how to check such a condition, but we will not review it here.
We turn now to part (b) of Problem 8.3. To formulate a result, we need to recall the
transpose anti-gutomorphism u — *u of U(g). This is a linear map, characterized by the

properties
'z = -z (z€g), Huv) =o'y (u,v € U(g). (8.6)

Theorem 8.7. Suppose (G, K) 13 a reductive symmetric pair of Harish-Chandra class
(Definition 5.21), and X is an irreducible (g, K)-module, Write

J =Ann X C U(g),

a primitive ideal in U(g). Let O C V(J) C g* be the dense nilpotent G-orbit (Corollary
4.7). Assume that

i) The S(g)-module S(g)/grJ is generically reduced along O (Proposition 2.9; this is
automatic if gr.J 13 prime, or more generally if O has multiplicity one in the charac-

teristic cycle of 5(g)/gr J). :
) The ideal J is preserved by the transpose anticutomorphism of U(g) (cf. (8.6).

Fiz A€ ON(g/¥)*, and write H for the corresponding isotropy subgroup of K. Then
the character x(A, X) of X at A (Theoremn 2.13) is admissible (Definition 7.13).

The proof will occupy the next three sections. We will conclude this section with some
easy differential geometry intended to provide motivation for the proof. (Since the resuits
will not be applied directly, we will feel free to omit any inconvenient proofs.) The problem
is to understand what kind of natural condition can force x to be admissible. Suppose for
a moment that instead of admissibility (which specifies the differential of x in a slightly
complicated way) we were seeking conditions that force the differential of y to be zero.
The following well-known result provides such conditions; we formulate it in the smooth
context for the sake of familiarity.

Proposition 8.8. Suppose H C K are Lie groups, and (x, V') i3 a fintte-dimensional
representation of H. Write V for the corresponding vector bundle on K/H. Then the
following conditions are equivalent.

a) The differential of x is zero.
b) V has a K-invariant structure of local coefficient system on K/H.
c¢) Attached to every vector field £ on K/ H there is a differential operator L¢ on the space
I'V of sections of V. This correspondence i3 complez-linear, and satisfies
) Le(f-0) = (0cf) - o + £ (Lea) (f € C(K/H), o € TV).
i4) Lye(o) = £ (Leo) (f € C=(K/H), # € TV).
1) Suppose x € &, and £(z) is the corresponding vector field on K/H. Then Ly, is
the natural action of z on sections of V.
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In (c), condition (i} simply says that L, is a first-order differential operator with
symbol ¢ (times an appropriate identity operator). This is a consequence of (ii) and (iii),
but we include it to clarify the nature of L.

Condition (b) has been included only for motivation; we are not going to define lo-
cal coefficient system carefully here. The expert reader will easily supply a proof of its
equivalence with (a) or {¢). We will prove only the equivalence of (a) and (c).

Proof. Suppose that (c¢) holds. Write m for the ideal in C(K/H) of functions
vanishing at eH. There is a natural isomorphism

'V/ml'V ~ ¥V,

this takes the restriction to § of the natural action of £ to the differential of y. H z € §,
then the vector fleld £(z) vanishes at eH, and may therefore be written in the form

{(z) = Zfifi

with f; € m. Ifv € V is represented by a section o € 'V, then (by (i1)) x(z)v is represented

by
Leyo =) Lpgo=Y  filgo.

(Here we have used condition (ii).) This last expression belongs to mI'V, ard therefore .
represents zero in V. Therefore the differential of x is zero, which is (a).

The other direction is very easy, and we will be sketchy. Suppose (a) holds. Write H,
for the identity component of H. Then K/Hg is a covering of K/H, and the pullback V, of
V to this covering is the vector bundle corresponding to the representation x |y, of Hy. By
assumption this last bundle is trivial (in a K-invariant way): its sections are just functions
on K/H, with values in V. It follows immediately that Vy has the structure required in
(c). {Lg acts on vector-valued functions by acting on each coordinate separately.) But the
structure in (c) is purely local; so its existence on the covering space K/Hpy immediately
implies its existence on K/H. Q.E.D.

Next, we prove an analogue of Proposition 8.8 for the case of admissible representations

of H.

Proposition 8.9. Suppose H C K are Lie groups, and (x,V) i3 a finite-dimensional
representation of H. Write V for the corresponding vector bundle on K/H. Define v to
be the determinant character of H acting on (8/h)* (the cotangent space af eH to K/H.
Fiz ¢ complez number k. Then the following conditions are equivalent.

a) The differential of x 1s equal to k times the differential of ~.
b) Attached to every vector fleld € on K/H there 1s a differential operator Lg on the space

T'V of sections of V. This correspondence is complez-linear, and satisfies

) Le(f-0) = (8cf) -0+ f - (Leo) (f € CX(K/H), o € TV).
1) Lyg(o) = f-(Leo) + k- (O f)-0 (f € C®(K/H), s € TV).
wi) Suppose = € 8, and &(z) is the corresponding vector field on K/H., Then Lg(g is
the natural action of z on sections of V.

I do not know a good name for the kind of structure considered in (b); of course
the second term in (ii) means that it is not a connection. The L is intended to suggest
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“Lie derivative;” the Lie derivative action of vector fields on volume forms on a manifold
satisfies the conditions in (b) with &k = 1.

Proof. Suppose that (b) holds. Write 7 for the tangent bundle of K/H, so that I'T
is the space of vector fields. Exactly as in the proof of Proposition 8.8, we have

PT/mlT =~ T.x(K/H). (8.10)(a)

The commutator of two vector flelds vanishing at eH again vanishes at eH. Consequently
there is a well-defined action of vector fields vanishing at eH on the tangent space at eH:

A:mlT — End(T.q(K/H)), A(r)(E(eH)) = [r,€)(eH). (8.10)(b)

If = belongs to B, then £(z) vanishes at eH, and the action of £(z) just described is just
the adjoint action on &/h. Its trace is therefore the negative of the differential of v at z:

7(z) = —tr A({(z)) (z €h). (8.10)(c)

To compute this trace, choose a set of vector fields so that &1(eH),... ,Ex{eH) is a
basis of Teyg(K/H). If 7 is any vector fleld vanishing at eH, we can write (at least near

eH)
T = z fiki ' (8.11)(a)

for some functions f; vanishing at eH. Then

A(rYEi(eH)) = [fikir &](eH)

= zl:(fi&i‘fj — §;fiki)(eH)

= Z (fili&; = €i&i) — (Og; f1)&) (eH) (8.11)(%)
= i (fileH)[€:r &51(eH) — (Og; fi)(eH)éi(eH)

= 2::(55,- fi)(eH)Ei(eH)

Consequently

trA(r) = = 3 (g fi)(eH). (8:11)(c)
Now assume that (c) holds. We calculate the differential of x as in the proof of

Proposition 8.5, by identifying V with I'V/mI'V. Suppose that an element v € V is
represented by & section ¢, and that z € §. Then

x{z)v is represented by Lg(;y{o). (8.12)(a)
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Write £(z) = 37, fi€; as in (8.11)(a), with fi(eH) = 0. Then condition (i) shows that

Leo(0) = ) filgo) + k- (8 fi) - . (8.12)(b)
Evaluating at eH gives

X(z)o = k- (Z(as,-fi)(eff)) (8.12)(¢)
1
By (8.11), the sum is ¥(z), proving (a).

Since we will not use the converse, we omit a detailed proof. One approach is to pass
to a covering as in the proof of Proposition 8.8, and relate V to the “kth symmetric power”
of the volume form bundle. (This is straightforward if & is an integer.) We have already
remarked that the Lie derivative action on volume forms satisfies the conditions in {(b)
with k=1, and one can proceed from there. Q.E.D.

With this proposition as a guide, we can now formulate some analogous algebraic
results. We will start in a purely commutative setting (Proposition 9.9); then show how
the commutative structure can arise from “Poisson algebras” (Proposition 10.7); and finally
show (sometimes) how to get the necessary Poisson algebra structure from a (g, K)-module
(section 11),

9. Proof of Theorem 8.7: commutative algebra.

Suppose C is a graded commutative C-algebra. We are looking for a version of Propo-
sition 8.9, in which this algebra will correspond to the smooth functions on K/H. Recall
that a derivation of C is a linear endomorphism & of ¢ satisfying

8(ec’) = (") + 8(c)c!

The derivations of C form a graded C-module Der(C): we say that § has degree p if it
carries C™ to C™*P~1 If § and é' are derivations of degrees p and 9, then the commutator
[6,6] is a derivation of degree p + p’ ~ 1. For our purposes it will be convenient not to
work with Der{C) directly.

Definition 9.1. A module of derivations of C is a graded C-module D endowed with
a degree-preserving C'-module map

d:D — Der(C), £rs &,
and a C-bilinear skew-symmetric bracket
{(,}:DxD—>D
of degree -1. We require these to satisfy
e éy=c- {8+ 0e(0)- ¢ (9:1)(a)
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Bieery = [Be, Oe) (9.1)(b)
{6{6,6" = {661, 6"+ {¢', {6,€"1) (9.1)(c)

{The last condition is the Jacobi identity.) All three conditions are easily verified for the
case D = Der(C). The module D will replace the vector fields in Proposition 8.9.

Definition 9.2. Suppose D is a module of derivations of C, and M is a graded
C-module. A Lie derivative on M is a graded C-linear map

L:D - Home(M, M), £~ L
satisfying
Le(e-m) =c- Le(m) + Ge(e) - m. (9.2)(a)

It is called torsion-free if L maps the bracket to commutator of operators:
Ligery = [Les Ler). (9.2)(b)

(Notice that this condition makes M a representation of the Lie algebra D.) It is said to
be of k-form type (for k € C) if

Leg(m)=c- Le(m) + k- Ge(c) - m. {9.2)(¢)

(By “k-forms” we understand here not differential forms of degree k, but rather k-th powers
of the volume form. Ultimately we will be concerned with the case k = 1/2, where the
“half-form bundle” considered in distribution theory is of 1/2-form type in the present
sense. This is the origin of the terminology.) Of course such a module M will replace the
space ['V of sections of V in Proposition 8.9.

Notice that we can define a torsion-free Lie derivative on D itself by L¢(¢') = {£,£'}.
It is not in general of k-form type for any k, however. The map L = 3 is a torsion-free Lie
derivative of 0-form type for C (regarded as a module over itself).

We can now introduce the analogue of the adjoint action of h on &/, as in (8.10).

Lemma 9.3. In the setting of Definition 9.1, suppose m is a mazimal ideal in C,

corresponding to a homomorphism
A:C—=C.

Then mD s a Lie subalgebra of the Lie algebra (D, {,}). Write
Am:mD — End(D/mD), An(r)(é+mD)={r,é}+mD

for the action induced by the adjoint action. Then every endomorphism An(r) has finite
rank; so we can define ¢ one-dimensional representation v of mD by

Ym(T) = —tr Ap(r).
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Ezplicitly, suppose {£;} is a finite subset of D, and a; € m. Then

7 (2 i) = 3 A8 ().

Suppose that M is o C-module and L is a Lie derivative on M (Definition 9.2). Then
the submodule mM is invariant under the action of mD, so there is a natural representation

Xm :mD — End(M/mM), xa(r)(m +mM) = L¢(m) + mM
If L 1s of k-form type (Definition 9.2), then

Xml{T) =k -yu(r)- I (re mD).

The proof is a formal translation of that of Proposition 8.9, and we omit it, (It is
worth observing that m?D is a Lie ideal in mD, and that the representations Apy, vm, and
Xm all factor to mD/m?D.)

We need to fit this structure together with group actions. So suppose K is a complex
algebraic group, acting by degree-preserving algebraic automorphisms of the algebra C:
we write

Ad: K — Aut(C). (9.4)a)

When ambiguity might arise, we may write instead Adg.) The differential of the I action
defines a Lie algebra homomorphism from ¢ to the {degree-preserving!) derivations of
degree 1 of C:

ad : & — Der' (C). (9.43(0)

A degree-preserving algebraic action 7 of K on a C-module M is called compatible if it
satisfies '

m(g)(c-m) = (Ad(g)(c)) - (r(g)(m)) (9.4){c)

(ef. (2.1)(c}). (Generally we will write such actions on modules with a dot ("module
notation”) rather than choose a name for the representation.) In this case we call M a
compatible (C, K)-module.

Definition 9.5. In the setting of (9.4)(a), a module D of derivations of C is called
compatible if we are given an action of K on D by Lie algebra automorphisms. and a
K -equivariant Lie algebra homomorphism

ik D!

satisfying the following conditions:
a) D is a compatible (C, K )-module;
b) for all z € &, we have Oi(zy = adg(z); and
c) the differential of the action of X on D is the map adp o4 (from ¢ to End(D)).

Definition 9.6. Suppose D is a compatible module of derivations of C, and 1/ is a
compatible graded C-module. A Lie derivative L on M is called compatible if
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a) Lyg(g-m) =g - (Le(m)); and
b) the differential of the action of K on M is Lo1.

Notice that the Lie derivatives defined on C and on D after Definition 9.2 are auto-
matically compatible.

Suppose now that D is a compatible module of derivations of ', and that m is a
maximal ideal in C, corresponding to a homomorphism

A:C —C. {9.7)(a)

The group K acts on the set of such A; define H to be the isotropy subgroup. Its Lie
algebra is easily computed to be

h={zet|ad(z)(m)Cm}. (9.7)(b)

Because of (9.5)(b), this contains as a subalgebra
hp={zect|i(z) emD}. (9.7)¢)
The group H acts on D/mD and (if M is a compatible (C, K )-module) on M/mM: we
e Ag: H — End(D/mD),  xu: H — End(M/mM). (9.7)(d)

The definitions of compatibility have been arranged to guarantee that the differentials of
these representations agree on f; with the Lie algebra representations of Lemma 9.3:

Ap(e) = An(i(z)), x#(z) = xn(i(z)) (z € 1) (9.7){e)
(In fact the representations Am and xm may be extended from mD to the larger Lie algebra
{reD|o(m)Cm},

which contains #(z); and (9.7)(e) remains valid. The reason we have not done this is that
the final — and most interesting - conclusion of Lemma 9.3 appears not to extend.}
Finally, we need something like the character v for H. The Za.nskl tangent space to

SpecC at mis
Tw(Spec C) = Hom(m/m? C/m). (9.8){a)

Any derivation of C sends m? into m, and so defines an element of this tangent space; so

we get a natural map
On : D/mD — Tu(SpecC). {(9.8)(b)

We can also define
im: & — D/mD. {9.8)(c)

By inspection of the definitions,
f} == ker Op 0 2, H1 = kertp. (9.8){(d)}
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(This suggests already the importance of the case when Oy is an isomorphism.) Finalily,
we define a character vg of H by

vu(h) = detAH(h)'l (9.8)(e)

at least when D/mD is finite-dimensional. As in (9.7)(e), this definition is obviously
compatible with the one in Lemma 9.3:

vH(z) = ym(i(2)), (2 €by). (9.8)(f)
"These considerations and Lemma 9.3 prove

Proposition 9.9. Suppose K is an algebraic group of automorphisms of the graded
commutative algebra C', D is a compatible module of derivations of C (Definition 9.6),
and M 1is a compatible (C,K }-module of k-form type (Definition 9.2). Fiz o« mazimal ideal
mn C, and let H denote its stabilizer in K. Define by as in (9.7)(c). Let xy be the
representation of H on M/mM, and let v be the inverse of the determinant character of
H on D/mD (assuming this to be finite-dimensional). Then for = € by, we have

xH(z) =k -vu(z)- I

Suppose in addition that the map O of (9.8)(b) is an womorphism. Then b is all of
b, and vy is equal to the determinant of the action of H on the Zariski cotangent space
Tr(SpecC).

10. Proof of Theorem 8.7: Poisson algebras.

Our next goal is to show how the structures required in Proposition 9.9 can arise from
the theory of Poisson algebras.

Definition 10.1. A graded Poisson algebra is a graded commutative algebra R en-
dowed with a Lie algebra structure

{,}:RxR—-R

of degree —1, such that the bracket with each element of R is a derivation of the commu-
tative algebra structure:

{r,st} = {r, s}t + s{r,t}.

Anideal Q C Ris called a Poisson ideal if {Q, R} C Q; in this case R/Q is again a Poisson
algebra. An ideal I is called integrable if {I,1} C I; we will see in a moment how to exploit
this weaker condition.

Example 10.2 Suppose G is a Lie group with Lie algebra g. Then the symmetric
algebra S(g) carries a Poisson algebra structure, determined by the property

{x,y}m{x,y] (xayeg)'

35



More generally
{z.p} =2ad(z)(p)  (z €g,p€ 5(g))

Since ad is the differential of the adjoint action of G, it follows that any Ad(G)-invariant
subspace of §(g) is preserved by bracket with g; so any Ad(G)-invariant ideal is preserved
by Poisson bracket with anything. If X is an Ad(G)-invariant subset of g*, then the ideal
of zeros Q(X) is a Poisson ideal; so S(g)/@Q(X) is a Poisson algebra. It will be graded if
X is homogeneous — for example, if X is a nilpotent coadjoint orbit.

Integrable ideals are even easier to construct in this example. Suppose @ is a Poisson
ideal in 5(g), and € is a subalgebra of g. Then @ + £5(g) is an integrable ideal. It will be
graded if @ is.

Lemma 10.3. Suppose R is a graded Poisson algebra, and I is graded integrable
tdeal. Set
C'=R/I, D=1I/I

Then C is a commutative algebra, and D 1s a graded C-module. D has the structure of a
module of derivations of C (Definition 9.1), by

arr2(b+I) = {a,b}, {a+12,a'+12}={a,a'}+12 (a,a’ € I,be R).

We omit the straightforward verification.
Next, we consider the Poisson algebra structure that will give rise to Lie derivatives.

Definition 10.4. Suppose R is a graded Poisson algebra, and M is a graded R-
module. A first-order structure on M is a graded (complex-linear) map of degree -1

a RxM-M
having the following property:
ar(r, s -m) +rai(s,m) = ay(rs,m) +1/2{r,s} - m (r,s € R,m € M)
This structure is said to be torsion-free if whenever r and s both annihilate M, we have

ai({r,s},m) = a1(r,a1(s,m)) — ay(s, 0 (r,m)).

This definition (which comes from Gerstenhaber’s theory of deformations) is certainly
difficult to motivate directly. We will see later how first-order structures arise from g-
modules. For the moment, we offer only a simpler analogy. If M is a complex vector
space, we could define a zeroth-order structure on M to be a map ay of degree 0 from
R x M to M, satisfying

ag(r, ap(s,m)) = ao(rs,m).

This is nothing but an R-module structure. We could call it torsion-free if whenever
ao(r,m) and aqg(s, m) are both zero, then ag({r, s}, m) is also zero. This just says that the
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annihilator of M is an integrable ideal. Definition 10.4 is in a technical sense a natural
refinement of these notions (of R-module and integrable ideal).

Lemma 10.5. Suppose R is o graded Poisson algebra, I is a graded integrable ideal,
and M 1s a graded R-module annihilated by I. Define C, D, 8, and {,} as in Lemma 10.3.
Then a first-order structure a; on M induces a Lie derivative

L:D— End(.LM)
of half-form type (Definition 9.2), by the formula
Loyprz(m) =ai{s,m) (s e l,me M)

If ay is torsion-free, then so is L.

Proof. Again this is a routine verification from the definitions. Consider for example
the “half-form type” condition. So suppose r € R and s € I. Then by definition

Lrserz(m) = ar(rs,m) = ra;(s,m) + ai(r, sm) — 1/2{r,s}m.
Since s annihilates M, the second term on the right is zero; and the others are
{(r + I)Ls+12(m) + 1/283.;.[2(?‘)7?‘?.,

as required. We leave the other details to the reader. Q.E.D.

We need a way to understand the map 8, of (9.8) in terms of the Poisson structure.
Our goal is Proposition 10.9 below. Suppose R is a Poisson algebra and m is a maximal
ideal in R, corresponding to a homomorphism

AR - C, ker A = m. (10.6){a}

We define a (possibly degenerate) symplectic form ¢ (or ¢x) on the Zariski cotangent
space m/m? by
¢u(f+m’ g+ m®) = A\{f,9})  (f,g€m). (10.6)(b)

Of course a bilinear form on the cotangent space is the same as a linear map from the
cotangent space to the tangent space; we write

@m : Tn(Spec R) — Tu(Spec R). (10.6)(c)
Then ¢n is non-degenerate if and only if $,, is an isomorphism.
Suppose now that J C m is an ideal. Then I spans a subspace of m/m? that we call
the conormal space to R/I at m:

Th/1m(SpecR) = I/(m* N 1). (10.7)(a)
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By definition, the Zariski tangent space Tn{R/I) consists of linear functionals on m/({m? +
I). This may be identified with linear functionals on m/m? vanishing on the conormal
space to R/I:

Tu(Spec R/I) = (T;; 1 1.m(Spec R)) " (10.7)()

Suppose in addition that [ is integrable. Then it is immediate from the definitions that
¢m =0o0n Th/; n(Spec B) (I integrable). (10.7)(¢)
Consequently $n restricts to a map
Bmr: I/(m?NI) — Tu(Spec R/I). (10.7)(d)
It is clear from the definitions that @y is the composition of ®4 s with the natural projection

Ifwl — I/(m*n D). (10.7)(e)

Definition 10.8. Suppose R is a Poisson algebra (over C and that m is a maximal

ideal in R, with R/m = C. We say that Spec R is symplectic at m if

i) it is regular at m (that is, if R is a regular local ring); and

i) the form ¢n is non-degenerate. :
(It is not hard to see that the first condition is in fact a consequence of the second.) Now
suppose I C m is an integrable ideal. We say that R/I is Lagrangian at m if

i) R is symplectic at m;

it} R/I is regular at m; and
iii) the subspace Ty, rm(SpecR) of T, *{(Spec R) is maximally isotropic for the form om.
Again it is fairly easy to see that the second condition is a consequence of the other two.

Here is our result about Op.

Proposition 10.9. Suppose R is a Noetherian Poisson algebra, I C R 1s an integrable
ideal, and m D I is o mazimal ideal. Assume that R/I is Lagrangian at m. Then the map
On (Lemma 10.8 and (9.8)) is an isomorphism.

Proof. We begin with the underlying linear algebra.

Lemma 10.10. Suppose (V, ¢) is a finite-dimensional vector space with o (possibly
degenerate) symplectic form, and S C V is an isotropic subspace. Write St CV* for the
linear functionals vanishing on S. Then the natural map S — S L defined by ¢ is

i) surjective if and only if S is mazimal isotropic, and
i) injective if and only if S meets the radical of ¢ only in {0}.

We leave the elementary proof to the reader. As a consequence of Lemma 10.10 and
the description of 8n in (10.7), we get immediately the following result.

Lemma 10.11. In the setting of Lemma 10.3, fiz o mazimal ideal m O I. Then On
(cf (9.8)) is an isomorphism if and only if the following two conditions are satisfied:
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i) the subspace T;a/[.m(Spec R) s o mazimal isotropic subspace;
i1) the symplectic form ¢n 13 non-degenerate; and
ui) the projection I/mI — I/(m®N 1) is an isomorphism,

Conditions (1) and (ii) here are obvious consequences of the Lagrangian hypothesis in
Proposition 10.9. For (iii), we use the following lemma.

Lemma 10.12. Suppose R is a commutative Noetherian Ting, m i3 ¢ mazimal ideal
in R, and I Cm is any ideal. Assume that R is regular at m. Then R/I 1s regular at m if
and only if

INnm? =ml.

Proof. (We follow [Hartshorne), p.178, where the result is proved for varieties.) Write
n for the dimension of the local ring Ry, (as a vector space over f2/m). Then R is regular at
m if and only if the Zariski cotangent space m/m? has dimension n ([Atiyah-MacDonald],
Theorem 11.22). For the cotangent space to R/I, we have the exact sequence

0— I/(Inm?) — m/m? —m/(m? + ) — 0 (10.13)(a)

that is,
0 — I/(INm?) ~ Tn(Spec B) — T(Spec R/I) — 0. (10.13)(b)

Suppose first that the condition in the lemma is satisfed. Write » for the dimension
of I/mI. Then by Nakayama’s lemma, [ is generated by r elements near m (that is, after
inverting a finite number of elements not in m). It follows that (R/I)n has dimension at
least n~r. On the other hand, {10.13)(b) shows that the cotangent space at m to Spec R/J
has dimension equal to n — r. This implies that the dimension of (R/I)m is at most n — »
([Atiyah-MacDonald, Corollary 11.15), with equality if and only if R/I is regular at m.

Conversely, suppose that R/I is regular of dimension d at m. By (10.13)(b), I/(INnm?)
has dimension n — d. Choose elements z,,...,z,_g of I whose images form a basis for
this quotient, and define J to be the ideal they generate in R. Obviously J ¢ I, and by
construction

J/(J Nm?) = I/(INm?),

a space of dimension n — d. On the other hand, J/mJ has dimension at most n — d (since
J has n — d generators); so the natural projection from J/mJ onto J/ (J N m?) must be
an isomorphism. So J satisfies the condition in the lemma. By the first half of the proof,
(R/J)m is a regualr local ring of dimension d. On the other hand (R/I)m is a quotient of
(R/J)m. Since these are regular local rings (hence integral domains) of the same dimension,
it follows that Iy = Jn. It follows at once that [ jml = J/mJ; and we have already seen
that the right-hand side is isomorphic to I/(I nm?). Q.E.D.

Proof of Proposition 10.9. Because of Lemma 10.12, the Lagrangian hypothesis in
the proposition implies all three of the conditions given in Lemma 10.11 for On to be an
isomorphism. Q.E.D.

Finally, we can bring a group into the picture. Suppose the algebraic group K acts
algebraically by graded automorphisms on the graded Poisson algebra R:

Ad: K — Aut(R). (10.14)(a)
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We say that this action is Hamiltonian if there is a K -equivariant Lie algebra homomor-
phism
1k R (10.14)(5)

with the property that the differential of Ad at z is given by Poisson bracket with i(z).
An ideal I is called K-integrable if it is integrable and K-invariant, and

I8, (10.14)(c)

Proposition 10.15. In the setting of Lemma 10.5, assume also that R carries g
Hamaltonian action of K (cf. (10.14)); that M is a compatible (R, K)-module; that [ is
K -integrable; and that the first-order structure a; is K-equivariant. Then the structures
C, D, 8, {,}, end L of Lemmas 10.9 and 10.5 all carry compatible K-actions.

We leave this to the reader.

The conditions appearing in Proposition 10.9 are phrased in terms of Zariski cotangent
spaces. It will be convenient for us to relate such conditions to the notion of “generically
reduced” (¢f. Proposition 2.9). This is accomplished by Lemma 10.17. below.

Lemma 10.16. Suppose P is a prime ideal in the commutative Noetherian ring R,
and @ C R is any other ideal. Then Q is generically reduced along P (Proposition 2.9) if
and only if there is an element f of R, not delonging to P, such that Q is equal either to
Py or to zero. The second possibility occurs ezactly when () i3 not contained in P.

Proof. Suppose first that Q is generically reduced. By Proposition 2.9(c), thereis an f
not in P so that (R/Q)y is a free (R/P)s-module. In particular, (R/Q)y is annihilated by
P, so it is a quotient of (R/P);. Any proper quotient of (R/ P)¢ has a larger annihilator,
and so cannot be free unless it is zero. The required statement now follows from the
exactness of localization. The argument reverses trivially. Q.E.D.

Lemma 10.17. Suppose R is o finitely generated commutative algebra over C, P
a prime ideal in R, and @ C P is any ideal. Write d for the dimension of R/P. Then
Q 1s generically reduced along P if and only if there is an element f of R, not belonging
to P, with the following property: for every mazimal ideal m of R containing P but not
containing f, the Zariski cotangent space

m/(m? + Q)
to Spec R/Q) at m has dimension d. In this case we have
Tr(Spec R/ Q) ~ T (Spec R/ P)

for such m.

Proof. Suppose Q is generically reduced along P. By Lemma 10.16, there is an & not
in P so that (R/Q)s = (R/P)s. Consequently the Zariski tangent spaces coincide away
from the zeros of h. Choose g not in P vanishing on the singular locus of Spec B/ P; then
f = gh satisfles the requirement of the lemma.
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Conversely, suppose such an f exists. Fix a maximal ideal m containing P but not f,
and consider the local ring (R/Q)m. Since Q ¢ P, the dimension of @ 1s at least d. The
hypothesis therefore guarantees that (R/Q)n is a regular local ring ([Atiyah-MacDonald],
Theorem 11.22) of dimension d. Just as in the proof of Lemma 10.12, it follows that
Py = Qum. If we let g be a common denominator for the images in @, of a finite set of
generators of P, then ¢P C Q. Hence Py = (Q,. The element g does not belong to m, so it
does not belong to P either. By Lemma 10.16, Q is generically reduced along P. Q.E.D.

11. Proof of Theorem 8.7: representation theory.

We can now present the setting in which we will construct frst-order structures,

Lie derivatives of half-form type, and (eventually) admissible representations of isotropy

groups. Suppose (G, K) is a reductive symmetric pair of Harish-Chandra class (Definition

5.21; we assume G is connected, although K need not be). Let X be a (g, K)-module of
finite length. Define

J=Anmn X C U(g), (11.1)(a)

a primitive ideal in U(g). Define
Q@ =grJ C S(g), (11.1)(b)

the associated graded ideal. Because J is Ad(G)-invariant, Q is as well; so Q is a Poisson
ideal (Example 10.2). Its associated variety is the union of the closures of several nilpotens
G-orbits (just one if X is irreducible). Fix one of these O, which we assume contains a
component of V(J): ‘
V(7)=V(Q) > D. (11.1)(c)

Our Poisson algebra is

R=5(g)/Q. (11.1}(d)

Of course we have a Hamiltonian action Ad of X on R; the map i is induced by the
inclusion of £ in S(g). Define
I =0 +5(g). (11.1)(e)

This is an integrable ideal by Example 10.2; it is obviously K -integrable by the definition
(cf. (10.6)(c)). We can therefore introduce

C=R/I,D=1I/I%8 {(11.1)(f)

and so on as in Lemma 10.3. The set of maximal ideals in Spec C is the associated variety
of I; that is (on the level of points)

Spec C =V(I) = V(Q) " (g/8)* = O n (g/8)*. (11.1)(g)
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(Here we have used the obvious fact that the associated variety of ES(g) is (g/#)*.) To get
the module M, choose any finite-dimensional K-stable generating subspace X; of X, and
define a filtration as in (1.1). Set

M=gX,; (11.1)(A)

obviously M is a compatible (R, K)-module annihilated by I.
We can now state a crucial technical lemma.

Lemma 11.2. In the setting of (11.1), assume that
¢} 13 generically reduced along ©

(cf. Proposition 2.9; the condition is automatically fulfilled if Q is prime, or more generally
f O has multiplicity one in the characteristic cyele of S(g)/Q). Fiz a weight A € ON(g/t)*,
and write Op for its orbit under K. Let m denote the mazimal ideal corresponding to
evaluation at A (n S(g), R, or C). Define H to be the stabilizer of A in K.

a) The Poisson algebra R is symplectic at m (Definition 10.8).

b) The ideal I and the C'-module M are generically reduced along Oy, so the representa-
tion xp of H on M/mM (cf. (9.7){d)) coincides with x(\, M) as defined in Definition
2.12.

¢) The quotient R/I is Lagrangian at m (Definition 10.8). ‘

@) The Zariski tangent space Tn(Spec C) is naturally isomorphic to 8/%; so the character
vu of H defined in (9.8)(e) coincides with ¢ as defined in Theorem 7.11.

We postpone the proof (which is a straightforward application of Proposition 5.20) to
the end of the section.
In addition, we need a way to define a first-order structure on M.

Lemma 11.3. In the setting of (11.1), assume that the ideal J C U(g) is preserved by
the transpose antiautomorphism of (8.6). Then the R-module M admits a K -equivariant
torsion-free first-order structure (Definition 10.4).

Again we postpone the proof for a moment.

Proof of Theorem 8.7. We introduce the structure and notation of (11.1). By Lemma
11.2 and hypothesis (i), what we must show is that the differential of the representation
xa of H (cf. (9.7)(d)) is half the differential of vy (cf. (8.17)(e)). By Proposition 9.9, it
suffices to find a Lie derivative on M (as a C-module) of half-form type. By Lemma 10.5,
it suffices to find a K-equivariant first-order structure on M as an R-module. By Lemma
11.3, the existence of such a structure follows from hypothesis (ii). Q.E.D.

Proof of Lemma 11.5. The idea of the proof is that the module structure on M
captures X as an A-module “to order zero;” the first order structure captures slightly
more of the A-module structure. The implementation we give of this idea is borrowed
from [Gerstenhaber] and [BFFLS]; see also [Vogan3], section 3.

We begin with a simple fact about the transpose map. Recall the symmetrization
map G from S(g) to U(g), and the symbol maps &, (see the proof of Lemma 5.2). If f is
a homogeneous polynomial of degree n in S(g), then one checks easily that

“Bf)) = (=1)"B(S)- (11.4)
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Write
A=U(g)/], Jo=JNUn(g), An= Un(g)/Jn (11.5)(a)

Then A is a filtered algebra, and the adjoint action of ¢ on If (g) factors to 4. The
isomorphism o from gr A onto R is implemented by (surjective) symbol maps

Ont Ap — R (11.5)(#)

with kernel precisely An.;. These maps respect the adjoint action of 7. Because @ is
reductive, we can choose G-equivariant cross-sections

an: R* — A, Tn 0 anp = identity. (11.3)(c)
These maps can be added over n, giving a filtered linear isomorphism
a:R— A (11.5)(d)

(When confusion may arise, we will write these maps as o and a?.) By the hypothesis
on J, the transpose antiautomorphism factors to a filtered antiautomorphism of 4. By
(11.4), the associated graded (anti)automorphism of R acts by (—=1)* on R*. Now the
transpose is involutive, so A is the direct sum of its +1 and —1 eigenspaces. In particular,
there is a G-invariant complement for A, _; in A, on which the transpose acts by (~1)".
If we use such a complement to define «, we get

fan(r) = (=1)"an(r). (11.5)(e)

(It is easy to check that that this requirement determines o, modulo Un—2(g).)
Because o is a linear isomorphism, we may use it to pull back the-algebra structure
from A to R, obtaining a new multiplication that we write as :

rxs=a " (afrla(s)). | (11.6)(a)

This multiplication respects the filtration of R by degree, so we may write it as an infinite
sum of bilinear maps m, of degree —n. This means that

My : RP x RY — RPHI—n (11.8)(b)

and that -
TRS = Zmn(r,s). (11.8)(¢c)

r==(

There is no difficulty about convergence: for fixed r and s (say homogeneous of degrees
p and q) we will have m,(r,s) = 0 whenever n > p + ¢ (since the gradation of R has no
negative terms). The sum in (11.6)(c) is therefore finite. By the definition of associated

graded algebra,
mo{r,s) =rs {11.8)(d).
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In order to prove the lemma, we will need to calculate m as well. Notice first that if
a and b belong to A, then

(ab + ba) = ab + ba, ‘(ab ~ ba) = —(ab — ba). (11.7)(a)
By (11.5){e), it follows that
res+skr € R" rxg—skrg ROU (11.7)(d)
(with obvious notation). In terms of the expansion (11.6)(c), this says that
Man+1(r, 8) = —mans1(s, ), man(r, 8) = man(s,r). (11.7){c)

Now if u € Uy(g) and v € Uy(g), then it is well-known that uv — vu € Uptg-1(g). If we
write ¢ for the symbol maps in U/ (g), then

Oppq-1(uwv —vu) = {o¥(u), 0¥ (v)}. (11.7)(d)

(This is easily proved by induction on p and ¢; when p = ¢ = 1, it amounts to the defining
relation of U(g).) Of course the analogous formula relates commutators in A to the Poisson
structure in R. Translated into a statement about the product * on R, (11.7)(d) is

mi(r,s) —my(s,r) = {r,s}.
Now use (11.7)(c) with n = 0 to get
mi{r,s) = 1/2{r,s}. ' (11.7)(e}

We now make analogous constructions relating X and M. By definition of M, there
are K-equivariant symbol maps
On i Xpn — M™ (11.8)(a)

with kernel precisely X,.;. Because K is reductive, we can choose K-equivariant cross-

sections
O M™ = X, On 0 an = identity. {11.8)(b)

These maps can be added over n, giving a filtered K-equivariant linear isomorphism
o M- X {11.8)(¢)
(Again we will sometimes write X and a® to avoid confusion.) This isomorphism can

be used to pull the A-module structure on X back to an (R, *)-module structure on M,
which we again denote with a *:

rxm = (a®)7! (a4(r) - a¥(m)). (11.8)(d)
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Just as in the case of the product * on R, this action respects the filtrations by degrees,
so it may be expanded as a sum of K-equivariant bilinear maps an of degree —n;:

an ¢ RP X M — MPHi-n rEm = Z an{r,m). (11.8)(e)

n=0

By the definition of gr M,
ag(r,m) =r-m (11.8)( ).

The map a; will turn out to be the first-order structure on M that we are seeking.

We have provided no normalization of a “up to order n — 2” analogous to (11.5)(e), so we

cannot expect to find a closed formula for a; analogous to (11.7)(e). To get information

about a;, we use the fact that X is an A-module, and therefore that M is an (R, #)-module.
This means that

re(sxm)=(rxs)xm (r,s € R,m € M). (11.9)(a)

Written in terms of the a, and m,,, this becomes

Zap (T,Zaq(s,m)) = Z:ap (qu(r,s),m) . (11.9)(b)

P

Now suppose r, s, and m are homogeneous of degrees i, 7, and & respectively. Then a
typical term on either side is homogeneous of degree i +j + &k — p — q. Collecting terms of
the same degree, we obtain finally

Y. ap(riag(s,m) = Y ay(my(r,s),m)). (11.9)(c)

phg=n ptg=n
We examine these identities one at a time, beginning with n = 0:
ag(r, ag(s,m)) = ag(my(r,s),m).
Using (11.6)(d) and (11.8)(f), we can rewrite this as
r-{s-m)={(rs) -m:
that is, M is an R-module. This is an important fact, but hardly new to us. For n = 1,

we get
ao(r, a1(s,m)) + ar(r,ao(s, m)) = ao(my(r,s),m) + ai(mo(r,s), m).

Using (11.6)(d), (11.7)(e), and (11.8)(f), we get
r-ai(s,m) +ai(r,s - m) = 1/2{r,s} - m + a;(rs,m). (11.9)(d).
'This is precisely the requirement for a first-order structure.
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To see that ay is torsion free, we consider (11.9)(c) with n = 2. This is

r-az(s,m) +ay(r,ay(s,m)) + az(r, s - m) = ma(r,s) - m + ai(1/2{r,s},m) + az(rs,m).
: (11.10}(a)
This property is difficult to use, since we do not know m; explicitly. However, we do know
that m; is symmetric (cf. (11.7)(c)). Skew-symmetrizing (11.10)(a) in the variables 7 and
s therefore eliminates the first and third terms on the right, leaving

(r-az(s, m)—s-ag(r,m))+(as(r, sm)—ay(s,r-m))+{az(r, s'm)—as(s,rm)) = a;,({r,s}, m).
{11.10)(®)
If r and s both annihilate M, then the first and third terms on the left vanish, leaving

ay(r,s-m) — ay(s,r - m) = ay({r, s}, m) (r,s € Ann M), (11.10)(c)

This is the definition of torsion-free. Q.E.D.
Proof of Lemma 11.2. Write P for the prime ideal in R defined by O. By the
hypothesis and Lemma 10.17,

T3 (Spec R) = T5(Spec R/ P) ~ T (O). (11.11)(a)

(The set of A for which this holds is Zariski dense and G-invariant, and therefore includes
all of O.) We need the same fact for R/I. Choose g not in P so that P, = Q, (Lemma
10.16); by the G-invariance of P and () we may assume that g ¢ m. Write P’ for the prime
ideal in R defined by the component of O, containing A, and consider the three ideals

PPOP+ERDI=Q+ER (11.11)(d)

By Proposition 5.20, the first two coincide after we localize at some element f not vanishing
at A. By hypothesis, P coincides with @ after localization at some element g, which may
also be chosen not to vanish at A. So all three coincide after localization at fg. It follows
that I is generically reduced along Q. This is part (b) of the lemma (since I annihilates
M}, By Lemma 10.17,

Tx(Spec R/I) =~ T(Oh). (11.11)e)

Part (d) of the lemma follows.
To continue, we need to understand the symplectic form @ on T} (Spec R) (cf. (10.6)).
Fach function f in R defines an element
df = (f = \(f)) +m? € T3(O). (11.12)(a)
This function also defines a tangent vector 8,({f) by the requirement

A(f)(dg) = A{f.g]). (11.12)(h)

The gnap ), of (10.6) is
@(df) = A\ (f). (11.12)(e)
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Suppose z € g; write i(z¢) for the restriction to @ of the (linear) function z on g*, and
ad*(z) for the vector field on O induced by the coadjoint action of G. Then (because the
coadjoint action is Hamiltonian)

B(i(z)) = ad"(z)(\). (11.12)(d)

Now every tangent vector to (@ at A comes from g; so this implies that the map &, is
surjective. Consequently ¢ is non-degenerate, proving part (a) of the lemma.

Because &, is an isomorphism, we can use it to transfer the symplectic form ¢,
to a symplectic form 43} on the tangent space. Now we already have a non-degenerate
symplectic form wx on TA(O) (cf. (5.14)(b)}). Of course we would like to know that this it
form coincides with #%: that is, that

wi(®a(df), @a(dg)) = $a(df,dg). (11.13){a)

Because of (11.12)(c), this is equivalent to

A({f,9}) = wa(Ba(£), Br(9))- (11.13)(b)

Each side is a bilinear form vanishing on m? and on constants, so it suffices to prove
(11.13)(b) for f =i(x) and g = i(y), with z and y in g. Then both sides are just A([z,y])
(cf. Example 10.2 and (5.14)(b)).

Part (c) of the lemma follows from (11.13) and Corollary 5.20. Q.E.D.

12. K-multiplicities in unipotent representations.

In this section we present a conjectural description of the K -multiplicities in certain
unipotent representations. Since unipotent representations have not been defined in gen-
eral, the reader may prefer to regard this as a desideratum rather than a conjecture; but
see the remarks after the statement.

Conjecture 12.1. Suppose (g, K) is a reductive symmetric pair of Harish-Chandra
class, and O C g* is a nilpotent coadjoint orbit. Assume that 8@ has codimension at least
four in O. Suppose X is an irreducible unipotent (g, K)-module attached to ©. Then
there are

a) an element A € O N (g/8)*, and
b) an admissible representation x of the stabilizer K (A} (Definition 7.13)

so that
X~ Indﬁu)(x)

as a representation of K.

It 1s possible to replace the “unipotent (g, K)-modules attached to O” in this conjec-
ture by a precisely defined class. Here is one way to do that. One can find in [Vogan3],
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Definition 5.5 a definition of “unipotent Dixmier algebra attached to O.” (It is not known
that algebras satisfying the requirements there exist, but it is conjectured that they do.)
Such an algebra 4 is equipped with a map U(g) — 4, of which the kernel is a primitive
ideal J4 satisfying V(gr Ja) = O. We can call J4 a unipotent primitive ideal attached to
O. A unipotent representation attached to O should have annihilator equal to some J4.
(It seems to be a bad idea to try to use this as a definition of unipotent representation —
there are some non-unitary representations annihilated by a J4, and they should probably
not be called unipotent.) At any rate, the conjecture above should hold for any irreducible
X with Ann X = J, (always assuming the codimension condition on 80).

Let us consider how close we are to proving this more precise conjecture. Of course the
idea is to apply Theorem 8.7. The ideal J4 will always satisfy tJ4 = J4 (as a consequence
of the definition of Dixmier algebra). It will not in general satisfy the first hypothesis of
Theorem 8.7 (that gr J 4 is generically reduced); but it will satisfy an analogous condition.
This analogous condition (which is a little involved to restate here) allows the proof of
Theorem 8.7 to be repeated almost without change. We therefore find an element ) €
O N (g/€)" so that x = x(A,X) is a non-zero admissible representation of K()). Now
Theorem 4.4 shows that as representations of K

X = Indf 5 (x) - E, (12.2)

with an “error term” E related to 0. (The “codimension at least four” condition in
the conjecture gives the “codimension at least two” hypothesis in Theorem 4.4 because of
Corollary 5.20.) The K-multiplicities in E are of a lower order of magnitude than those
in X, because of the condition on the support of E. Therefore (12.2) says that Conjecture
12.1 is approximately correct. For the rest of this section, we will consider some examples
offering various kinds of support or illumination for Conjecture 12.1.

Example 12.3. Suppose Gr is SL{2,R), and O is the principal nilpotent orbit. This
orbit does not satisfy the codimension condition of Conjecture 12.1; we want to see how the
conclusion of the conjecture fails. The group K is isomorphic to C*, so its representations
are characters 7, parametrized by the integers. There are two orbits of K on © N (g/&)*:
each has K(A) = {£1}. Thus K(A) has two admissible representations x¢ and y;, both
admissible; we have

Indgy(xa) = >,  Ta

n=e (mod 2)

By contrast, Arthur attaches three (special) unipotent representations to O (the con-
stituents of the unitary principal series with continuous parameter 0). Their K-characters
are

oG o o
Z T2k Zﬁk-ﬂ-ly ZT-—Jkal-
k=—-co k=0 k=0

The first of these is given by a formula as in Conjecture 12.1, but the last two are not.

This example suggests that certain combinations of representations might obey the
multiplicity formula in Conjecture 12.1 without the codimension hypothesis. This is false,
as one sees by examining the principal orbit in SU(2,1).
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Example 12.4. Suppose Gg is the double cover of SL(3,R), and @ is the minimal
non-zero nilpotent orbit. Then dim © = 4 (and 60 = {0} so the codimension condition
is satisfled). K is isomorphic to SL(2, C), which has one irreducible representation r, of
each dimension n. Up to K conjugacy there is only one possibility for ), namely a highest
weight vector in the representation (isomorphic to 7s) of K on g/t)*. Consequently

K(A):{(; tfl) J-t‘*zz}.

The admissible representations of XK' (A) are those trivial on the identity component. There
are four irreducible ones, given by

x(é tfi)zt“ (a=0,1,2,3).

"The corresponding induced representations are

Indﬁ(,\)(xu) = Z: Tr
n=a41(mod 4)

Fora=10,a=1, and a = 2 there are unitary representations attached to & having these
K-types (see [Torasso]). For a = 3 there is no (8, K)-module with exactly these K-types
annihilated by a unipotent primitive ideal. (There are two irreducible (g, K )-modules with
these K-types, but they are not unitary. Their primitive ideals are interchanged by the
transpose antiautomorphism.)

The point of this example is to show that we cannot insist on the existence of unipotent
representations attached to all admissible y. A good explanation of why x3 is not allowed
in this case would be extremely valuable.
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