David Vogan

Introduction

KL cells

HC cells

Thinne to com

Things to come

Structure of Harish-Chandra cells

David Vogan

Massachusetts Institute of Technology

UMass Representation Theory

September 13, 2021

Outline

David Vogan

Introduction

Kazhdan-Lusztig cells

Harish-Chandra cells

What questions can you ask?

More questions to ask.

L cells

الد ممالة

Things to con

Slides at http://www-math.mit.edu/~dav/paper.html

What's a Harish-Chandra cell (A)?

```
G(\mathbb{R}) real reductive \supset K(\mathbb{R}) = G(\mathbb{R})^{\theta} maxl compact
G \supset K = G^{\theta} complexifications, \mathfrak{q} = \text{Lie}(G)
Cartan and Borel subalgebras \mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}, W = W(\mathfrak{g}, \mathfrak{h})
\lambda \in \mathfrak{h}^* dominant regular integral,
\mathcal{M}(\mathfrak{g}, K)_{\lambda} = (\mathfrak{g}, K)-modules of infinitesimal char \lambda
Irr(\mathfrak{g}, K)_{\lambda} = Irr reps, KM(\mathfrak{g}, K)_{\lambda} = \mathbb{Z} \cdot Irr(\mathfrak{g}, K)_{\lambda} Groth grp.
Weyl group W acts on KM(\mathfrak{g},K)_{\lambda}.
Get natural W representation, basis Irr(\mathfrak{g}, K)_{\lambda}.
W representation → Harish-Chandra cells.
Analogous to left reg rep of W \rightsquigarrow left cells (KL).
```

David Vogan

Introduction

(L cells

HC cells

hings to come

Preorder \leq on Irr(g, K) $_{\lambda}$: Kazhdan-Lusztig style definition is

$$Y \leq X \iff \exists w \in W, [Y] \text{ appears in } w \cdot X.$$

Representation def is (with F fin-diml rep of G^{ad})

$$Y \leq X \iff \exists F, Y \text{ composition factor of } F \otimes X.$$

Equiv rel
$$Y \underset{LR}{\sim} X$$
 means $Y \underset{LR}{\leq} X \underset{LR}{\leq} Y$; complement is $Y \underset{LR}{<} X$.

A Harish-Chandra cell is an $\underset{LR}{\sim}$ equiv class in $Irr(\mathfrak{g}, K)_{\lambda}$.

Two irreducibles are in the same cell iff you can get from each to the other by tensoring with finite-dimensional representations.

$$C(X) = \underset{LR}{\sim} \text{ equiv class of } X = \text{HC cell} \subset \text{Irr}(\mathfrak{g}, K)_{\lambda}.$$

$$\overline{C}(X) = < \underset{IB}{<} \text{ interval below } X = HC \text{ cone } \subset Irr(\mathfrak{g}, K)_{\lambda}.$$

$$\partial C(X) = \overline{C}(X) - C(X).$$

An interesting and difficult-to-compute invariant of a representation X is its associated variety $\mathcal{AV}(X)$.

Theorem. (Consequence of rep theory defn of cells.)

1.
$$Y \leq X \implies \mathcal{A}\mathcal{V}(Y) \subset \mathcal{A}\mathcal{V}(X)$$
.

2.
$$Y \stackrel{\sim}{\leq} X \implies \mathcal{RV}(Y) \subsetneq \mathcal{RV}(X)$$
.

1.
$$Y \underset{LR}{\leq} X \implies \mathcal{AV}(Y) \subset \mathcal{AV}(X)$$
.
2. $Y \underset{LR}{\leq} X \implies \mathcal{AV}(Y) \subsetneq \mathcal{AV}(X)$.
3. $Y \underset{LR}{\sim} X \implies \mathcal{AV}(Y) = \mathcal{AV}(X)$.

Theorem. (Consequence of KL defn of cells.)

1.
$$W$$
 acts on $\overline{C}_{\mathbb{Z}}(X) = \left[\sum_{\substack{Y \leq X \\ LR}} \mathbb{Z}Y\right] \supset \partial C_{\mathbb{Z}}(X)$.

- 2. W acts on $C_{\mathbb{Z}}(X) \simeq \overline{C}_{\mathbb{Z}}(X)/\partial C_{\mathbb{Z}}(X)$.
- 3. $C_{\mathbb{Z}}(X)$ contains unique special rep $\sigma(X) \in \widehat{W}$.
- 4. $\mathcal{AV}(X) = \text{union of closures of } K\text{-forms of } O(\sigma(X)).$

Nilpotent orbit $O(\sigma(X))$ is defined by Springer correspondence.

Theorem (Kazhdan-Lusztig)

- KL relations ~ and ~ partition W into left cells and two-sided cells C_L(w) ⊂ C_{LR}(w) (w ∈ W).
- 2. \mathbb{Z} -module $C_{\mathbb{Z},L}(w)$ carries a representation of W.
- 3. $C_{\mathbb{Z},LR}(w)$ carries a representation of $W \times W$.
- 4. $\sum_{C_{LR}} C_{\mathbb{Z},LR} \simeq \mathbb{Z}W$, regular representation of $W \times W$.
- 5. Two-sided cells C_{LR} partition W into subsets $\Sigma(C_{LR})$ called families: $C_{\mathbb{Z},LR} \simeq \sum_{\sigma \in \Sigma(C_{LR})} \sigma \otimes \sigma^*$.
- 6. As a representation of the first W, $C_{\mathbb{Z},LR} \simeq \sum_{C_L \subset C_{LR}} C_{\mathbb{Z},L}$.

ntroduction

KL cells

HC cells

Things to co

$$\mathcal{M}(F) = \{ (x, \xi) \mid x \in F, \ \xi \in \widehat{F^x} \} / (\text{conjugation by } F)$$

The group *F* acts itself by conjugation;

 $\mathcal{M}(F) \simeq \text{simple } F\text{-equivariant coherent sheaves on } F.$

Theorem (Lusztig) Suppose that Σ is a family in \widehat{W} .

- 1. Σ has exactly one special representation $\sigma_s(\Sigma) \in \widehat{W}$.
- 2. $\sigma_s \underset{\text{Springer}}{\longleftrightarrow} \text{special nilpotent orbit } O_s(\Sigma) = O_s(\sigma_s) \subset \mathcal{N}^*/G.$
- 3. Put $A(O_s) = \pi_1^G(O_s)$ (equivariant fundamental group). Put $\{\sigma_s = \sigma_1, \sigma_2, \dots, \sigma_r\} = \Sigma \cap (\operatorname{Springer}(O_s));$ this is all W-reps in $\Sigma \longleftrightarrow_{\operatorname{Springer}} \xi_j \in \widehat{A(O_s)}$. Define

$$\overline{A} = \overline{A}(O_s) = A(O_s)/[\cap_i \ker \xi_i]$$

4. Have inclusion $\Sigma \hookrightarrow \mathcal{M}(\overline{A})$, $\sigma \mapsto (x(\sigma), \xi(\sigma))$ so

$$x(\sigma_s) = x(\sigma_i) = 1 \in \overline{A}, \quad \xi(\sigma_i) = \xi_i \in \widehat{\overline{A}}.$$

Introduction

KL cells

HC cells

Homework

Things to cor

es partitions of n

W(BCn) ~ pairs of partitions (TI, Tiz)

BIG family: 03 = (0,0), A= (1,x) $\begin{array}{cccc} (\square,\square) & (\phi,\square) & (\exists,\phi) & \text{element } (x,\xi) \\ (1,\text{triv}) & (1,E) & (x,\text{triv}) & \text{el } M(\overline{A}) \end{array}$

David Vogan

KL cells

Recall that finite group F gives

$$\mathcal{M}(F) = \{ (x, \xi) \mid x \in F, \ \xi \in \widehat{F^x} \} / (\text{conj by } F)$$

$$\simeq \text{irr conj-eqvt coherent sheaves } \mathcal{E}(x, \xi) \text{ on } F.$$

Given subgroup $S \subset F$, const sheaf S on S is S-eqvt for conj. Push forward to F-eqvt sheaf supp on F-conjugates of S:

$$i_*(\mathcal{S}) = \sum_{s,\xi} m_{\mathcal{S}}(s,\xi) \mathcal{E}(s,\xi), \qquad m_{\mathcal{S}}(s,\xi) = \dim \xi^{\mathcal{S}^s}.$$

Sum runs over S conjugacy classes $s \in S$. Can write this as

$$i_*(S) = \sum_{s} \mathcal{E}(s, \operatorname{Ind}_{S^s}^{F^s}(\operatorname{triv})).$$

Theorem (Lusztig) $C_L \subset C_{LR} \leftrightarrow \Sigma \subset \widehat{W}$, \overline{A} finite group,

$$\Sigma \hookrightarrow \mathcal{M}(\overline{A}), \quad \sigma \mapsto (x(\sigma), \xi(\sigma)).$$

- 1. \exists subgp $\Gamma = \Gamma(C_L) \subset \overline{A}$ so $C_{\mathbb{Z},L} \simeq \sum_{x,\xi} m_{\Gamma}(x,\xi)\sigma(x,\xi)$
- 2. $m_{\Gamma}(1, \text{triv}) = 1$, so special rep σ_s appears once in $C_{\mathbb{Z},L}$.
- 3. \exists Lusztig left cells with $\Gamma = \overline{A}$, so $C_{\mathbb{Z},L} \simeq \sum_{x} \sigma(x, \text{triv})$.
- 4. G classical \Longrightarrow \exists Springer left cells with $\Gamma = \{e\}$, so $C_{\mathbb{Z},L} \simeq \sum_{\xi \in \widehat{A}} \dim(\xi)\sigma(1,\xi)$, Springer reps for O_s in Σ .

David Vogan

Introduction

KL cells

no celis

Things to o

Classical left cells: special in red

Saturday, September 11, 2021

$$A = (2/2Z)^n$$
, $M(A) = A \times A^n$
 $C2$ family: $O_S = (O_1, O_1)$, $A = \{1, x\}$
 (O_1, O_2) (O_2, O_3) (O_3, O_4) $(O_4, O_4$

C2 cells:

$$C_1 = \{ (\Box, \Box), (\phi, \Box) \}$$
 Springer
 $C_{\overline{A}} = \{ (\Box, \Box), (\Box, \phi) \}$ Lusztig

David Vogan

Introduction

KL cells

HC cells

 $C_{\mathbb{Z}} \supset \sigma_s(C)$ special in $\widehat{W} \leadsto O(C)$, $\Sigma(O) \subset \widehat{W}$, $\overline{A}(O)$ finite.

Theorem. Suppose C is a HC cell in $Irr(g, K)_{\lambda}$.

$$C_{\mathbb{Z}} = \sum_{\sigma \in \Sigma} m_{\mathcal{C}}(\sigma)\sigma, \quad m_{\mathcal{C}}(\sigma) \in \mathbb{N}, \quad m_{\mathcal{C}}(\sigma_s) = 1.$$

That is, a HC cell is a sum of certain W reps in a single family, including the special W rep with multiplicity one.

Problem: understand the set of $\it W$ reps on cells.

How many cells are there for each special rep σ of W?

Which other reps from the family of σ appear in each cell?

Conjecture. For each HC cell C as above, $\exists S(C) \subset \overline{A}$ so

$$m_{\mathcal{C}}(\sigma(x,\xi))=m_{\mathcal{S}(\mathcal{C})}(x,\xi).$$

Introduction

KL cells

HC cells

Theorem (McGovern, Binegar) C a HC cell in $Irr(g, K)_{\lambda}$.

- 1. $C_{\mathbb{Z}} = \sum_{\sigma \in \Sigma} m_{\mathcal{C}}(\sigma)\sigma$, $m_{\mathcal{C}}(\sigma) \in \mathbb{N}$, $m_{\mathcal{C}}(\sigma_s) = 1$.
- 2. IF $G(\mathbb{R})$ real form of type A, SO(n), Sp(2n), or an exceptional group, THEN $\exists S(C) \subset \overline{A}$ so

$$m_C(\sigma(x,\xi)) = m_{S(C)}(x,\xi).$$

- The subgroup S(C) ⊂ A in (2) is always one of Lusztig's Γ attached to a left cell; so
- 4. in (2), each HC cell is isomorphic to a KL left cell.
- 5. IF $G(\mathbb{R})$ cplx, so $O = O_1 \times O_1$, $\overline{A}(O) = \overline{A_1} \times \overline{A_1}$, THEN $S(C) = (\overline{A_1})_{\Delta}$; not one of Lusztig's Γ unless $\overline{A_1} = 1$.

introduction

KL cells

HC cells

10111041011

Things to com

$$C_{\mathbb{Z}} = \sum_{\sigma \in \Sigma} m_{C}(\sigma) \sigma.$$

"We" (that is, the atlas software!) can calculate nonnegative integers $m_C(\sigma(x,\xi))$.

How do we recover S(C) from these integers?

Recall pairs $(x, \xi) \in \mathcal{M}(\overline{A})$ defined up to \overline{A} conjugacy;

 $x \in \overline{A}$, and $\xi \in \widehat{\overline{A}^x}$ irrep of its centralizer.

The *W*-reps $\sigma(x, \text{triv})$ actually exist.

 $m_S(x, \text{triv}) = \#S$ -conjugacy classes in (class of x) $\cap S$: class function on \overline{A} giving nice statistic about S.

Gives question: given a finite group A, class function m on A, is there at most one subgroup S having this statistic?

Answer to such a question for general A is always NO.

But Lusztig's \overline{A} is a product of copies of S_m for $m \le 5$...

Introduction

KL cells

HC cell

Homework

hings to con

Homework problem

David Vogan

ntroduction

KL cells

Homework

Suppose *A* is a product of copies of S_m for $m \le 5$. If $S \subset A$ is a subgroup, define a class function on *A*:

 $m_S(x) = \#\{ S \text{-conj classes in } (A - \text{conj class of } x) \cap S \}.$

Find an algorithm to recover the group S (up to conjugation in A) from the function m_S .

Lusztig's quotient is $\overline{A}(O) = (\mathbb{Z}/2\mathbb{Z})^3$.

Lusztig's family $\Sigma \subset \widehat{W}$ consists of 27 irreps: those which on each $W(C_2)$ factor are neither trivial nor sign.

There are eight KL left cells, each a different subset of 8 reps from Σ . Correspond (Lusztig thm) to the eight Lusztig subgroups $\Gamma \subset \overline{A}$ that are products of three factors.

There are a total of 16 subgroups S of \overline{A} , each defining a different subset $C_S \subset \Sigma$.

Each C_S consists of 5, 6, or 8 reps in Σ .

Theorem (Zierau). For G loc isom to $Sp(2,R)^3$, each HC cell rep is of the form C_S for some $S \subset \overline{A}$; and every subgroup S appears.

ntroduction

KL cells

HC cells

Homework

nings to com

¹Teacher's pet

Given real reductive G, special orbit O, and corr special rep $\sigma \in \widehat{W}$, would be great to understand

- 1. how many HC cells for G include σ ?
- 2. Is each cell defined as W rep by some $S \subset \overline{A(O)}$?
- 3. Which subgroups S appear, and how often?
- (1) is a complication of classical question how many \mathbb{R} -forms does O have?
- (2) ought to be addressable using ideas from Lusztig's classification of left cells.
- (3) is a complication of the classical question how much of $\pi_1(O)$ is defined over \mathbb{R} ?

Since this is the last slide, you can guess that I have no idea how to answer these questions.

Thanks for the invitation; math with people is the best kind!